理论力学答案
- 格式:doc
- 大小:1.08 MB
- 文档页数:46
理论力学大一试题及答案一、选择题(每题5分,共20分)1. 牛顿第一定律描述的是:A. 物体在没有外力作用下将保持静止或匀速直线运动B. 物体在受到外力作用下将改变其运动状态C. 物体在受到外力作用下将保持匀速直线运动D. 物体在受到外力作用下将保持静止答案:A2. 根据动量守恒定律,以下说法正确的是:A. 系统内所有物体的动量之和在没有外力作用下保持不变B. 系统内所有物体的动量之和在有外力作用下保持不变C. 系统内所有物体的动量之和在有外力作用下将增加D. 系统内所有物体的动量之和在有外力作用下将减少答案:A3. 角动量守恒的条件是:A. 系统不受外力矩B. 系统受外力矩C. 系统内力矩之和为零D. 系统内力矩之和不为零答案:A4. 以下哪项不是能量守恒定律的表述:A. 能量既不能被创造,也不能被消灭B. 能量可以以多种形式存在C. 能量可以以多种形式相互转化D. 能量在转化过程中总量会增加答案:D二、填空题(每题5分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成________。
答案:反比2. 一个物体在水平面上以初速度v0运动,受到大小为F的恒定摩擦力作用,其加速度为a=________。
答案:-F/m3. 一个质量为m的物体从高度h自由下落,其下落过程中的重力势能变化量为________。
答案:-mgh4. 根据动能定理,一个物体的动能变化量等于外力对物体做的功,即ΔK=________。
答案:W三、计算题(每题15分,共30分)1. 一个质量为2kg的物体从静止开始,受到一个大小为10N的水平拉力作用,求物体在5秒内的位移。
解:根据牛顿第二定律,F=ma,得a=F/m=10/2=5m/s²。
根据位移公式s=1/2at²,得s=1/2*5*5²=62.5m。
答案:62.5m2. 一个质量为5kg的物体从高度10m自由下落,求物体落地时的速度。
理论力学考试题及答案详解一、选择题(每题2分,共10分)1. 牛顿第一定律又称为惯性定律,它指出:A. 物体在受力时,会改变运动状态B. 物体在不受力时,会保持静止或匀速直线运动C. 物体在受力时,会做圆周运动D. 物体在受力时,会保持原运动状态答案:B2. 根据胡克定律,弹簧的弹力与弹簧的形变量成正比,比例系数称为:A. 弹性系数B. 刚度系数C. 硬度系数D. 柔度系数答案:A3. 在理论力学中,一个系统动量守恒的条件是:A. 系统外力为零B. 系统外力和内力都为零C. 系统外力和内力之和为零D. 系统外力和内力之差为零答案:C4. 一个物体做自由落体运动,其加速度为:A. 0B. g(重力加速度)C. -gD. 取决于物体的质量答案:B5. 刚体的转动惯量与以下哪个因素无关?A. 质量B. 质量分布C. 旋转轴的位置D. 物体的形状答案:A二、填空题(每空2分,共10分)6. 一个物体受到三个共点力平衡,如果撤去其中两个力,而保持第三个力不变,物体的加速度将________。
答案:等于撤去的两个力的合力除以物体质量7. 根据动能定理,一个物体的动能等于工作力与物体位移的________。
答案:标量乘积8. 在光滑水平面上,两个冰球相互碰撞后,它们的总动能将________。
答案:守恒9. 一个物体在水平面上做匀速圆周运动,其向心力的方向始终________。
答案:指向圆心10. 刚体的角速度与角动量的关系是________。
答案:成正比三、简答题(共20分)11. 什么是达朗贝尔原理?请简述其在解决动力学问题中的应用。
答案:达朗贝尔原理是分析动力学问题的一种方法,它基于牛顿第二定律,用于处理作用在静止或匀速直线运动的物体上的力系。
在应用达朗贝尔原理时,可以将物体视为受力平衡的状态,即使物体实际上是在加速运动。
通过引入惯性力的概念,可以将动力学问题转化为静力学问题来求解。
12. 描述一下什么是科里奥利力,并解释它在地球上的表现。
理论力学习题答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 静力学公理和物体的受力分析一、是非判断题在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ∨ ) 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( × ) 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × ) 力的可传性只适用于刚体,不适用于变形体。
( ∨ ) 两点受力的构件都是二力杆。
( × ) 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × ) 力的平行四边形法则只适用于刚体。
( × ) 凡矢量都可以应用平行四边形法则合成。
( ∨ ) 只要物体平衡,都能应用加减平衡力系公理。
( × ) 凡是平衡力系,它的作用效果都等于零。
( × ) 合力总是比分力大。
( × ) 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( × )若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ∨ )当软绳受两个等值反向的压力时,可以平衡。
( × )静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ∨ )静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( ∨ )凡是两端用铰链连接的直杆都是二力杆。
( × )如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。
( × )图3二、填空题力对物体的作用效应一般分为 外 效应和 内 效应。
对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。
理论力学考研试题及答案一、选择题(每题2分,共20分)1. 质点系的动量守恒条件是()。
A. 外力为零B. 外力之和为零C. 外力之和的矩为零D. 外力之和的矩不为零答案:B2. 刚体的转动惯量与()有关。
A. 质量B. 形状C. 质量分布D. 以上都是答案:D3. 牛顿第二定律的数学表达式为()。
A. F = maB. F = m*vC. F = m*aD. F = m*v^2答案:C4. 角动量守恒的条件是()。
A. 外力矩为零B. 内力矩为零C. 外力矩与内力矩之和为零D. 外力矩与内力矩之差为零5. 简谐振动的周期与()无关。
A. 振幅B. 频率C. 质量D. 刚度答案:A6. 达朗贝尔原理的实质是()。
A. 虚功原理B. 虚位移原理C. 虚速度原理D. 虚加速度原理答案:B7. 刚体的平动与转动的区别在于()。
A. 参考系B. 速度C. 加速度D. 角速度答案:D8. 拉格朗日方程的推导基于()。
A. 牛顿运动定律B. 能量守恒定律C. 动量守恒定律D. 虚功原理答案:D9. 刚体转动的角动量方向与()方向相同。
B. 力矩C. 角速度D. 线速度答案:C10. 非惯性参考系中,物体的运动方程中需要加入()。
A. 惯性力B. 重力C. 电磁力D. 摩擦力答案:A二、填空题(每题2分,共20分)1. 质点系的动量守恒定律表明,当质点系所受外力之和为零时,其总动量保持不变。
2. 刚体的转动惯量是刚体对于某一旋转轴的惯性的量度,它与刚体的质量分布和旋转轴的位置有关。
3. 牛顿第二定律表明,物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。
4. 角动量守恒定律表明,当一个系统不受外力矩作用时,其总角动量保持不变。
5. 简谐振动的周期只与振动系统的固有频率有关,与振幅无关。
6. 达朗贝尔原理是将动力学问题转化为静力学问题的一种方法。
7. 刚体的平动是指刚体上所有点都沿着同一直线运动,而转动则是指刚体绕某一固定轴旋转。
第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
理论力学试题及答案一、选择题(每题2分,共20分)1. 牛顿第一定律描述的是:A. 物体在受力时的运动状态B. 物体在不受力时的运动状态C. 物体在受力时的加速度D. 物体在受力时的位移答案:B2. 根据牛顿第二定律,物体的加速度与作用力和物体质量的关系是:A. 加速度与作用力成正比,与质量成反比B. 加速度与作用力成反比,与质量成正比C. 加速度与作用力成正比,与质量成正比D. 加速度与作用力成反比,与质量成反比答案:A3. 以下哪个不是刚体的运动特性?A. 刚体的质心保持静止或匀速直线运动B. 刚体的各部分相对位置不变C. 刚体的各部分速度相同D. 刚体的各部分加速度相同答案:C4. 角动量守恒定律适用于:A. 只有重力作用的系统B. 只有内力作用的系统C. 外力矩为零的系统D. 外力为零的系统答案:C5. 以下哪个是能量守恒定律的表述?A. 一个封闭系统的总动能是恒定的B. 一个封闭系统的总势能是恒定的C. 一个封闭系统的总能量是恒定的D. 一个封闭系统的总动量是恒定的答案:C二、简答题(每题10分,共20分)6. 简述牛顿第三定律的内容及其在实际中的应用。
答案:牛顿第三定律,又称作用与反作用定律,表述为:对于两个相互作用的物体,它们之间的作用力和反作用力总是大小相等、方向相反。
在实际应用中,例如在推门时,门对人的作用力和人对门的作用力大小相等,方向相反。
7. 描述什么是简谐振动,并给出一个生活中的例子。
答案:简谐振动是一种周期性振动,其回复力与位移成正比,且总是指向平衡位置。
生活中的例子包括弹簧振子,当弹簧被拉伸或压缩后释放,它会在原始平衡位置附近做周期性的往复运动。
三、计算题(每题15分,共30分)8. 一个质量为m的物体,从静止开始,沿着一个斜面下滑,斜面的倾角为θ。
如果斜面的摩擦系数为μ,求物体下滑的加速度。
答案:首先,物体受到重力mg的作用,分解为沿斜面方向的分力mg sinθ和垂直斜面方向的分力mg cosθ。
理论力学试题及答案一、选择题(每题2分,共10分)1. 一个物体在水平面上以速度v匀速直线运动,其动摩擦因数为μ,若物体所受的摩擦力为F,则F等于:A. μvB. μmgC. μND. μ(v^2)答案:B2. 根据牛顿第二定律,物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比。
这一定律的数学表达式为:A. F = maB. F = m/aC. a = F/mD. a = mF答案:A3. 一个物体从静止开始自由下落,其下落的高度h与时间t的关系为:A. h = gt^2B. h = 1/2gt^2C. h = 2gtD. h = gt答案:B4. 两个物体A和B用轻杆连接,A的质量为mA,B的质量为mB,系统在水平面上以共同速度v向右做匀速直线运动。
若杆的力为F,则F的方向是:A. 向左B. 向右C. 不确定D. 无法判断答案:B5. 一个物体在竖直平面内做圆周运动,当物体通过最高点时,其向心力的来源是:A. 重力B. 杆的支持力C. 绳子的张力D. 重力和杆的支持力的合力答案:D二、填空题(每空2分,共10分)1. 一个物体的质量为2kg,受到的合外力为10N,根据牛顿第二定律,其加速度为______ m/s²。
答案:52. 一个物体做匀加速直线运动,初速度为3m/s,加速度为2m/s²,经过4秒后的速度为______ m/s。
答案:153. 在光滑水平面上,一个物体受到一个大小为5N,方向向右的恒定力作用,物体的质量为1kg,其加速度为______ m/s²。
答案:54. 一个物体在竖直上抛运动中,当其上升的最大高度为20m时,其初速度为______ m/s。
答案:205. 根据动能定理,物体的动能变化等于合外力做的功,若一个物体的动能增加了30J,合外力做的功为______ J。
答案:30三、简答题(共20分)1. 解释什么是科里奥利力,并给出其表达式。
理论力学课程试题及答案理论力学是物理学中的一个重要分支,它主要研究宏观物体在力的作用下的运动规律。
理论力学课程通常包括静力学、动力学、运动学、能量守恒定律、动量守恒定律、角动量守恒定律等内容。
以下是一份理论力学课程的试题及答案,供学习者参考。
试题一、选择题(每题2分,共10分)1. 理论力学的研究对象是()A. 微观粒子B. 宏观物体C. 流体D. 热力学系统2. 在国际单位制中,力的单位是()A. 牛顿(N)B. 帕斯卡(Pa)C. 焦耳(J)D. 瓦特(W)3. 一个物体的动量是()A. 物体的质量与速度的乘积B. 物体的动能C. 物体的势能D. 物体的位移4. 根据牛顿第三定律,作用力与反作用力()A. 大小相等,方向相反B. 大小不等,方向相反C. 大小相等,方向相同D. 大小不等,方向相同5. 一个物体在水平面上做匀速直线运动,其受到的摩擦力()A. 等于物体的重力B. 等于物体的动能C. 等于物体的动量D. 与物体的牵引力大小相等,方向相反二、简答题(每题5分,共20分)1. 请简述牛顿运动定律的三个定律。
2. 什么是角动量守恒定律?它在什么条件下成立?3. 简述能量守恒定律,并说明其在实际应用中的重要性。
4. 何为虚功原理?它在解决静力学问题中有何作用?三、计算题(每题10分,共30分)1. 一个质量为2kg的物体在水平面上以3m/s的速度做匀速直线运动,若摩擦系数为0.1,请计算物体受到的摩擦力大小。
2. 一个质量为5kg的物体从静止开始自由下落,忽略空气阻力,求物体在2秒后的速度和位移。
3. 一个质量为3kg的物体在竖直平面内做圆周运动,其半径为1m,角速度为2rad/s,请计算物体在最高点时所需的最小速度。
四、解答题(每题15分,共30分)1. 一个质量为m的物体在竖直方向上受到一个向上的力F作用,物体向上做匀加速直线运动。
若物体的加速度为a,试证明牛顿第二定律在该情况下的表达式,并说明力F与物体质量m和加速度a之间的关系。
理论力学教科书课后习题及解析第一章偶,大小是260Nm,转向是逆时针。
.求图示平面力系的合成结果,长度单位为m1习题4-习题4-3.求下列各图中平行分布力的合力和对于A点之矩。
A点的矩是:(1) 解:平行力系对O(1) 解:取点为简化中心,求平面力系的主矢:B取点为简化中心,平行力系的主矢是:求平面力系对点的主矩:O 点的主矩是:B 平行力系对B RB向点简化的结果是一个力,且:M和一个力偶合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力(2) B.理论力学教科书课后习题及解析A,且:M向A点简化的结果是一个力如图所示;R和一个力偶A如图所示;将,使满足:d R向下平移一段距离B的大小等于载荷分布的其几何意义是:。
R最后简化为一个力R,大小等于R B,使满足:d R将向右平移一段距离A矩形面积,作用点通过矩形的形心。
A(2) 取点为简化中心,平行力系的主矢是:的大小等于载荷分布的R。
其几何意义是:RR最后简化为一个力,大小等于A三角形面积,作用点通过三角形的形心。
点的主矩是:A平行力系对.理论力学教科书课后习题及解析列平衡方程:。
.求下列各梁和刚架的支座反力,长度单位为习题4-4m解方程组:反力的实际方向如图示。
校核:解:(1) 研究AB杆,受力分析,画受力图:结果正确。
(2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图:理论力学教科书课后习题及解析(3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:列平衡方程:解方程组:列平衡方程:反力的实际方向如图示。
校核:解方程组:结果正确。
.理论力学教科书课后习题及解析反力的实际方向如图示。
校核:结果正确。
的约束反力A.重物悬挂如图,已知习题4-5G=1.8kN,其他重量不计;求铰链和杆BC所受的力。
列平衡方程:解方程组:BC是二力杆),画受力图:研究整体,受力分析((1) 解:反力的实际方向如图示。
平面任意力系(一)一、填空题1、平面任意力系的主矢RF '与简化中心的位置 无 关,主矩o M 一般与简化中心的位置 有 关,而在__主矢为零___的特殊情况下,主矩与简化中心的位置 无 __ 关.2、当平面力系的主矢等于零,主矩不等于零时,此力系合成为_一个合力偶.3、如右图所示平面任意力系中,F F F F 1234===,此力系向A 点简化的结果是 0R F '≠,0A M ≠ ,此力系向B 点简化的结果是0RF '≠,0A M = . 4、如图所示x 轴与y 轴夹角为α,设一力系在oxy 平面内对y 轴和x轴上的A ,B 点有∑A m 0)(=F ,∑B m 0)(=F ,且∑=0y F ,但∑≠0x F ,l OA =,则B 点在x 轴上的位置OB =___/cos l θ ____.(题4图) (题5图)5、折杆ABC 与CD 直杆在C 处铰接,CD 杆上受一力偶m N 2⋅=M 作用,m 1=l ,不计各杆自重,则A 处的约束反力为___2N___. 二、判断题(√ ) 1.若一平面力系对某点之主矩为零,且主矢亦为零,则该力系为一平衡力系.(√ ) 2.在平面力系中,合力一定等于主矢.(× ) 3.在平面力系中,只要主矩不为零,力系一定能够进一步简化.1F 2F 3F 4F AB(√ ) 4.当平面任意力系向某点简化结果为力偶时,如果再向另一点简化,则其结果是一样的.(×) 5.平面任意力系的平衡方程形式,除一矩式,二矩式,三矩式外,还可用三个投影式表示.(× ) 6.平面任意力系平衡的充要条件为力系的合力等于零.(× ) 7.设一平面任意力系向某一点简化得一合力,如另选适当的点为简化中心,则力系可简化为一力偶.(√ ) 8.作用于刚体的平面任意力系主矢是个自由矢量,而该力系的合力(若有合力)是滑动矢量,但这两个矢量等值,同向.( × ) 9.图示二结构受力等效.三、选择题1、关于平面力系与其平衡方程式,下列的表述正确的是_____D_ ___A.任何平面任意力系都具有三个独立的平衡方程。
第一章习题解答1.1 由题可知示意图如题1.1.1图:{{SSt t 题1.1.1图设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a .则有:()()⎪⎪⎩⎪⎪⎨⎧+-+=-=221210*********t t a t t v s at t v s 由以上两式得11021at t s v +=再由此式得 ()()2121122t t t t t t s a +-= 证明完毕.1.4 解 如题1.4.1图所示,A BOCLxθd 第1.4题图OL 绕O 点以匀角速度转动,C 在AB 上滑动,因此C 点有一个垂直杆的速度分量22x d OC v +=⨯=⊥ωωC 点速度dx d d v v v 222sec sec cos +====⊥⊥ωθωθθ 又因为ωθ= 所以C点加速度θθθω ⋅⋅⋅⋅==tan sec sec 2d dt dv a ()2222222tan sec 2d x d x d +==ωθθω1.5 解 由题可知,变加速度表示为⎪⎭⎫ ⎝⎛-=T t c a 2sin 1π由加速度的微分形式我们可知dtdv a =代入得dtT t c dv ⎪⎭⎫ ⎝⎛-=2sin 1π 对等式两边同时积分dt T t c dv t v⎰⎰⎪⎭⎫ ⎝⎛-=002sin 1π可得 :D Tt c T ct v ++=2cos 2ππ(D 为常数)代入初始条件:0=t 时,0=v ,故c T D π2-=即⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=12cos 2Tt T t c v ππ 又因为dtds v =所以=ds dt T t T t c ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+12cos 2π对等式两边同时积分,可⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=t T t T T t c s 2sin 22212πππ1.6解 由题可知质点的位矢速度r λ=//v ① 沿垂直于位矢速度μθ=⊥v又因为 r r λ== //v , 即r r λ=μθθ==⊥r v 即rμθθ= ()()j i v a θ r dtd r dt d dt d +==(取位矢方向i ,垂直位矢方向j ) 所以 ()j i i i θ r r dtd r i dtr d r dtd +=+=()dtd r dt d r dt dr r dt d j j j j θθθθ ++=i j j 2r r r θθθ -+= 故 ()()j i a θθθ r r r r22++-= 即 沿位矢方向加速度 ()2θ r ra -= 垂直位矢方向加速度 ()θθr r a 2+=⊥对③求导 r r r 2λλ== 对④求导θμμθθr r r +-=2⎪⎭⎫ ⎝⎛+=λμμθr 把③④⑦⑧代入⑤⑥式中可得rr a 222//θμλ-=⎪⎭⎫ ⎝⎛+=⊥r a μλμθ1.9证 质点作平面运动,设速度表达式为j i v y x v v +=令为位矢与轴正向的夹角,所以dt d v dt dv dt d v dt dv dt d y y x x j j i i v a +++==j i ⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=θθ x y y x v dt dv v dt dv 所以[]j i a ⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=θθ x y y x v dt dv v dt dv ()j i y x v v +⋅ θθ y x y y y x x x v v dt dv v v v dt dv v ++-=dtdv v dt dv v y yxx += 又因为速率保持为常数,即C C v v y x ,22=+为常数对等式两边求导022=+dtdv v dt dv v y y xx所以0=⋅v a即速度矢量与加速度矢量正交.1.11解 由题可知速度和加速度有关系如图1.11.1所示题1.11.1图⎪⎪⎩⎪⎪⎨⎧====ααcos sin 2a dt dv a a r v a t n 两式相比得dtdv r v ⋅=ααcos 1sin 2即 2cot 1v dv dt r=α对等式两边分别积分200cot 1v dv dt rv v t⎰⎰=α 即αcot 110rtv v -= 此即质点的速度随时间而变化的1.13 证(a )当00=v ,即空气相对地面上静止的,有牵相绝v v v +=.式中绝v 质点相对静止参考系的绝对速度, 相v 指向点运动参考系的速度, 牵v 指运动参考系相对静止参考系的速度.可知飞机相对地面参考系速度:绝v =v ',即飞机在舰作匀速直线运动.所以飞机来回飞行的总时间 v l t '=20.(b )假定空气速度向东,则当飞机向东飞行时速度01v v v +'= 飞行时间 01v v l t +'=当飞机向西飞行时速度0v v v v v -'=+=牵相 飞行时间2v v l t -'=故来回飞行时间021v v l t t t +=+=0v v l -+2022v v lv -''= 即 2200220112v v t v v v lt '-='-'= 同理可证,当空气速度向西时,来回飞行时间2201v v t t '-=(c )假定空气速度向北.由速度矢量关系如题1.13.1图v 题1.13.1图v v v '+=0绝202v v v -'= 所以来回飞行的总时间2022v v l t -'=220220112v vt v v v l'-='-'=同理可证空气速度向南时,来回飞行总时间仍为2201v v t t '-=1.15 解 船停止时,干湿分界线在蓬前3,由题画出速度示意图如题.15.1图船题1.15.1图船雨相雨绝v v v +=故()()γβαπβα---=+sin sin 雨绝船v v 又因为2πγβ=+,所以()αβαcos sin +=雨绝船v v由图可知51cos ,52244cos 22==+=αα 54cos ,53sin ==ββs m v /8=雨绝所以ααββαcos )cos sin cos (sin +=雨绝船v v =8s m /1.16解 以一岸边为x 轴,垂直岸的方向为y 轴.建立如题1.16.1图所示坐标系.题1.16.1图所以水流速度()⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛≤≤-⎪⎭⎫⎝⎛≤≤=d y d y d k d y ky v 220 又因为河流中心处水流速度为c⎪⎭⎫ ⎝⎛-⨯=⨯=22d d k d k c 所以d c k 2=。
当20d y ≤≤时,y dc v 2=水即⎪⎩⎪⎨⎧==uty y d cdt dx 2 ①--② 得tdt dcu dx 2=,两边积分tdt d cu dx tx20⎰⎰=2t dcu x =③ 联立②③,得⎪⎭⎫ ⎝⎛≤≤=202d y y udc x ④同理,当2d y d ≥≥时,()y d dc v -=2水即()()ut d dcy d d c dt dx -=-=22 ()dt ut d dcdx -=⎰⎰2 ()为一常数D D udcy y u c x +-=22 ⑤ 由④知,当2d y =时,u cd x 4=代入⑤得 ucd D 2-=有 udcy y u c x 22-= ucd 2-,⎪⎭⎫ ⎝⎛≤≤d y d 2所以船的轨迹 ⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛≤≤--=⎪⎭⎫⎝⎛≤≤=d y d u cd y ud c y u c x d y y ud c x 2222022 船在对岸的了;靠拢地点,即d y =时有ucd x 2=1.19 解 质点从抛出到落回抛出点分为上升和下降阶段.取向上为正各力示意图如题1.19.1图,上升时 下降时 题1.19.1图则两个过程的运动方程为: 上升22y g mk mg y m --= ① 下降:22y g mk mg y m +-=- ② 对上升阶段:()221v k g dtdv +-=()221v k g dyvdvdt dy dy dv +-== 即gdy vk vdv-=+221 对两边积分 gdy vk vdv h v ⎰⎰-=+022010所以 ()2221ln 21v k gk h +=③ 即质点到达的高度. 对下降阶段:22gv k g dyvdvdt dy dy dv -== 即gdy vk vdv h v ⎰⎰=-022011()21221ln 21v k gk h --= ④ 由③=④可得202011vk v v +=1.21 解 阻力一直与速度方向相反,即阻力与速度方向时刻在变化,但都在轨道上没点切线所在的直线方向上,故用自然坐标比用直角坐标好.题1.21.1图轨道的切线方向上有:θsin mg mkv dtdv m --= ①轨道的法线方向上有:θcos 2mg rv m = ② 由于角是在减小的,故θd ds r -= ③由于初末状态由速度与水平方向夹角θ来确定,故我们要想法使①②变成关于θ的等式由① dsdv mv dt ds ds dv m dt dv m ==即 θsin mg mkv dsdv mv --= ④把代入可得 θθcos 2mg dsd mv -= ⑤用④÷⑤可得θθθcos sin 1g g kv d dv v += θθθθθd v d g k dv vcos sin cos 12+= θθθθθθd v g kd v dv 222cos sin cos cos += θθθθθ222cos cos sin cos g kd v d v dv =-即()θθθθ222cos cos cos g kd v v d =,两边积分得 C gkv +=-θθtan cos 1 ⑥ 代入初始条件0=t 时,0,v v ==αθ即可得 ⎪⎪⎭⎫⎝⎛+-=αtan cos 10g k v C代入⑥式,得 ()[]g kv gv v +-=θαθαtan tan cos cos cos 0 ⑦又因为θωcos ,2mg rv m r v == 所以 vg dt d θθωcos --= ⑧把⑦代入⑧()[]dt g d g kv gv θθθαθαcos tan tan cos cos cos 0-=+-积分后可得 ⎪⎪⎭⎫⎝⎛+=gkv k t αsin 21ln 1101.25解,选向下为正方向,滑轮刚停时物体所在平衡位置为坐标原点.建立如题.25.1图所示坐标系.W题2.15.1图原点的重力势能设为0.设弹簧最大伸长max λ.整个过程中,只有重力做功,机械能守恒:()⎪⎩⎪⎨⎧=+-⋅⋅-=+⋅02max 0max 2020212121λλλλλk W k g g W k v g W ①-② 联立①②得 gv 000max λλλ+=弹簧的最大张力即为弹簧伸长最长时的弹力,max T 为最大张力,即⎥⎥⎦⎤⎢⎢⎣⎡+==00maxmax 1λλg v W k T1.27解对于圆柱凸面上运动的质点受力分析如图1-24.题1.27.1图运动的轨迹的切线方向上有:dtdv m mg =θsin ①法线方向上有: Rv m N mg 2cos =-θ ②对于①有dtds ds dv dt dv g ==θsin (s 为运动路程,亦即半圆柱周围弧长)即ds g vdv θsin =又因为 ds Rd =θ 即 θθRd g vdv sin = ③设质点刚离开圆柱面时速度0v ,离开点与竖直方向夹角0θ,对③式两边积分θθθRd g vdv v sin 0⎰⎰=()020cos 121θ-=gR v ④ 刚离开圆柱面时0=N 即 Rv m mg 200cos =θ ⑤ 联立④⑤ 得 32arccos 0=θ即为刚离开圆柱面时与竖直方向夹角.1.28解 建立如题1.28.1图所示直角坐标.题1.28.1图椭圆方程 12222=+by a x ① 从A 滑到最低点B ,只有重力做功.机械能守恒.即 221mv mgb = ②设小球在最低点受到椭圆轨道对它的支持力为N 则有:ρ2v mmg N == ③ρ为B 点的曲率半径.B A →的轨迹: 221ax b y --= 得2221a x abx y -=';2322211⎪⎪⎭⎫ ⎝⎛-⋅=''a x ab y 又因为()223211a b y y k ='+''==ρ所以 ⎪⎪⎭⎫ ⎝⎛+=⨯+=+=2222212a b W mgh a b mg mv mg N ρ 故根据作用力与反作用力的关系小球到达椭圆最低点对椭圆压力为⎪⎪⎭⎫ ⎝⎛+2221a b W方向垂直轨道向下.1.29 解质点作平面直线运动,运动轨迹方程为()()⎩⎨⎧+-=+=θθθ2cos 12sin 2a y a x ①-② 由曲线运动质点的受力分析,我们可以得到:⎪⎪⎩⎪⎪⎨⎧==-dt dv m mg v m N mg θρθsin cos 2 ③-④ 因为曲线上每点的曲率 ()2321y y k '+''=⑤所以 θθθθθ2cos 12sin 2cos 222sin 2+=+==a a a d dx d dydx dy ⑥ dxd dx dy d d dx dy dx d dx y d θθ⋅⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=22()()θθθθθ2cos 2212cos 12sin 22cos 12cos 222a a +⋅+++=()22cos 11θ+=a ⑦ 把⑥⑦代入曲率公式⑤中 θcos 41a k = 所以 θρcos 41a k== ⑧由④ θsin g dsdv v dt ds ds dv dt dv ===即ds g vdv θsin =,又有数学关系可知θsin ds dy =,即gdy vdv =所以()θ2cos 1222+-==ga gy v ⑨把⑧⑨代入①ρθ2cos v mmg N ==()θθθθcos 2cos 42cos 12cos mg a ga mmg =++ 1.31证:单摆运动受力分析如图1.31.1图所示。