三角函数计算题期末复习(含答案).docx
- 格式:docx
- 大小:191.31 KB
- 文档页数:19
一、解答题1.sin30°+tan60°−cos45°+tan30°.2.计算:-12016-2tan 60°+(-)0-.3.计算:2sin30°+3cos60°﹣4tan45°.4.计算: ()222sin30-°()0π33--+-. 5.计算: 2sin30tan60cos60tan45︒-︒+︒-︒.6.计算:|﹣3|+(π﹣2017)0﹣2sin30°+(13)﹣1. 7.计算: ()0222cos30tan60 3.14π--︒+︒+-.8.计算: 2212sin458tan 60-+︒-+︒.9.计算: 2sin30°2cos45-°8+.10.计算:(1)22sin 60cos 60︒+︒; (2)()24cos45tan6081︒+︒---. 11.计算: ()()103sin4513cos30tan6012-+-+⋅--. 12.求值:+2sin30°-tan60°- tan 45° 13.计算:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°. 14.(1)sin 230°+cos 230°+tan30°tan60° (2)o o o o 45cos 30sin 245sin 45tan -15.计算:﹣4﹣tan60°+|﹣2|.16.计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.17.(2015秋•合肥期末)计算:tan 260°﹣2sin30°﹣cos45°.18.计算:2cos30°-tan45°-()21tan 60+︒. 19.(本题满分6分) 计算:121292cos603-⎛⎫-+-+ ⎪⎝⎭ 20.(本题5分)计算:3-12+2sin60°+11()321.计算: ()1013tan3023122-⎛⎫︒+--+- ⎪⎝⎭. 22.计算:∣–5∣+3sin30°–(–6)2+(tan45°)–123.(6分)计算: ()()2122sin303tan45--+︒--+︒. 24.计算:()1021cos 603sin 60tan 302π-⎛⎫-︒+--︒︒ ⎪⎝⎭(6分)25.计算:2sin45°-tan60°·cos30°.26.计算:()1012sin 60320152-⎛⎫-+︒---- ⎪⎝⎭. 27.计算:︒+︒⋅︒-45sin 260cos 30tan 8.28.计算: ()()12015011sin30 3.142π-⎛⎫-+--+ ⎪⎝⎭. 29.计算:.30.计算:32sin 453cos602︒︒+︒+-.31.计算:2sin603tan302tan60cos45︒+︒-︒⋅︒32.计算:cos30sin602sin 45tan 45︒︒+︒•︒- .33.计算 :23tan 60sin 453tan 45cos 60︒-︒-︒+︒. 34.计算:27-3sin60°-cos30°+2tan45°.35.计算:()201273tan 3033π-⎛⎫-+-+ ⎪⎝⎭ 36.计算20140+121-⎪⎭⎫ ⎝⎛−2sin45°+tan60°. 37.计算:tan30°cos30°+sin 260°- sin 245°tan45°38.计算:(π﹣3)0+﹣(﹣1)2017﹣2sin30°39.计算:﹣12016﹣(π﹣3)0+2cos30°﹣2tan45°•tan60°.40.计算:(1)+|sin60°﹣1|+tan45°(2)tan 260°+4sin30°cos45°41.计算:(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;(2)cos 245°+sin60°tan45°+sin 230.42.计算:.43..44.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°. 45.计算: ()103116220073tan6033π-⎛⎫⎛⎫+÷-+-- ⎪ ⎪⎝⎭⎝⎭ 46.计算:(-1)2 019-()-3+(cos 68°)0+|3-8sin 60°|47.计算:(1);(2).48.计算:(1)sin45°·cos45°+tan60°·sin60°;(2)sin30°-tan245°+tan230°-cos60°. 49.计算:二、填空题5012﹣tan30°+(π﹣4)0112-⎛⎫- ⎪⎝⎭=_____.参考答案1.【解析】【分析】分别代入各特殊角的三角函数值,然后进行计算即可得.【详解】sin30°+tan60°−cos45°+tan30°==×+-+=.【点睛】本题考查了特殊角的三角函数值的混合运算,熟练掌握各特殊角的三角函数值是解题的关键.2.-4.【解析】分析:先根据乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则逆用进行计算,然后再进行实数加减运算.详解: -12016-2tan60°+(-)0-,原式=-1-2×+1-2,=-4.点睛:本题主要考查乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则,解决本题的关键是要熟练掌握实数相关运算法则.3.﹣1.5.【解析】试题分析:把30°的正弦值、60°的余弦值、45°的正切值代入进行计算即可. 试题解析:2sin30°+3cos60°﹣4tan45° =11234122⨯+⨯-⨯ =1.5.4【解析】试题分析:分别根据二次根式的性质,特殊角的三角函数值,0指数幂及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:解:原式=12212-⨯-点睛:本题考查的是二次根式的性质,特殊角的三角函数值,0指数幂及绝对值的性质,熟知以上运算法则是解答此题的关键.5.12【解析】试题分析:将特殊角的三角函数值代入求解即可.试题解析:解:原式= 112122⨯- 12=. 6.6【解析】试题分析:按顺序依次先进行绝对值化简、0次幂计算、特殊角三角函数值、负指数幂计算,然后再按运算顺序进行计算即可.试题解析:原式=3+1-212⨯+3=3+1﹣1+3=6. 7.54【解析】试题分析:原式利用特殊角的三角函数值,以及零指数幂法则计算即可得到结果. 试题解析:2-2-2cos30°+tan60°+(π-3.14)01214=- =548.2【解析】试题分析:先进行绝对值、二次根式的化简,特殊角的三角函数值,然后再按运算顺序进行计算即可.试题解析:原式123132+-==.9. 1+【解析】试题分析:代入30°角的正弦函数值、45°角的余弦函数值,再按二次根式的相关运算法则计算即可. 试题解析:原式 = 12222⨯-⨯+= 1= 1.10.(1)1;(2).【解析】试题分析:(1)直接利用特殊角的三角函数值代入化简求出答案;(2)直接利用特殊角的三角函数值代入化简求出答案.试题解析:(1)原式=22312+()()=1; (2)原式=24322131⨯+--=-. 11.1.【解析】试题分析:利用三角函数,分母有理化,绝对值性质计算.试题解析:()()103sin4513cos30tan6012-+-+⋅-- =1+13-+3331⨯+-=1+13++32+31-=1. 12.【解析】先得出式子中的特殊角的三角函数值,再按实数溶合运算顺序进行计算即可.解:原式=13.【解析】试题分析:此题涉及有理数的乘方、特殊角的三角函数值的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.解:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°=1﹣×+× =1﹣1+ =【点评】此题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握有理数的乘方、特殊角的三角函数值的运算.14.(1)2;(2)0.【解析】试题分析:根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案. 试题解析:(1)sin 230°+cos 230°+tan30°tan60° =22133()(3223++ =1+1=2;(2)原式=212 122⨯-⨯⨯=0.考点:特殊角的三角函数值.15.2﹣2.【解析】试题分析:原式前两项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解:原式=2﹣4×﹣+2﹣=2﹣2.考点:实数的运算;特殊角的三角函数值.16.﹣3﹣.【解析】试题分析:直接利用特殊角的三角函数值以及负指数幂的性质以及零指数幂的性质、二次根式的性质化简进而求出答案.解:原式=﹣2×﹣3﹣3+1+2=﹣3﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.17.1【解析】试题分析:将特殊角的三角函数值代入求解.解:原式=()2﹣2×﹣×=3﹣1﹣1=1.考点:特殊角的三角函数值.18.-2.【解析】试题分析:分别计算特殊角三角函数值和算术平方根,然后再计算加减法.试题解析:原式=21|1-+11=-2.考点:实数的混合运算.19.1.【解析】试题分析:按照实数的运算法则依次计算.试题解析:原式=1432311312-+-⨯+=--+=.考点:1.特殊角的三角函数值;2.有理数的乘方;3.零指数幂;4.负指数幂.20.3.【解析】试题分析:本题首先将各式分别进行计算,然后根据实数的计算法则进行计算.试题解析:原式×2-考点:实数、三角函数的计算21.331- 【解析】试题分析:先计算三角函数值,零指数,负指数,开方再按照实数的运算计算即可. 试题解析:原式=331223⨯+-+=3123-+=331-. 考点:三角函数值,零指数,负指数,开方.视频22.32 【解析】试题分析:分别求值再进行加减运算试题解析:原式=5+32-6+1=32考点:1.特殊角的三角函数2.实数的运算233【解析】试题分析:先计算绝对值,三角函数,零指数,负指数,平方再按照实数的运算计算即可.试题解析: (()2122sin303tan45--+︒-+︒ 33考点:三角函数,实数的运算.24.214. 【解析】试题分析:任何不是零的数的零次幂都是1,1p pa a .试题解析:原式=2-21()2+13=2-14+1-12=214. 考点:实数的计算、三角函数的计算.25.21- 【解析】试题分析:sin45°=2;tan60°cos30°. 试题解析:原式=233222⨯-⨯=123-=21-. 考点:二次根式的计算、锐角三角函数的计算.26.-3.【解析】试题分析:sin60°=2;任何非零的数的零次幂为1,33;11()2=-2.试题解析:原式=--1=-3.考点:实数的计算.27.6323-. 【解析】 试题分析:原式=222213322⨯+⨯-=6323-. 考点:实数的运算.28.12. 【解析】试题分析:原式11122=-+-+ 12=. 考点:实数的运算.视频29.2.【解析】试题分析:原式==2.考点:实数的运算.3021.【解析】 试题分析:原式=23132322++21.考点:实数的运算.31.236【解析】试题分析:此题主要考查了特殊角的三角函数值得代入求值问题,因此把相应的特殊角的三角函数值代入即可.试题解析:解:原式=2322+= 考点:特殊角的三角函数32.【解析】试题分析:原式21== 考点:实数的运算.33.0.【解析】 试题分析:原式211322332+⨯-⎪⎪⎭⎫ ⎝⎛-⨯=213213+--=0=. 考点:实数的运算. 34.1.【解析】试题分析:将tan45°=1,代入,然后化简合并即可得出答案.试题解析:原式=2×32﹣1+2×32=3﹣1+3=23﹣1. 考点:特殊角的三角函数值.35.2310+【解析】试题分析:根据二次根式、特殊角三角函数值、零次幂、负整数指数幂的意义进行计算即可. 试题解析:21273tan 30(3)()3π--︒+-︒+ 333319=-⨯++ 2310=+考点: 实数的混合运算.36.23+.【解析】试题分析:根据零次幂、负整数指数幂、特殊三角函数值的意义进行计算即可. 试题解析:0112014()2sin 45tan 602-+-︒+︒ 21223=+-⨯+ 23=+考点: 1.零次幂,2.负整数指数幂,3特殊三角函数值.37.【解析】【分析】根据特殊三角函数值即可求解.【详解】原式==【点睛】本题考查了特殊的三角函数值,属于简单题,熟记特殊三角函数值是解题关键.38.3【解析】【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:(π﹣3)0+﹣(﹣1)2017﹣2sin30°=1+2﹣(﹣1)﹣2×=3+1﹣1=3【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解题关键是熟练掌握零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简、绝对值等考点的运算.39.﹣2﹣.【解析】【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【详解】原式=﹣1﹣1+﹣2=﹣2﹣.【点睛】本题考查了实数的运算法则,负指数的性质,特殊角是三角函数,熟练特殊角是三角函数是解题的关键.40.(1)4-;(2)3+【解析】【分析】(1)原式利用绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)原式利用特殊角的三角函数值计算即可求出值.【详解】(1)原式=2+1﹣+1=4﹣;(2)原式=3+4××=3+.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.41.(1)0;(2).【解析】【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值化简得出答案.【详解】(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;=﹣1﹣++1=0;(2)cos245°+sin60°tan45°+sin230=()2+×1+()2=++=.【点睛】本题考查了实数运算,掌握实数运算是解题的关键.42..【解析】分析:代入45°角的正弦函数值,结合“零指数幂的意义”和“负整数指数幂的意义”进行计算即可.详解:原式===.点睛:熟记45°角的正弦函数值、及(为正整数)是正确解答本题的关键.43.【解析】【分析】根据:分别代入计算.【详解】原式.【点睛】考查了特殊角的三角函数值,解答此类题目的关键是熟记特殊角是三角函数值.44.3-【分析】把60°,30°,45°的正弦,余弦,正切的值代入计算即可.【详解】解:原式=2×-3×1×+4×=1-+2=3-【点睛】 本题主要考查特殊角的三角函数值和零指数幂的知识点,牢记特殊角的三角函数值是解答的关键.45.-1.【解析】分析:代入60°角的正切函数值,结合“负指数幂的意义”、“零指数幂的意义”和实数的相关运算法则计算即可.详解:原式=()3168133+÷-+-⨯=3213-+-=1-。
三角函数复习题1.若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 [解析] C 因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C.2. 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35 D.45[解析] B 方法一:在角θ终边上任取一点P (a ,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos 2θ=2cos 2θ-1=25-1=-35. 方法二:tan θ=2a a =2,cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.3.若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512[解析] D 因为α为第四象限角,所以cos α=1-sin 2α=1213,tan α=sin αcos α=-512.4.已知f (x )=⎩⎪⎨⎪⎧cos πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值为( ) A .-2 B .-1 C .1 D .2 [解析] C 因为f ⎝⎛⎭⎫43=f ⎝⎛⎭⎫13+1=f ⎝⎛⎭⎫-23+2= cos ⎝⎛⎭⎫-23π+2=cos 23π+2=-cos π3+2=32, ⎝⎛⎭⎫-43=cos ⎝⎛⎭⎫-4π3=cos ⎝⎛⎭⎫π+π3=-cos π3=-12,所以f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=1.5.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③[解析] A 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;函数y =cos x 位于x 轴上方的图像不变,将位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小正周期也为π,②正确;函数y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期为π,③正确;函数y=tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期为π2,④不正确.6.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π4[解析] A 由题意,函数f (x )=sin(ωx +φ)的最小正周期T =2⎝⎛⎭⎪⎫5π4-π4=2π,又ω>0,所以ω=2πT =1.故f (x )=sin ()x +φ.故⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=1,f ⎝ ⎛⎭⎪⎫5π4=sin ⎝ ⎛⎭⎪⎫5π4+φ=-1, ①或⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=-1,f ⎝ ⎛⎭⎪⎫5π4=sin ⎝ ⎛⎭⎪⎫5π4+φ=1, ②由①得φ=2k π+π4()k ∈Z ;由②得φ=2k π-3π4()k ∈Z . 又已知0<φ<π,所以由①得φ=π4;②无解.综上,φ=π4.故选A.7.设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4,则( )A .y =f (x )在⎝⎛⎭⎫0,π2上单调递增,其图像关于直线x =π4对称B .y =f (x )在⎝⎛⎭⎫0,π2上单调递增,其图像关于直线x =π2对称C .y =f (x )在⎝⎛⎭⎫0,π2上单调递减,其图像关于直线x =π4对称D .y =f (x )在⎝⎛⎭⎫0,π2上单调递减,其图像关于直线x =π2对称[解析] D f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+π4=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x ,所以y =f (x )在⎝ ⎛⎭⎪⎫0,π2内单调递减,又f ⎝ ⎛⎭⎪⎫π2=2cos π=-2是最小值.所以函数y =f (x )的图像关于直线x =π2对称.8.函数y =sin x 2的图像是( )[解析] D 设y =f (x )=sin x 2,则f (-x )=sin(-x )2=sin x 2=f (x ),故f (x )为偶函数,A ,C 不符合.f π2=sin π22=sin π24<1,则B 不符合,故选D.9.下列函数中,最小正周期为π的奇函数是( )A .y =sin2x +π2B .y =cos2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x[解析] B 选项A ,B ,C 中的函数的最小正周期都是π,选项D 中,y =sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4的最小正周期是2π,故排除D.选项A 中,y =cos 2x 是偶函数;选项B 中,y =-sin 2x 为奇函数;选项C 中,y =2sin2x +π4是非奇非偶函数.10.定义在区间[0,3π]上的函数y =sin 2x 的图像与y =cos x 的图像的交点个数是________. [解析] 方法一:令sin 2x =cos x ,即2sin x cos x = cos x ,解得cos x =0或sin x =12,即x =k π+π2或x =2k π+π6或x =2k π+56π(k ∈Z ),又x ∈[0,3π],故x =π2,3π2,5π2或x =π6,5π6,13π6,17π6,共7个解,故两个函数的图像有7个交点. 11.若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2上是减函数,则a 的取值范围是 ( )A .(2,4)B .(-∞,2]C .(-∞,4]D .[4,+∞) [解析] B f (x )=cos 2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,由x ∈⎝⎛⎭⎫π6,π2得t ∈⎝⎛⎭⎫12,1,依题意有g (t )=-2t 2+at +1在⎝⎛⎭⎫12,1上是减函数,所以a 4≤12,即a ≤2.故选B. 12. 若tan θ=-13,则cos 2θ=( )A .-45B .-15 C.15 D.45D [解析] cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-191+19=45.13.将函数y =2sin(2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( )A .y =2sin(2x +π4)B .y =2sin(2x +π3)C .y =2sin(2x -π4)D .y =2sin(2x -π3)D [解析] 函数y =2sin(2x +π6)的周期为2π2=π,将函数 y =2sin(2x +π6)的图像向右平移14个周期,即平移π4个单位,所得图像对应的函数为y =2sin[2(x -π4)+π6]=2sin(2x -π3). 14. 函数y =sin x -3cos x 的图像可由函数y =2sin x 的图像至少向右平移________个单位长度得到. 14.π3 [解析] 函数y =sin x -3cos x =2sin (x -π3)的图像可由函数y =2sin x 的图像至少向右平移π3个单位长度得到.15. 已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.15.2 1 [解析] 2cos 2x +sin 2x =sin 2x +cos 2x +1=2sin (2x +π4)+1,故A =2,b=1.16.若函数f (x )=4sin x +a cos x 的最大值为5,则常数a =________.±3 [解析] 根据题意得f (x )=16+a 2sin(x +φ),其中tan φ=a4,故函数f (x )的最大值为16+a 2,则16+a 2=5,解得a =±3.17.为了得到函数y =sin(x +π3)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度A [解析] 根据“左加右减”的原则,要得到y =sin ⎝⎛⎭⎫x +π3的图像,只需把y =sin x 的图像向左平移π3个单位长度.18要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图像,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图像( )A. 向左平移π2个单位长度B. 向右平移π2个单位长度C. 向左平移π4个单位长度D. 向右平移π4个单位长度C [解析] 易知f (x )=cos ⎝⎛⎭⎫2x +π3=sin ⎝⎛⎭⎫2x +5π6, 故把g (x )=sin ⎝⎛⎭⎫2x +π3的图像向左平移π4个单位长度,就可得到f (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3=cos ⎝⎛⎭⎫2x +π3的图像.19. 设f (x )=23sin(π-x )sin x -(sin x -cos x )2.(1)求f (x )的单调递增区间;(2)把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图像向左平移π3个单位,得到函数y =g (x )的图像,求g (π6)的值.解:(1)f (x )=23sin(π-x )sin x -(sin x -cos x )2=23sin 2x -(1-2sin x cos x )=3(1-cos2x )+sin 2x -1=sin 2x -3cos 2x +3-1=2sin (2x -π3)+3-1.由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以f (x )的单调递增区间是[k π-π12,k π+5π12](k ∈Z )或(k π-π12,k π+5π12)(k ∈Z ).(2)由(1)知f (x )=2sin (2x -π3)+3-1,把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin (x -π3)+3-1的图像,再把得到的图像向左平移π3个单位,得到y =2sin x +3-1的图像, 即g (x )=2sin x +3-1,所以g (π6)=2sin π6+3-1= 3.20.已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间.解:(1)因为f (x )=2sin ωx cos ωx +cos 2ωx =sin 2ωx +cos 2ωx=2sin(2ωx +π4),所以f (x )的最小正周期T =2π2ω=πω.依题意,πω=π,解得ω=1.(2)由(1)知f (x )=2sin(2x +π4).函数y =sin x 的单调递增区间为[2k π-π2,2k π+π2](k ∈Z ),由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),得k π-3π8≤x ≤k π+π8(k ∈Z ),所以f (x )的单调递增区间为[k π-3π8,k π+π8](k ∈Z ).。
30°、45°、60°的三角函数值-计算专题一、填空题1.计算:sin45°·cos30°+3tan60°= _______________.2.2sin 452cos 603tan 60+-=____.3.计算sin60°tan60°cos45°cos60°的结果为______.4.计算:(﹣2010)0+(sin60°)﹣1﹣tan 30︒-5+(﹣3)0﹣6cos45°+(12)﹣1.6.计算:cos 230°cos45°+tan30°•sin60°.7.计算:22sin 454cos 30︒-︒)tan 603tan 45-︒+︒.8.计算:1012sin 60120184-⎛⎫︒+-- ⎪⎝⎭921|2|2sin 602-︒⎛⎫+- ⎪⎝⎭10.计算:(2)2.11.计算:()113020192π-⎛⎫+---- ⎪⎝⎭;12.计算:tan 453cot 602cos302sin 30-++.13.112cos 60tan 60|2|2-︒︒⎛⎫-++- ⎪⎝⎭14.计算2tan 30cos 602sin 60cot 45︒︒-︒+︒15.计算:)11112453cos -⎛⎫-+---︒ ⎪⎝⎭16.计算:()01201920192cos 608(0.125)--+⨯-︒+.17.计算:(1)2cos60°+4sin60°•tan30°﹣cos 245°; (21112sin 452-⎛⎫--+ ⎪⎝⎭18.计算:(1)tan30°sin60°+cos 230°﹣sin 245°tan45° (2﹣(π﹣2016)0﹣2|+2sin60°. 19.计算:0002cos302sin 453tan 60|1|-++-20.计算下列各题(1sin60°-4cos 230°+sin45°tan60° .(2)2tan 60-︒-(π-3.14)0+(-12)-2+12+tan27°tan63°21.计算2|+(﹣13)﹣1+(8)022(3﹣π)0﹣2sin60°+(﹣1)20161-|(1)2sin30cos 60tan 45︒︒︒︒+-+;(2)sin30tan 45sin 60cos 45︒︒︒︒---.参考答案1.【解析】【分析】先求出各个特殊角度的三角函数值,然后计算即可【详解】∵453060sin cos tan︒=︒=︒=∵原式= =故答案为【点睛】本题考查特殊角度的三角函数值,熟记特殊角度的三角函数值是解题的关键。
三角函数习题100题练兵(1-20题为三角函数的基本概念及基本公式,包括同角三角函数关系,诱导公式等,21-40题三角函数的图象与性质,41-55题为三角恒等变形,56-70为三角函数基本关系及角度制与弧度制等,包括象限角弧长与扇形面积公式等,71-90题为三角函数的综合应用,91-100为高考真题。
其中1-55为选择题,56-70为填空题,71-100为解答题。
)1.函数且的图象恒过点,且点在角的终边上,则A. B. C. D.【解答】解:函数且的图象恒过定点,角的终边经过点,,,.故选B2.已知角的终边上有一点,则A. B. C. D.【解答】解:角的终边上有一点,,则.故选C.3.若,且,则角的终边位于A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:,则角的终边位于一二象限,由,角的终边位于二四象限,角的终边位于第二象限.故选择.4.已知是第二象限角,为其终边上一点且,则的值A. B. C. D.【解答】解:是第二象限角,为其终边上一点且,,解得,,.故选A.5.已知角的终边过点,且,则的值为A. B. C. D.【解答】解:由题意,角的终边过点,可得,,,所以,解得,故选A.6.若点在角的终边上,则A. B. C. D.【解析】解:点在角的终边上,,则,,.故选B.7.在平面直角坐标系中,,点位于第一象限,且与轴的正半轴的夹角为,则向量的坐标是A. B. C. D.【解答】解:设,则,,故故选C.8.的大小关系为A. B. C. D.【解答】解:,,,,.故选C.9.已知角的终边上有一点,则的值为A. B. C. D.【解答】解:根据三角函数的定义可知,根据诱导公式和同角三角函数关系式可知,故选A.10.已知角的顶点为坐标原点,始边与轴的非负半轴重合,若角的终边过点,,且,则A. B. C. D.【解答】解:因为角的终边过点,所以是第一象限角,所以,,因为,,所以为第一象限角,,所以,所以,故选:.11.若角的终边经过点,则A. B. C. D.【解答】解:由题意,,,因为的正负不确定,则正负不确定.故选C.12.下列结论中错误的是A.B.若是第二象限角,则为第一象限或第三象限角C.若角的终边过点,则D.若扇形的周长为,半径为,则其圆心角的大小为弧度【解答】解:.,故A正确;B.因为为第二象限角,,所以,当为偶数时,为第一象限的角,当为奇数时,为第三象限角,故B正确;C.当时,,此时,故C错误;D.若扇形的周长为,半径为,则弧长为,其圆心角的大小为弧度,故正确.故选C.13.我国古代数学家赵爽利用弦图巧妙地证明了勾股定理,弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形如图如果内部小正方形的内切圆面积为,外部大正方形的外接圆半径为,直角三角形中较大的锐角为,那么A. B. C. D.【解答】解:因为内部小正方形的内切圆面积为,所以内部小正方形的内切圆的半径为,所以内部小正方形的边长为,外部大正方形的外接圆半径为,所以大正方形的边长为,设大直角三角形中长直角边为,斜边为,则,则,所以,所以大直角三角形中短直角边为,所以,,则.故选D.14.己知是第四象限角,化简为A. B. C. D.【解答】解:是第四象限角,故,又,,则.故选B.15.函数的最小正周期为A. B. C. D.【解答】解:,所以的最小正周期.故选C.16.函数的值域是A. B. C. D.【解答】解:,令,,则,,由二次函数的性质可得函数在上单调递减,在上单调递增,当时取的最小值,其最小值为,当时取得最大值,其最大值为.故函数的值域为.故选B.17.已知,,且,,则A. B. C. D.【解答】解:由题可知,,,所以,所以,又,所以,所以,当时,.因为,所以,不符合题意,当时,同理可得,故选:.18.已知,则的值为A. B. C. D.【解答】解:因为,所以,所以,所以,所以.故选A.19.在中,角、、的对边分别是、、,若,则的最小值为A. B. C. D.【解答】解:,由正弦定理化简得:,整理得:,,;则.当且仅当时等号成立,可得的最小值为.故选:.20.若的内角满足,则的值为.A. B. C. D.【解答】解:因为为的内角,且,所以为锐角,所以.所以,所以,即.所以.故选A.21.已知函数给出下列结论:①的最小正周期为;②是的最大值;③把函数的图象上的所有点向左平移个单位长度,可得到函数的图象.其中所有正确结论的序号是A.①B.①③C.②③D.①②③【解答】解:因为,①由周期公式可得,的最小正周期,故①正确;②,不是的最大值,故②错误;③根据函数图象的平移法则可得,函数的图象上的所有点向左平移个单位长度,可得到函数的图象,故③正确.故选:.22.将函数的图象先向右平移个单位长度,再将该图象上各点的横坐标缩短到原来的一半纵坐标不变,然后将所得图象上各点的纵坐标伸长到原来的倍横坐标不变,得函数的图象,则解析式是A. B.C. D.【解答】解:由题意函数的图象上各点向右平移个单位长度,得到新函数解析式为,再把所得函数的图象上各点横坐标缩短为原来的一半,得到新函数解析式为,再把所得函数的图象上各点纵坐标伸长为原来的倍,得到新函数解析式为.故选A.23.如图函数的图象与轴交于点,在轴右侧距轴最近的最高点,则不等式的解集是A.,B.,C.,D.,【解答】解:由在轴右边到轴最近的最高点坐标为,可得.再根据的图象与轴交于点,可得,结合,.由五点法作图可得,求得,不等式,即,,,求得,,故选:.24.函数的图像的一条对称轴是A. B. C. D.【解答】解:令,解得,函数图象的对称轴方程为,时,得为函数图象的一条对称轴.故选C25.已知函数,若相邻两个极值点的距离为,且当时,取得最小值,将的图象向左平移个单位,得到一个偶函数图象,则满足题意的的最小正值为A. B. C. D.【解答】解:函数,所以,,相邻两个极值点的横坐标之差为,所以,所以,又,所以,当时,取得最小值,所以,,而,所以,所以,将的图象向左平移个单位得为偶函数,所以,,即.所以的最小正值为.故选A.26.函数的定义域为A. B.C. D.【解答】解:根据对数的真数大于零,得,可知:当时,,故函数的定义域为.故选A.27.设函数若是偶函数,则A. B. C. D.【解答】解:,因为为偶函数,所以当时,则,,所以,,又,所以.故选B.28.函数的部分图像如图所示,则A. B. C. D.【解答】解:由题意,因为,所以,,由时,可得,所以,结合选项可得函数解析式为.故选A.29.已知函数,给出下列命题:①,都有成立;②存在常数恒有成立;③的最大值为;④在上是增函数.以上命题中正确的为A.①②③④B.②③C.①②③D.①②④【解答】解:对于①,,,①正确;对于②,,由,即存在常数恒有成立,②正确;对于③,,令,,则设,,令,得,可知函数在上单调递减,在上单调递增,在上单调递减,且,,则的最大值为,③错误;对于④,当时,,所以在上为增函数,④正确.综上知,正确的命题序号是①②④.故选:.30.已知,,直线和是函数图象的两条相邻的对称轴,则A. B. C. D.【解答】解:由题意得最小正周期,,即,直线是图象的对称轴,,又,,故选A.31.已知函数向左平移半个周期得的图象,若在上的值域为,则的取值范围是A. B. C. D.【解答】解:函数向左平移半个周期得的图象,由,可得,由于在上的值域为,即函数的最小值为,最大值为,则,得.综上,的取值范围是.故选D.32.若,则实数的取值范围是A. B. C. D.解:,,,.,,.33.如图,过点的直线与函数的图象交于,两点,则等于A. B. C. D.【解答】解:过点的直线与函数的图象交于,两点,根据三角函数的对称性得出;,,,,.是的中点,,.故选B.34.已知函数,若函数恰有个零点,,,,且,为实数,则的取值范围为A. B. C. D.解:画出函数的图象,如图:结合图象可知要使函数有个零点,则,因为,所以,所以,因为,所以,且,可设,其中,所以,所以,所以的取值范围是.故选A.35.函数的部分图象如图所示,现将此图象向左平移个单位长度得到函数的图象,则函数的解析式为A. B. C. D.【解答】解:根据函数的部分图象,则:,,所以:,解得:,当时,,即:解得:,,因为,当时,,故:,现将函数图象上的所有点向左平移个单位长度得到:函数的图象.故选C.36.已知曲线:,:,则下面结论正确的是A.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线【解答】解:把上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数图象,再把得到的曲线向左平移个单位长度,得到函数的图象,即曲线,故选D.37.设,则函数的取值范围是A. B. C. D.【解答】解:,因为,所以,所以故选A.38.人的心脏跳动时,血压在增加或减少.血压的最大值、最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为标准值设某人的血压满足函数式,其中为血压单位:,为时间单位:,则下列说法正确的是A.收缩压和舒张压均高于相应的标准值B.收缩压和舒张压均低于相应的标准值C.收缩压高于标准值、舒张压低于标准值D.收缩压低于标准值、舒张压高于标准值【解答】解:某人的血压满足函数式,其中为血压单位:,为时间单位:则此人收缩压;舒张压,所以此人的收缩压高于标准值、舒张压低于标准值.故选C.39.设函数,下述四个结论:①的图象的一条对称轴方程为;②是奇函数;③将的图象向左平移个单位长度可得到函数的图象;④在区间上单调递增.其中所有正确结论的编号是A.①②B.②③C.①③D.②③④【解答】解:由题意.对①,的对称轴为,即,故是的对称轴故①正确;对②,,故为偶函数,故②错误;对③,将的图象向左平移个单位长度得到故③正确;对④,当时,,因为是的减区间,故④错误.综上可得①③正确.故选C.40.如图,某港口一天时到时的水深变化曲线近似满足函数,据此可知,这段时间水深单位:的最大值为A. B. C. D.【解答】解:由图象知.因为,所以,解得,所以这段时间水深的最大值是.故选C.41.若,且,则等于A. B. C. D.【解答】解:,,则,又,,则.故选:.42.若,则A. B. C. D.【解答】解:,且,,,两边同时平方得,解得或舍去,,故选B.43.,,则的值为.A. B. C. D.【解答】解:,,,,.故选:.44.若,均为锐角,,,则A. B. C.或 D.【解答】解:为锐角,,,且,,且,,,.45.在中,已知,那么的内角,之间的关系是A. B. C. D.关系不确定【解答】解:由正弦定理,即,所以,即,所以,则,所以.故选B.46.设,,则A. B. C. D.【解答】解:根据二倍角公式可得,解得,由,可得,所以,故选A.47.设,,且,则下列结论中正确的是A. B. C. D.【解答】解:,因为,所以.故选A.48.已知是锐角,若,则A. B. C. D.【解答】解:已知是锐角,,若,,则.故选A.49.化简的值等于A. B. C. D.【解答】解:,,.故选A.50.已知,,则的值为A. B. C. D.【解答】解:,,由得..故选B.51.已知函数,若函数在上单调递减,则实数的取值范围是A. B. C. D.【解答】解:函数,由函数在上单调递减,且,得解得,又,,实数的取值范围是.故选A.52.函数的最大值为A. B. C. D.【解答】解:函数,其中,函数的最大值为,故选C.53.计算:等于A. B. C. D.【解答】解:,,.故选A.54.在中,角,,的对边分别为,,,已知,,则的值为A. B. C. D.【解答】解:,,即,即,,由正弦定理可得,又,所以由余弦定理可得,故选D.55.函数取最大值时,A. B. C. D.【解答】解:,其中由确定.由与得.若,则,,,此时.所以,最大值时,,,.故选.56.已知点在第一象限,且在区间内,那么的取值范围是___________.【解答】解:由题意可知,,,借助于三角函数线可得角的取值范围为.故答案为.57.已知角的终边经过点,则实数的值是【解答】解:设,由于正切函数周期为,则,又终边经过点,所以,解得,故答案为.58.在平面直角坐标系中,角的顶点是,始边是轴的非负半轴,,若点是角终边上的一点,则的值是____.【解答】解:因为点是角终边上的一点,所以,由,,则在第一象限,又,所以.故答案为.59.已知,,则____________.【解答】解:,,,,.故答案为.60.已知角的终边与单位圆交于点,则的值为__________.【解答】解:由题意可得,则.故答案为.61.若扇形的圆心角为,半径为,则扇形的面积为__________.【解答】解:因为,所以扇形面积公式.故答案为.62.如果一扇形的弧长变为原来的倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.【解答】解:由于,若,,则.63.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,为圆孔及轮廓圆弧所在圆的圆心,是圆弧与直线的切点,是圆弧与直线的切点,四边形为矩形,,垂足为,,到直线和的距离均为,圆孔半径为,则图中阴影部分的面积为___________.【解答】解:设上面的大圆弧的半径为,连接,过作交于,交于,交于,过作于,记扇形的面积为,由题中的长度关系易知,同理,又,可得为等腰直角三角形,可得,,,,,解得,,故答案为.64.已知相互啮合的两个齿轮,大轮有齿,小轮有齿.当小轮转动两周时,大轮转动的角度为______________写正数值:如果小轮的转速为转分,大轮的半径为,则大轮周上一点每秒转过的弧长为______________.【解答】解:因为大轮有齿,小轮有齿,当小轮转动两周时,大轮转动的角为,如果小轮的转速为转分,则每秒的转速为转秒,由于大轮的半径为,那么大轮周上一点每转过的弧长是.故答案为.65.终边在直线上的所有角的集合是____________.【解答】解:由终边相同的角的定义,终边落在射线的角的集合为,终边落在射线的角的集合为:,终边落在直线的角的集合为:.故答案为.66.已知直四棱柱的棱长均为,以为球心,为半径的球面与侧面的交线长为________.【解答】解:如图:取的中点为,的中点为,的中点为,因为,直四棱柱的棱长均为,所以为等边三角形,所以,,又四棱柱为直四棱柱,所以平面,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为.67.用弧度制表示终边落在如图所示阴影部分内的角的集合是_________________________.【解答】解:由题意,得与终边相同的角可表示为,与终边相同的角可表示为,故角的集合是,故答案为.68.给出下列命题:第二象限角大于第一象限角三角形的内角是第一象限角或第二象限角不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关若,则与的终边相同若,则是第二或第三象限的角.其中正确的命题是填序号【解答】解:①是第二象限角,是第一象限角,但,①错误;②三角形内角有的直角,但它不是象限角,不属于任何象限,②错误;③角的度量是角所在扇形中它所对的弧长与相应半径的比值,与扇形半径无关,③正确④与的正弦值相等,但它们终边关于轴对称,④错误;⑤余弦值小于零,的终边在第二或第三象限或非正半轴上,⑤错误.故答案为③69.已知扇形的圆心角为,周长为,则扇形的面积为______ .解:设扇形的半径为,圆心角为,弧长,此扇形的周长为,,解得:,则扇形的面积为.故答案为.70.地球的北纬线中国段被誉为中国最美风景走廊,东起舟山东经,西至普兰东经,“英雄城市”武汉东经也在其中,假设地球是一个半径为的标准球体,某旅行者从武汉出发,以离普兰不远的冷布岗日峰东经为目的地,沿纬度线前行,则该行程的路程为__________用含的代数式表示【解答】解:地球半径为,所以北纬的纬度圈半径为,因为武汉和冷布岗日峰的经度分别为东经和东经,相差,即,所以两地在北纬的纬线长是.故答案为.71.如图,在平面直角坐标系中,以轴正半轴为始边的锐角的终边与单位圆交于点,且点的纵坐标是.求的值;若以轴正半轴为始边的钝角的终边与单位圆交于点,且点的横坐标为,求的值.【参考答案】解:因为锐角的终边与单位圆交于点,且点的纵坐标是,所以由任意角的三角函数的定义可知.从而.,.因为钝角的终边与单位圆交于点,且点的横坐标是,所以,从而.于是.因为为锐角,为钝角,所以,从而.72.如图,有一块扇形草地,已知半径为,,现要在其中圈出一块矩形场地作为儿童乐园使用,其中点、在弧上,且线段平行于线段若点为弧的一个三等分点,求矩形的面积;当在何处时,矩形的面积最大?最大值为多少?【参考答案】解:如图,作于点,交线段于点,连接、,,,,,,设,则,,,,,,即时,,此时在弧的四等分点处.73.如图,圆的半径为,,为圆上的两个定点,且,为优弧的中点,设,在右侧为优弧不含端点上的两个不同的动点,且,记,四边形的面积为.求关于的函数关系;求的最大值及此时的大小.解:如下图所示:圆的半径为,,为圆上的两个定点,且,,到的距离,若,则,到的距离,故令则,,的图象是开口朝上,且以直线为对称的抛物线,故当,即时,取最大值.74.如图,在中,,,为,,所对的边,于,且.求证:;若,求的值.【参考答案】证明:,,,,,在直角三角形中,,在直角三角形中,,则,即,,,由此即得证.解:,,,则,由知,,故的值为.75.已知角的终边经过点.求的值;求的值.【参考答案】解:Ⅰ因为角终边经过点,设,,则,所以,,..Ⅱ.76.已知向量,.当时,求的值;若,且,求的值.【参考答案】解:首先,.当时,.由知,.因为,得,所以.所以.77.如图,在平面直角坐标系中,以轴为始边做两个锐角,它们的终边分别与单位圆相交于、两点,已知、的横坐标分别为求的值;求的值.【参考答案】解:由已知得,,,因为为锐角,故,从而,同理可得,因此,,所以,,又,,,得.78.已知化简若是第二象限角,且,求的值.【参考答案】解:.是第二象限角,且,,是第二象限角,.79.如图,某市拟在长为的道路的一侧修建一条运动赛道,赛道的前一部分为曲线段,该曲线段为函数的图象,且图象的最高点为;赛道的后一部分为折线段,为保证参赛运动员的安全,限定.求,的值和,两点间的距离;应如何设计,才能使折线段最长?【参考答案】解:因为图象的最高点为,所以,由图象知的最小正周期,又,所以,所以,所以,,故,两点间的距离为,综上,的值为,的值为,,两点间的距离为;在中,设,因为,故,由正弦定理得,所以,.设折线段的长度为,则,所以的最大值是,此时的值为.故当时,折线段最长.80.已知函数.Ⅰ求的最小正周期;Ⅱ求在区间上的最大值和最小值.【参考答案】解:Ⅰ,所以的最小正周期为.Ⅱ因为,所以.于是,当,即时,取得最大值;当,即时,取得最小值.81.已知函数求函数的最小正周期;若函数对任意,有,求函数在上的值域.【参考答案】解:,的最小正周期;函数对任意,有,,当时,则,则,即,解得.综上所述,函数在上的值域为:.82.已知向量,.当时,求的值;设函数,且,求的最大值以及对应的的值.【参考答案】解:因为,所以,因为否则与矛盾,所以,所以;,因为,所以,所以当,即时,函数的最大值为.83.已知函数.求的值;从①;②这两个条件中任选一个,作为题目的已知条件,求函数在上的最小值,并直接写出函数的一个周期.【参考答案】解:Ⅰ由函数,则;Ⅱ选择条件①,则的一个周期为;由;,因为,所以;所以,所以;当,即时,在取得最小值为.选择条件②,则的一个周期为;由;因为,所以;所以当,即时,在取得最小值为.,,84.已知函数.求函数的最小正周期和单调递增区间;若存在满足,求实数的取值范围.【参考答案】解:,函数的最小正周期.由,得,的单调递增区间为.当时,可得:,令.所以若存在,满足,则实数的取值范围为.85.已知函数.求函数的单调减区间;将函数的图象向左平移个单位,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,求在上的值域.【参考答案】解:函数,当,解得:,因此,函数的单调减区间为;将函数的图象向左平移个单位,得的图象,再将所得的图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象,,,故的值域为.86.函数的部分图象如图所示.求的解析式;设,求函数在上的最大值,并确定此时的值.【参考答案】解:由图知,,则,,,,,,,,的解析式为;由可知:,,,,当即时,.87.已知函数的一系列对应值如下表:根据表格提供的数据求函数的一个解析式.根据的结果,若函数周期为,当时,方程恰有两个不同的解,求实数的取值范围.【参考答案】解:设的最小正周期为,则,由,得.又由解得令,即,解得,.函数的最小正周期为,且,.令.,,的图像如图.在上有两个不同的解时,,方程在时恰有两个不同的解,则,即实数的取值范围是.88.已知函数的部分图象如图所示.求函数的解析式;求函数在区间上的最大值和最小值.【参考答案】解:由题意可知,,,得,解得.,即,,,所以,故;当时,,得;当时,即有时,函数取得最小值;当时,即有时,函数取得最大值.故,;89.已知函数.求的值;当时,不等式恒成立,求实数的取值范围.【参考答案】解:Ⅰ,.Ⅱ,..由不等式恒成立,得,解得.实数的取值范围为.90.设函数,.已知,函数是偶函数,求的值;求函数的值域.【参考答案】解:由,得,为偶函数,,,或,,,,,函数的值域为:.高考真题91.(2016山东)设.求的单调递增区间;把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,再把得到的图象向左平移个单位,得到函数的图象,求的值.【参考答案】解:由,由,得,所以的单调递增区间是.由知,把的图象上所有点的横坐标伸长到原来的倍纵坐标不变,得到的图象,再把得到的图象向左平移个单位,得到的图象,即.所以.92.(2020安徽)在平面四边形中,,,,.求;若,求.解:,,,.由正弦定理得:,即,,,,.,,,.93.(2105重庆)已知函数求的最小正周期和最大值;讨论在上的单调性.【参考答案】解:.所以的最小正周期,当时,最大值为.当时,有,从而时,即时,单调递增,时,即时,单调递减,综上所述,单调增区间为,单调减区间为94.(2020上海)已知.求的值求的值.【解答】解:原式原式.95.(2017山东)设函数,其中,已知.Ⅰ求;Ⅱ将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.解:Ⅰ函数,又,,,解得,又,Ⅱ由Ⅰ知,,,将函数的图象上各点的横坐标伸长为原来的倍纵坐标不变,得到函数的图象;再将得到的图象向左平移个单位,得到的图象,函数当时,,,当时,取得最小值是.96(2019上海)已知等差数列的公差,数列满足,集合.若,求集合;若,求使得集合恰好有两个元素;若集合恰好有三个元素:,是不超过的正整数,求的所有可能的值.【参考答案】解:等差数列的公差,数列满足,集合.当,集合,数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,综上,或者.①当时,,数列为常数列,仅有个元素,显然不符合条件;②当时,,,数列的周期为,中有个元素,显然不符合条件;③当时,,集合,情况满足,符合题意.④当时,,,,,或者,,当时,集合,符合条件.⑤当时,,,,,或者,,因为,取,,集合满足题意.⑥当时,,,所以,,或者,,,取,,,满足题意.⑦当时,,,所以,,或者,,,故取,,,,当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,,,,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有,,不是整数,不符合条件.当时,如果对应着个正弦值,故必有一个正弦值对应着个点,必然存在,有或者,,或者,此时,均不是整数,不符合题意.综上,,,,.97.(2017全国)已知集合是满足下列性质的函数的全体:存在非零常数,对任意,有成立.函数是否属于集合?说明理由;设函数,且的图象与的图象有公共点,证明:;若函数,求实数的取值范围.【参考答案】解:对于非零常数,,.因为对任意,不能恒成立,所以;因为函数且的图象与函数的图象有公共点,所以方程组:有解,消去得,显然不是方程的解,所以存在非零常数,使.于是对于有故;当时,,显然.当时,因为,所以存在非零常数,对任意,有成立,即.因为,且,所以,,。
三角函数公式练习题(答案)1.1.( )29sin6π=A .B .C .D 12-12【答案】【解析】C试题分析:由题可知,;2165sin )654sin(629sin ==+=ππππ考点:任意角的三角函数2.已知,,( )10274(sin =-πα257cos2=α=αsin A .B .C .D .5454-53-53【答案】D 【解析】试题分析:由①,7sin()sin cos 45πααα-=⇒-= 2277cos2cos sin 2525ααα=⇒-=所以②,由①②可得 ③,()()7cos sin cos sin 25αααα-+=1cos sin 5αα+=-由①③得, ,故选D3sin 5α=考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式3.( )cos 690= A .B .C .D .2121-2323-【答案】C 【解析】试题分析:由,故选C ()()cos 690cos 236030cos 30cos30=⨯-=-==考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值4.的值为π316tanA. B. C. D.33-3333-【答案】 C 【解析】试题分析tanπ=tan(6π﹣)=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值.5.若,,202παβπ<<<<-1cos()43πα+=cos()42πβ-=cos()2βα+=A .B .C .D .3333-93596-【答案】C.【解析】试题分析:因为,,所以,且202παβπ<<<<-1cos()43πα+=4344παππ<+<;又因为,所以322)4sin(=+απcos(42πβ-=02<<-βπ,且.又因为,所以2244πβππ<-<3624sin(=-βπ24()4(2βπαπβα--+=+)24sin()4sin(24cos()4cos()]24()4cos[(2cos(βπαπβπαπβπαπβα-++-+=--+=+.故应选C .935363223331=⨯+⨯=考点:1、同角三角函数的基本关系;2、两角差的余弦公式.6.若角α的终边在第二象限且经过点(P -,则等于sin αA ..12- D .12【答案】A 【解析】试题分析:由已知,故选A .23sin 2,3,1==⇒=∴=-=r y r y x α考点:三角函数的概念.7.sin70Cos370- sin830Cos530的值为( )A . B . C . D .21-212323-【答案】A 【解析】试题分析:sin70Cos370- sin830Cos530()()3790sin 790cos 37cos 7sin ---=()()2130sin 377sin 37sin 7cos 37cos 7sin -=-=-=-= 考点:三角恒等变换及诱导公式;8.已知,那么=( )53)4cos(=-x πsin 2x (A ) (B ) (C ) (D )25182524±257-257【答案】C 【解析】试题分析:sin2x =cos (-2x )=2cos 2(-x )-1=2×2π4π237(1525-=-考点:二倍角公式,三角函数恒等变形9.已知,那么 ( ) 51sin()25πα+=cos α=A . B . C . D .25-15-1525【答案】C 【解析】试题分析:由=,所以选C .51sin()25πα+=sin()cos 2a a π+=考点:三角函数诱导公式的应用10.已知,则的值为( )31)2sin(=+a πa 2cos A . B . C . D .3131-9797-【答案】D 【解析】试题分析:由已知得,从而,故选D.31cos =α971921cos 22cos 2-=-=-=αα考点:诱导公式及余弦倍角公式.11.已知点()在第三象限,则角在 ( ) P ααcos ,tan αA .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【解析】试题分析:由已知得,,故角在第二象限.tan 0,cos 0αα<⎧⎨<⎩α考点:三角函数的符号.12.已知是第四象限角,,则( )α125tan -=α=αsin A . B . C . D .5151-135135-【答案】D 【解析】试题分析:利用切化弦以及求解即可.,1cos sin 22=+αα125cos sin tan -==ααα又是第四象限角,,故,16925sin 1cos sin 222=∴=+αααα135sin ,0sin -=<αα选:D.考点:任意角的三角函数的定义 ωπω2sin ==T x y .13.化简得到( )2cos (4πα--2sin ()4πα-A .α2sin B .α2sin - C .α2cos D .α2cos -【答案】A 【解析】试题分析:απαπαπαπααππα2sin )22cos()4(2cos 4(sin )4(cos )4(sin )4(cos 2222=-=-=---=---考点:三角函数的诱导公式和倍角公式.14.已知,则3cos ,05ααπ=<<tan 4πα⎛⎫+= ⎪⎝⎭A.B. C. D.15171-7-【答案】D 【解析】试题分析:由可知,因此,053cos ,0>=<<απα20πα<<54sin =α,由和角公式可知,故答案34tan =α713411344tan tan 14tantan )4tan(-=⨯-+=⋅-+=+παπαπα为D 。
1.tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o--+---++-= .3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.假设,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ), 所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证.5.求函数)6π2sin(2+=x y 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求以下函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,那么,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,那么]2,2[-∈t 那么,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y 7.假设函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)假设],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)假设]2π,0[∈x ,那么]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 2tan =θ,求〔1〕θθθθsin cos sin cos -+;〔2〕θθθθ22cos 2cos .sin sin +-的值.解:〔1〕2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点〔如果不具备,通过构造的方法得到〕,进行弦、切互化,就会使解题过程简化。
三角函数计算问题1.sin 15°cos 75°+cos 15°sin 105°等于( )A .0B .12C .32D .1D [原式=sin 15°cos 75°+cos 15°sin 75°=sin 90°=1.] 2.已知α∈(π2,π),sin α=35,则tan(α+π4)等于( )A .17B .7C .-17D .-7A [∵α∈(π2,π),sin α=35,∴cos α=-45,tan α=sin αcos α=-34.∴tan(α+π4)=1+tan α1-tan α=1-341+34=17.]3.化简:sin (60°+θ)+cos 120°sin θcos θ的结果为( )A .1B .32C . 3D .tan θB [原式=sin 60°cos θ+cos 60°sin θ-12sin θcos θ=sin 60°cos θcos θ=sin 60°=32.] 4.若3sin θ=cos θ,则cos 2θ+sin 2θ的值等于( )A .-75B .75C .-35D .35B [∵3sin θ=cos θ,∴tan θ=13.cos 2θ+sin 2θ=cos 2θ-sin 2θ+2sin θcos θ =cos 2θ+2sin θcos θ-sin 2θcos 2θ+sin 2θ=1+2tan θ-tan 2θ1+tan 2θ=1+2×13-191+19=75.] 5.已知3cos(2α+β)+5cos β=0,则tan(α+β)tan α的值为( )A .±4B .4C .-4D .1 C [3cos(2α+β)+5cos β=3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)cos α+5sin(α+β)sin α=0, ∴2sin(α+β)sin α=-8cos(α+β)cos α,∴tan(α+β)tan α=-4.]6.若cos θ2=35,sin θ2=-45,则角θ的终边一定落在直线( )上.A .7x +24y =0B .7x -24y =0C .24x +7y =0D .24x -7y =0D [cos θ2=35,sin θ2=-45,tan θ2=-43,∴tan θ=2tanθ21-tan 2θ2=-831-169=247.∴角θ的终边在直线24x -7y =0上.] 7.tan 15°+1tan 15°等于( )A .2B .2+3C .4D .433C8.若3sin α+cos α=0,则1cos 2α+sin 2α的值为( )A .103B .53C .23D .-2A [∵3sin α+cos α=0,∴tan α=-13,∴1cos 2α+sin 2α=sin 2α+cos 2αcos 2α+2sin αcos α=tan 2α+11+2tan α=(-13)2+11+2×(-13)=103.]9.已知θ是第三象限角,若sin 4θ+cos 4θ=59,那么sin 2θ等于( )A .223B .-223C .23D .-23A [∵sin 4θ+cos 4 θ=(sin 2 θ+cos 2 θ)2-2sin 2 θcos 2 θ=1-12sin 2 2θ=59,∴sin 2 2θ=89.∵θ是第三象限角,∴sin θ<0,cos θ<0,∴sin 2θ>0.∴sin 2θ=223.]10.计算sin 89°cos 14°-sin 1°cos 76°= ( ).A.2+64 B.2-64 C.6-24D.24解析 sin 89°cos 14°-sin 1°cos 76° =sin 89°cos 14°-cos 89°sin 14° =sin 75°=sin(45°+30°)=2+64. 答案 A11.若1tan θ=3,则cos 2θ+12sin 2θ的值是( ). A .-65B .-45C.45D.65解析 ∵tan θ=13,∴原式=cos 2θ+sin θcos θsin 2θ+cos 2θ=1+tan θ1+tan 2θ=1+131+19=1210=65. 答案 D12.已知cos(α-β)=35,sin β=-513,且α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫-π2,0,则sin α= ( ). A.3365 B.6365 C .-3365D .-6365解析 ∵α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫-π2,0,∴α-β∈(0,π), 由cos(α-β)=35得sin(α-β)=45,由sin β=-513得cos β=1213,∴sin α=sin[(α-β)+β]=45×1213+35×⎝⎛⎭⎫-513=3365. 答案 A13.设a =sin 17°cos 45°+cos 17°sin 45°,b =2cos 213°-1,c =32,则有( ). A .c <a <b B .b <c <a C .a <b <cD .b <a <c解析 a =sin(17°+45°)=sin 62°, b =2cos 213°-1=cos 26°=sin 64°, c =32=sin 60°,∴c <a <b .答案 A14.若x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan 2x 等于 ( ).A.724 B .-724C.247D .-247解析 ∵x ∈⎝⎛⎭⎫-π2,0,cos x =45,∴sin x =-35,∴tan x =-34,∴tan 2x =2tan x 1-tan 2x =-247. 答案 D15.已知sin ⎝⎛⎭⎫π4-x =35,则sin 2x 的值为( ). A.1925 B.1625 C.1425D.725解析 sin 2x =cos ⎝⎛⎭⎫π2-2x =cos 2⎝⎛⎭⎫π4-x =1-2sin 2⎝⎛⎭⎫π4-x =1-2×⎝⎛⎭⎫352=725. 答案 D16.cos 43°cos 77°+sin 43°cos 167°的值是( )A .-32B.12C.32D .-12【解析】 原式=cos 43°sin 13°-sin 43°cos 13°=sin(13°-43°)=sin(-30°)=-12.【答案】 D17.已知tan(π-α)=2,则1sin αcos α等于( )A.52 B.75 C .-52D .-75【解析】 由tan(π-α)=2,得tan α=-2, ∴1sin αcos α=sin 2α+cos 2αsin αcos α=tan 2α+1tan α=-52. 【答案】 C18.tan(α+β)=25,tan(α+π4)=322,那么tan(β-π4)=( )A.15B.1318C.14D.1322【解析】 tan(β-π4)=tan[(α+β)-(α+π4)]=tan (α+β)-tan (α+π4)1+tan (α+β)tan (α+π4)=25-3221+25×322=14.【答案】 C19.若sin α2=33,则cos α=( )A .-23B .-13C.13D.23【解析】 cos α=1-2sin 2α2=1-2×⎝⎛⎭⎫332=1-23=13.【答案】 C20.已知sin(π4-θ)+cos(π4-θ)=15,则cos 2θ的值为( )A .-725B.725 C .-2425D.2425【解析】 将sin(π4-θ)+cos(π4-θ)=15两边平方得,1+2sin(π4-θ)cos(π4-θ)=125,即1+sin(π2-2θ)=125,cos 2θ=-2425.【答案】 C21.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12 C .2D .-2【解析】 α是第三象限的角且cos α=-45,∴sin α=-35.tan α2=sin α1+cos α=-3515=-3,∴1+tanα21-tanα2=-24=-12.【答案】 A22.cos67°cos7°+sin67°sin7°等于( )A .12B .22C .32D .1[答案] A[解析] cos67°cos7°+sin67°sin7° =cos(67°-7°)=cos60°=12.23.已知α为第二象限角,sin α=35,则sin2α=( )A .-2425B .-1225C .1225D .2425[答案] A[解析] ∵α是第二象限角,sin α=35,∴cos α=-45.∴sin2α=2sin αcos α=2×35×(-45)=-2425.24.下列各式中值为22的是( ) A .sin45°cos15°+cos45°sin15° B .sin45°cos15°-cos45°sin15° C .cos75°cos30°+sin75°sin30° D .tan60°-tan30°1+tan60°tan30°[答案] C[解析] cos75°cos30°+sin75°sin30°=cos(75°-30°)=cos45°=22. 25.已知cos α=23,270°<α<360°,那么cos α2的值为( )A .66B .-66C .306D .-306[答案] D[解析] ∵270°<α<360°,∴135°<α2<180°,∴cos α2=-1+cos α2=-1+232=-306. 26.已知cos(x +π6)=35,x ∈(0,π),则sin x 的值为( )A .-43-310B .43-310C .12D .32[答案] B[解析] ∵x ∈(0,π),∴x +π6∈(π6,7π6),又∵cos(x +π6)=35,∴x +π6∈(π6,π2).∴sin(x +π6)=45.sin x =sin[(x +π6)-π6]=sin(x +π6)cos π6-cos(x +π6)sin π6=32×45-12×35=43-310. 27.已知sin αcos β=1,则sin(α-β)=________. 1解析 ∵sin αcos β=1,∴sin α=cos β=1,或sin α=cos β=-1, ∴cos α=sin β=0.∴sin(α-β)=sin αcos β-cos αsin β=sin αcos β=1.28.若0<α<π2<β<π,且cos β=-13,sin(α+β)=13,则cos α=________.429解析 cos β=-13,sin β=223,sin(α+β)=13,cos(α+β)=-223,故cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =(-223)×(-13)+223×13=429.29.设α∈(0,π2),若sin α=35,则2cos(α+π4)等于________.[答案] 15[解析] ∵α∈(0,π2),sin α=35,∴cos α=45,∴2cos(α+π4)=2cos αcos π4-2sin αsin π4=2×45×22-2×35×22=45-35=15. 30.若8sin α+5cos β=6,8cos α+5sin β=10,则sin(α+β)=________. 4780解析 ∵(8sin α+5cos β)2+(8cos α+5sin β)2 =64+25+80(sin αcos β+cos αsin β) =89+80sin(α+β)=62+102=136. ∴80sin(α+β)=47,∴sin(α+β)=4780.31.已知α为第三象限的角,cos 2α=-35,则tan ⎝⎛⎭⎫π4+2α=________. -17解析 由题意,得2k π+π<α<2k π+3π2(k ∈Z ),∴4k π+2π<2α<4k π+3π.∴sin 2α>0.∴sin 2α=1-cos 22α=45.∴tan 2α=sin 2αcos 2α=-43.∴tan ⎝⎛⎭⎫π4+2α=tan π4+tan 2α1-tan π4 tan 2α=1-431+43=-17. 32.设α为第四象限的角,若sin 3αsin α=135,则tan 2α=________.-34解析 由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135,∴cos 2α=45.∵α为第四象限角,∴2k π+3π2<α<2k π+2π,(k ∈Z )∴4k π+3π<2α<4k π+4π,(k ∈Z ) 故2α可能在第三、四象限,又∵cos 2α=45,∴sin 2α=-35,tan 2α=-34.33.求值:tan10°+tan50°+3tan10°tan50°=________. [答案]3[解析] tan10°+tan50°+3tan10°tan50° =tan60°(1-tan10°tan50°)+3tan10°tan50° =3-3tan10°tan50°+3tan10°tan50°= 3. 34.化简:1+2sin610°cos430°sin250°+cos790°=________.[答案] -1 [解析] 1+2sin610°cos430°sin250°+cos790°=1+2sin (3×180°+70°)cos (360°+70°)sin (180°+70°)+cos (720°+70°)=1-2sin70°cos70°-sin70°+cos70°=(sin70°-cos70°)2-sin70°+cos70° =sin70°-cos70°-sin70°+cos70°=-1.35.若cos α=45,α∈(0,π2),则cos(α-π3)=________.【解析】 由题意知sin α=35,cos(α-π3)=cos α·cos π3+sin α·sin π3.=45·12+35·32=4+3310.【答案】4+331036.tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ)的值是________.【解析】 ∵tan π3=tan(π6-θ+π6+θ)=tan (π6-θ)+tan (π6+θ)1-tan (π6-θ)tan (π6+θ)=3,∴3=tan(π6-θ)+tan(π6+θ)+3tan(π6-θ)tan(π6+θ).【答案】337.已知sin(α+β)=12,sin(α-β)=13,那么log5tan αtan β=________. 【解析】 由题意有sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,两式相加得sin αcos β=512,两式相减得cos αsin β=112.则tan αtan β=5,故log 5tan αtan β=2. 【答案】 238.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. 【解析】 ∵sin 2α=-sin α,∴2sin αcos α=-sin α. ∵α∈⎝⎛⎭⎫π2,π,sin α≠0, ∴cos α=-12.又∵α∈⎝⎛⎭⎫π2,π,∴α=23π, ∴tan 2α=tan 43π=tan ⎝⎛⎭⎫π+π3=tan π3= 3. 【答案】339.已知sin x -cos x =sin x cos x ,则sin 2x =________. 解析 ∵sin x -cos x =sin x cos x , ∴(sin x -cos x )2=(sin x cos x )2 1-2sin x cos x =(sin x cos x )2, ∴令t =sin x cos x ,则1-2t =t 2.即t 2+2t -1=0,∴t =-2±222=-1±2. 又∵t =sin x cos x =12sin 2x ∈⎣⎡⎦⎤-12,12, ∴t =2-1,∴sin 2x =22-2.答案 22-240.已知sin(α+π2)=-55,α∈(0,π). (1)求sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)的值; (2)求cos(2α-3π4)的值. 解 (1)sin(α+π2)=-55,α∈(0,π) ⇒cos α=-55,α∈(0,π)⇒sin α=255. sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)=-cos α-sin αsin α-cos α=-13. (2)∵cos α=-55,sin α=255⇒sin 2α=-45,cos 2α=-35. cos(2α-3π4)=-22cos 2α+22sin 2α=-210. 41.已知|cos θ|=35,且5π2<θ<3π,求sin θ2、cos θ2、tan θ2的值. 解 ∵|cos θ|=35,5π2<θ<3π, ∴cos θ=-35,5π4<θ2<3π2. 由cos θ=1-2sin 2θ2, 有sin θ2=-1-cos θ2=-1+352=-255. 又cos θ=2cos 2θ2-1, 有cos θ2=-1+cos θ2=-55,tan θ2=sinθ2cos θ2=2. 42.已知sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x =24,x ∈⎝⎛⎭⎫π2,π,求sin 4x 的值.解 因为⎝⎛⎭⎫π4+x +⎝⎛⎭⎫π4-x =π2,所以sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x=sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x=12⎣⎡⎦⎤2sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x =12sin ⎝⎛⎭⎫π2+2x =12cos 2x =24,所以cos 2x =22. 又x ∈⎝⎛⎭⎫π2,π,所以2x ∈(π,2π),所以sin 2x <0,所以sin 2x =-22. 所以sin 4x =2sin 2x cos 2x =2×⎝⎛⎭⎫-22×22=-1. 43.已知sin α=13,cos β=-23,α、β均在第二象限,求sin(α+β)和sin(α-β)的值. 解 因为sin α=13,cos β=-23,α、β均为第二象限角,所以cos α=-1-sin 2α=-223,sin β=1-cos 2β=53. 故sin(α+β)=sin αcos β+cos αsin β=13×⎝⎛⎭⎫-23+⎝⎛⎭⎫-223×53=-2-2109,sin(α-β)=sin αcos β-cos αsin β=13×⎝⎛⎭⎫-23-⎝⎛⎭⎫-223×53=-2+2109. 44.化简:3tan 12°-3sin 12°(4cos 212°-2). 【解】 原式=3(sin 12°cos 12°-3)sin 12°×2(2cos 212°-1) =3(sin 12°-3cos 12°)2sin 12°cos 12°cos 24° =23(sin 12°cos 60°-cos 12°sin 60°)sin 24°cos 24° =2×23sin (12°-60°)2sin 24°cos 24° =-43sin 48°sin 48°=-4 3. 45.若cos(π4+x )=35,17π12<x <7π4,求:(1)cos x +sin x 的值;(2)sin2x +2sin 2x 1-tan x的值. [解析] (1)由17π12<x <7π4,得5π3<x +π4<2π, 又∵cos(π4+x )=35, ∴sin(π4+x )=-45, ∴cos x +sin x =2sin(x +π4)=-425. (2)cos x =cos[(π4+x )-π4] =cos(π4+x )cos π4+sin(π4+x )sin π4=35×22-45×22=-210. 又由17π12<x <7π4, ∴sin x =-1-cos 2x =-7210, ∴tan x =7,∴原式=2sin x cos x +2sin 2x 1-tan x=-2875. 46.已知sin α=210,cos β=31010,且α、β为锐角,求α+2β的值. [解析] ∵sin α=210,α为锐角, ∴cos α=1-sin 2α=1-⎝⎛⎭⎫2102=7210. ∵cos β=31010,β为锐角, ∴sin β=1-⎝⎛⎭⎫310102=1010. ∴sin2β=2sin βcos β=2×1010×31010=35, cos2β=1-2sin 2β=1-2×⎝⎛⎭⎫10102=45. 又β∈⎝⎛⎭⎫0,π2,∴2β∈(0,π).而cos2β>0,∴2β∈⎝⎛⎭⎫0,π2.∴α+2β∈(0,π). 又cos(α+2β)=cos α·cos2β-sin α·sin2β=7210×45-210×35=22,∴α+2β=π4.。
三角函数综合练习三学校:___________姓名:___________班级:___________考号:___________一、解答题1(0ω>) (1)求()f x 在区间 (2)将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得个单位,得到函数()g x 的图象,若关于x 的方程()0g x k +=在区上有且只有一个实数根,求实数k 的取值范围. 2.其中,m x R ∈.(1)求()f x 的最小正周期;(2)求实数m 的值,使函数()f x 的值域恰为并求此时()f x 在R 上的对称中心.3 (1)求)(x f 的最小正周期;(2. 4 (1)求()f x 的最小正周期;(2)求()f x 在区间 5.已知函数.(1)求最小正周期; (2)求在区间上的最大值和最小值.6 (1)求()f x 的最小正周期;(2)若将()f x 的图象向右平移个单位,得到函数()g x 的图象,求函数()g x 在区间[]0,π上的最大值和最小值.7 (Ⅰ)(Ⅱ)8(1)求()f x 的定义域与最小正周期;(2求α的大小.9, x R ∈(1)求函数()f x 的最小正周期及在区间 (2,求0cos 2x 的值。
10.(本小题满分12 (1)求()f x 单调递增区间;(2)求()f x 在.11 (Ⅰ)求)(x f 的最小正周期;(Ⅱ)求)(x f 在.12 (I )求()f x 的最小正周期及其图象的对称轴方程;(II )将函数()f x 的图象向右平移个单位长度,得到函数()g x 的图象,求()g x 在的值域.13 (1)求()f x 的最小正周期;(2)求()f x 在区间 14(其中x ∈R ),求: (1)函数()f x 的最小正周期;(2)函数()f x 的单调区间;15 (1)求函数()f x 的最小正周期和图象的对称轴方程;(2)求函数()f x 在区间16 (1及()f x 的单调递增区间; (2)求()f x 在闭区间17(1(2成立的x 的取值集合.18 (Ⅰ)求函数()f x 的单调递减区间;19 (Ⅰ)求函数)(x f 的最小正周期T 及在],[ππ-上的单调递减区间;(Ⅱ)若关于x 的方程0)(=+k x f ,在区间上且只有一个实数解,求实数k 的取值范围.20 (1)求函数)(x f 的最小正周期和单调递减区间;(2)若将函数)(x f 的图象向左平移)0(>m m 个单位后,得到的函数)(x g 的图象关于轴对称,求实数m 的最小值.21(x R ∈). (1)求函数()f x 的最小正周期和单调减区间;(2)将函数()f x 的图象向右平移个单位长度后得到函数()g x 的图象,求函数()g x22(1)求函数()f x 的最小正周期;(2)求函数()f x 取得最大值的所有x 组成的集合.23 (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在. 24.已知函数()22sin 2sin cos cos f x x x x x =+-.(Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值. 25.已知函数()()cos sin cos f x x x x =-. (Ⅰ)求函数()f x 的最小正周期; 时,求函数()f x 的最大值和最小值.26(1)求()f x 的周期和单调递增区间;(2)若关于x 的方程()2f x m -=在m 的取值范围.27(1)求函数()y f x =的最大、最小值以及相应的x 的值;(2)若y >2,求x 的取值范围.28 (1)求函数()f x 的最大值;(2)若直线x m =是函数()f x 的对称轴,求实数m 的值.29.函数()2cos (sin cos )f x x x x =+.(1 (2)求函数()f x 的最小正周期及单调递增区间.30 (1)求()f x 的最小正周期和最大值;(2)讨论()f x 在参考答案1.(1(2或1k =-. 【解析】试题分析:(1时,()f x 为减函数⇒所以()f x 的减区间为(2()y g x =的图象与直线y k =-在区间上只有一个交点⇒或1k =-.试题解析:(1因为()f x 的最小正周期为时,()f x 为减函数, 所以()f x 的减区间为 (2)将函数()f x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到再将的图象向右平移个单位,得到若关于x 的方程()0g x k +=在区间 即函数()y g x =的图象与直线y k =-在区间上只有一个交点, 或1k -=,即或1k =-. 考点:三角函数的图象与性质.2.(1)T π=;(2,Z k ∈∈. 【解析】试题分析:(1)则最小正周期T π=;(2)时,)(x f 值域为]3,[m m +解得函数)(x f 对称中心为,Z k ∈∈. 试题解析:(1)最小正周期T π=;(2考点:三角函数图象的性质.3.(1)π=T ;(2)()f x 在【解析】试题分析:(1)根据正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式可将)(x f 化可得)(x f 的最小正周期为π;(2)进而得)(x f . 试题解析:(1所以f(x)f(x)考点:1、正弦二倍角公式、余弦二倍角公式以及两角和的正弦公式;2、三角函数的周期性及单调性.4.(1)函数的最小正周期为π(2时,)(x f 取最大值2时,)(x f 取得最小值1-【解析】试题分析:(1最小正周期及其图象的对称中心的坐标;(2从而可求求f (x试题解析::(Ⅰ)因为f (x )=4cosxsin (-1=4cosx )-12x-1=2sin (, 所以f (x )的最小正周期为π,由于是,当2;当f (x )取得最小值-1 考点:三角函数的最值;三角函数中的恒等变换应用;三角函数的周期性及其求法【答案】(1)π=T ;(2【解析】试题分析:(1)借助题设条件和两角和的正弦公式化简求解;(2)借助题设条件及正弦函数的有界性求解.试题解析:(1)因()()2sin cos cos 2f x x x x =++考点:三角变换的有关知识及综合运用.6.(1)π;(2)2,1.【解析】试题分析:(1)利用二倍角公式、诱导公式、两角和的正弦函数化为一个角旳一个三角函数的形式,即可求()f x 的最小正周期;(2)将()f x 的图象向右平移求出函数()g x 的解析式, 然后根据三角函数有界性结合三角函数图象求()g x 在区间[]0,π上的最大值和最小值.考点:1、三角函数的周期性;2、三角函数的图象变换及最值.【方法点晴】本题主要考查三角函数的周期性、三角函数的图象变换及最值,属于难题.三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过和、差、倍角公式的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.7.(Ⅰ)2π(Ⅱ【解析】试题分析:(Ⅰ)先利用二倍角公式、配角公式将函数化为基本三角函数:()fx ,再根据正弦函数性质求周期(Ⅱ))的基础上,利用正弦函数性质求试题解析:(Ⅰ)(1)()f x 的最小正周期为(()f x 取得最小值为:考点:二倍角公式、配角公式8.(1(2 【解析】试题分析:(1)利用正切函数的性质,可求得()f x 的定义域,由其周期公式可求最小正周期;(2)利用同三角函数间的关系式及正弦、余弦的二倍角公式,,从而可求得α的大小. 试题解析:解:(1所以()f x 的定义域为.()f x 的最小正周期为考点:1、两角和与差的正切函数;2、二倍角的正切.9.(1)π=T,()[]2,1-∈xf;(2【解析】试题分析:(1)再利用周,,利用正弦函数图像可得值域;(2)先利用求出,再由角的关系.试题解析:(1所以π=T由函数图像知()[]2,1-∈xf.(2考点:三角函数性质;同角间基本关系式;两角和的余弦公式10.(1(2【解析】试题分析:(1)利用两角和的正弦公式、二倍角公式和辅助角公式,化简(2)试题解析:(1(2)由得f x在,因此,()考点:三角恒等变换,三角函数图象与性质. 11.(I )T π=;(II【解析】试题分析:(I )利用两角和的正弦公式,降次公式,辅助角公式,将函数化简为,由此可知函数最小周期T π=;(II)试题解析:∴()fx 的最小正周期考点:三角恒等变换.12.(I )π=T ,(II【解析】试题分析:(I )利用和差角公式对()x f 可化为:,解出x 可得对称轴方程;(II )由x 的范围可得x 2范围,从而得x 2cos 的范围,进而得()x g 的值域. 试题解析:(1)即函数()x g 在区间考点:(1)三角函数中恒等变换;(2)三角函数的周期;(3)复合函数的单调性.【方法点晴】本题考查三角函数的恒等变换、三角函数的周期及其求法、三角函数的图象变换等知识,熟练掌握有关基础知识解决该类题目的关键,高考中的常考知识点.于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.13.(1)π=T ;(2) -2.【解析】 试题分析:(1)首先将函数进行化简,包括两角和的正弦公式展开,以及二倍角公式以及x x 2cos 1cos 22=-,然后合并同类项,最后利用辅助角公式(2. 试题解析:(1)由题意可得∴()f x 的最小正周期为T π=;(2∴()f x 在区间-2. 考点:1.三角函数的恒等变形;2.三角函数的性质.14.(1)π(2【解析】试题分析:f (x )的最小正周期.x 的范围,即可得到f (x )的单调增区间,同理可得减区间试题解析:(1所以()f x 的单调减区间为考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦函数的单调性15.(1)π,(2 【解析】试题分析:(1)先根据两角和与差的正弦和余弦公式将函数()f x 展开再整理, 可将函数化简为()sin y A x ωρ=+的形式, 根据可求出最小正周期, 令求出x 的值即可得到对称轴方程;(2)先根据x 的范围求出, 进而得到函数()f x 在区试题解析:(1(2时,()f x 取最大值1,时,()f x 取最小值所以函数()f x 在区间 考点:1、三角函数的周期性及两角和与差的正弦和余弦公式;2、正弦函数的值域、正弦函数的对称性.16.(1(2)最大值为1,最小值为 【解析】试题分析:(1)将原函数()f x 由倍角公式和辅助角公式,,利用正弦函数的单调递区间求得此函数的单调增区间;(2)先求出,再进一步得出对应的正弦值的取值,可得函数值的取值范围,可得函数最值. 试题解析:(1),则,(2)所以最大值为1,考点:1.三角恒等变换;2.三角函数性质.【知识点睛】本题主要考查辅助角公式及三角函数的性质.对于函数()()sin 0,0y A x A ωϕω=+>>的单调区间的确定,基本思路是把x ωϕ+视做一个整体,解出x 的范围所得区间即为增区间,由x 的范围,所得区间即为减区间.若函数中()0,0A ω><,可用诱导公式先将函数变为()()sin 0,0y A x A ωϕω=--->>,则()()sin 0,0y A x A ωϕω=-->>的增区间为原函数的减区间,减区间为原函数的增区间.17.(1)(2)【解析】试题分析:(1)直接代入解析式即可;(2)由两角差的余弦公式,及正余弦二倍角公式和辅,k Z ∈,从而求解.试题解析:(1(2)f (x )=cos xcos x因f (x )于是2k2x2kk ∈Z. 解得kx <kk ∈Z.故使f (xx 的取考点:1、二倍角公式;2、辅助角公式;3、余弦函数图象与性质. 18.,k Z ∈;(Ⅱ)()f x 取得最大值1,()f x 取得最小值 【解析】试题分析:,k Z ∈,可解得单调减区间;(Ⅱ)最小值.试题解析:,k Z ∈.,k Z ∈.时,()f x 取得最小值时,()f x 取得最大值1. 考点:(1)降幂公式;(2)辅助角公式;(3)函数()ϕω+=x A y sin 的性质.【方法点晴】本题主要考查了三角函数的化简,以及函数()ϕω+=x A y sin 的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题中,当涉及到周期,单调性,单调区间以及最值等都属于三角函数的性质,首先都应把它化为三角函数的基本形式即()ϕω+=x A y sin ,然后利用三角函数u A y sin =的性质求解.19. 【解析】试题分析:(Ⅰ)借助题设条件运用正弦函数的图象和性质求解;(Ⅱ)借助题设条件运用正弦函数的图象建立不等式求解. 试题解析:(Ⅰ)由已知又因为.当0=k 时 当1-=k 时∴函数)(x f 在[]ππ,-的单调递减区间为(Ⅱ) ,0)(=+k x f 在区与2--=∴k y 在区间考点:正弦函数的图象和性质等有关知识的综合运用.【易错点晴】三角函数的图象和性质是高中数学中重要内容,也高考和各级各类考试的重要内容和考点.用问题为背景,要求运用三角变换的公式将其化为k x A y ++=)sin(ϕω的形式,再借助正弦函数的图象和性质求解.解答本题时,首先要用二倍角公式将其化简为再运用正弦函数的图象即可获得答案.这里运用二倍角公式进行变换是解答本题的关键.20.(1)π,(2【解析】试题分析:(1)将展开后再次合并,化简得(2)先按题意平移,得到试题解析:∴函数)(x f 的最小正周期函数)(x f 单调递减.考点:三角函数图象与性质.21.(1)T π=,单调减区间(k Z ∈);(2【解析】试题分析:(1)利用降次公式和两角和的余弦公式,先展开后合并,化简函数,故周期T π=,代入余弦函数单调减区间[]2,2k k πππ-,可求(2)函数()f x 的图象向右平移试题解析:(1(k Z ∈).(2,()g x 在 考点:三角恒等变换、三角函数图象与性质.22.(1)π;(2【解析】试题分析:(1)利用降次公式,和辅助角公式,故周期等于π;(23.试题解析:(1)∴函数()f x 的最小正周期为(2)当()f x 取最大值时,考点:三角恒等变换.23.(I )π;(II )函数()f x 的单调递增区间是 【解析】试题分析:(I数的最小正周期;(II )函数2sin y z =的单调递增区间,即可求解函数的单调递增区间.试题解析:函数2sin y z =的单调递增区间是所以,,()f x . 考点:三角函数的图象与性质.【方法点晴】本题主要考查了三角函数的恒等变换、三角函数的图象与性质及三角函数的单调区间的求解,本题的解答中利用三角恒等变换的公式求解函数的解析式查了学生分析问题和解答问题的能力,以及学生的化简与运算能力. 24.(Ⅰ)π;,最小值1- 【解析】试题分析:(Ⅰ)化简函数解析式,可得最小正周期为π;(Ⅱ)可得()f x 在和1-试题解析:(Ⅰ)()22sin 2sin cos cos f x x x x x =+-sin 2cos2x x =-所以()f x 的最小正周期时,()f x 取得最大值,即0x =时,()f x 取得最小值1-所以()f x 在和1- 考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,辅助角公式,由x 的范围求得相位. 25.(Ⅰ)π;(Ⅱ)最大值0,最小值 【解析】试题分析:,可得最小正周期为π;,可得()f x 在最小值分别为0和 试题解析:(Ⅰ)因为()()cos sin cos f x x x x =-所以函数()f x 的最小正周期时,函数()f x 取得最大值0,时,函数()f x 取得最小值所以()f x 在0考点:三角函数求值.【思路点睛】本题主要考查三角函数恒等变换,考查了)sin(ϕω+=x A y 型函数的图象与性质,属中档题.通过展开三角函数关系式,利用正弦二倍角公式和降幂公式,将函数解析式化为y ,再用辅助角公式将函数化简为y ,由x 的范围求得相位的范围,进一.26.(1)周期为π,(2)[]0,1m ∈ 【解析】试题分析:(1)利用倍角公式,两角和的正余弦公式将函数转化为()sin()f x A x bωϕ=++的形式,进一步求函数的周期和单调性;(2得()f x 的取值范围,进一步得2m +的取值范围,可解得实数m 的取值范围.试题解析:(k ∈Z ). (2,所以()f x 的值域为[]2,3.而()2f x m =+,所以[]22,3m +∈,即[]0,1m ∈.考点:1.倍角公式;2.辅助角公式;3.函数()sin()f x A x b ωϕ=++的性质. 27.(1时有最大值3;时,取最小值1-;(2【解析】试题分析:(1)由函数()sin()f x A x k ωϕ=++的最值取值情况求所给函数的最值;(2)对于2y >,利用特殊角的三角函数值与正弦函数的单调性,可将不等式转化为关于x 的不等式,解不等式可得x 的取值范围. 试题解析:(1)设sin (1,此时函数f (x )=2sin (+1取最大值3.当u=2kπx=kπsin (-1,此时函数f (x )=2sin (+1取最小值-1.(2)∵y=2sin((k∈Z)(k∈Z)∴x (k∈Z) 考点:1.()sin()f x A x k ωϕ=++的性质;2.特殊角的三角函数性质.28.(1)最大值是2;(2 【解析】试题分析:(1)从而化简函数解析式,然后利用正弦函数的性质求出函数的最大值;(2)利用sin y x =的对称轴,列出关系式,解出x ,即可求得m 的值.试题解析:(1)所以()f x 的最大值是2.(2而直线x m =是函()y f x =的对称轴,所以 考点:1、诱导公式;2、正弦函数的图象与性质. 【方法点睛】三角函数的性质由函数的解析式确定,在解答三角形函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.29.(1)2;(2)π, 【解析】试题分析:(1)借助题设直接运用诱导公式化简求解;(2)借助题设条件和二倍角公式求解. 试题解析:(1(2所以()f x 的单调递增区间为 考点:三角函数的图象及诱导公式二倍角公式的运用.30.(1)π,1;(2)()f x 在 【解析】试题分析:(1)()f x 整理得由公式可求得()f x 的周期和最大值;(2)求函数()f x 在R 上的单调区间,分别与.(1)()f x 的最小正周期为π,最大值为1;(2)当()f x 递增时,()k Z ∈,当()f x ()k Z ∈所以,()f x 在 考点:两角的正弦公式;函数sin()y A x ωϕ=+的性质.。
三角函数试题(三)一、填空题(每小题5分,共60分)1.已知sin α+cos α=,则tan α+的值是________.2.在△ABC中,若cos(A+B)>0,sin C=,则tan C等于_______.3.使=成立的α的范围是_______.4.化简sin2(π+α)-cos(π+α)cos(-α)+1的值是______.5.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是________.6.设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间上具有单调性,且f=f=-f,则f(x)的最小正周期为________.7.设f(x)=2sin,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是________.8.函数y=3sin的最小正周期是π,则a=________.9.已知函数y=cos,则它的单调减区间为________.10.若函数y=tan (a≠0)的最小正周期为,则a=________.11.函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如下图所示,则f(0)的值是________.12.y=-2sin的振幅为________,周期为________,初相φ=________.二、解答题(每小题10分,共90分)13.(1)求满足sin α≥的角α的取值范围;(2)求满足sin α≥cos α的角α的取值范围.14.已知=2,计算下列各式的值:(1);(2)sin2α-2sin αcos α+1.15.化简下列各式:(1);(2).16.求证: =.17.在△ABC中,若sin(2π-A)=- sin(π-B), cos A=-cos(π-B),求△ABC的三个内角.18.判断下列函数的奇偶性:(1)f(x)=xsin(π+x);(2)f(x)=19.已知f(x)=-2cos2x-2sin x+2的定义域为R.(1)求f(x)的值域;(2)在区间上, f(α)=3,求sin的值.20.求函数y=,x∈的最大值和最小值.21.已知函数y=Asin(ωx+φ)A>0,ω>0,0<φ<的最小值是-5,图象上相邻两个最高点与最低点的横坐标相差,且图象经过点,求这个函数的解析式.三角函数试题(三)答案:一、填空题(每小题5分,共60分)1.[答案]-3[解析]将等式sin α+cos α=两边平方,整理得sin αcos α=-,∴tanα+=+===-3.2.[答案]-[解析]在△ABC中,∵cos(A+B)>0,∴0<A+B<,又C=π-(A+B),∴角C是钝角,∴cos C=-=-,∴tan C===-.3.[答案]{α|2kπ-π<α<2kπ,k∈Z}[解析]===,∴sin α<0,故2kπ-π<α<2kπ,k∈Z.4.[答案] 2[解析]原式=(-sin α)2-(-cos α)·cos α+1=sin2α+cos2α+1=2.5.[答案]1<k<3[解析]f(x)=sin x+2|sin x|=如上图,则k的取值范围是1<k<3.6.[答案]π[解析]记f(x)的最小正周期为T.由题意知≥-=,又f=f=-f,且-=.可作出示意图如图所示(一种情况):∴x1=×=,x2=×=,∴=x2-x1=-=,∴T=π.7.[答案][2,+∞)[解析]∵≤1,∴≤2,即对任意实数x,有|f(x)|≤2,要使|f(x)|≤a恒成立,只要a不小于|f(x)|的最大值即可,∴a≥2.8.[答案]±2[解析]∵T==π,∴|a|=2,∴a=±2.9.[答案](k∈Z)[解析]y=cos=cos,令2kπ≤2x-≤2kπ+π(k∈Z),解得+kπ≤x≤π+kπ(k∈Z).10.[答案]±[解析]∵=,∴|a|=,∴a=±.11.[答案][解析]由题图可知:A=,=-=,所以T=π,ω==2.又函数图象经过点,所以2×+φ=π+2kπ,k∈Z,则φ=+2kπ(k∈Z),故函数的解析式为f(x)= sin,所以f(0)= sin=.12.[答案]2;π;π[解析]∵y=-2sin=2sin=2sin,∴A=2,ω=3,φ=,∴T==π.二、解答题(每小题10分,共90分)13. [解析](1)由图①可知:2kπ+≤α≤2kπ+ (k∈Z),即角α的取值范围是.(2)由图②可知:2kπ+≤α≤2kπ+ (k∈Z),即角α的取值范围是.14. [解析]由=2,化简,得sin α=3cos α,所以tan α=3.(1)原式=,把tan α=3代入,得原式=.(2)原式=+1=+1,把tan α=3代入,得原式=+1=.15. [解析](1)===1.(2)原式====1.16. [解析]==,=====,∴=.17. [解析]由已知得sin A=sin B, cos A=cos B,两式左右两边分别平方相加得2cos2A=1,∴cos A=±.若cos A=-,则cos B=-,此时A、B均为钝角,不符合题意.∴cos A=,∴cos B=cos A=,∴A=,B=,∴C=π-(A+B)=.18. [解析](1)函数f(x)=xsin(π+x)的定义域为R.∵f(x)=xsin(π+x)=x(-sin x)=-xsin x,∴f(-x)=-(-x)sin(-x)=-xsin x=f(x),∴函数f(x)=xsin(π+x)是偶函数.(2)由2sin x-1≥0,得sin x≥,故函数定义域为(k∈Z),此定义域在x轴上表示的区域不关于原点对称,∴该函数既不是奇函数,也不是偶函数.19. [解析](1)f(x)=-2(1-sin2x)-2sin x+2=2-1,x∈R,因为sin x∈[-1,1],所以f(x)的值域是[-1,2+2].(2)由(1)得, f(α)=2-1=3,∴=2,又α∈,∴α=-,∴sin=sin=sin=-.20. [解析]y==tan2x+1-tan x=+.∵x∈,y=tan x在上是增函数,tan 0=0,tan=1,∴tan x∈[0,1],∴当tan x=时,y min=;当tan x=0或1时,y max=1.即原函数的最大值是1,最小值是.21. [解析]由题意知A=5, =,∴T==,∴ω=4,∴y=5sin(4x+φ).又∵图象经过点,∴=5sin φ,即sin φ=,∴φ=+2kπ(k∈Z)或φ=+2kπ(k∈Z),又∵0<φ<,∴φ=,∴这个函数的解析式为y=5sin.。
三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。
三角函数复习题任意角的概念、弧度制1.已知扇形的面积为2 cm 2,扇形圆心角的弧度数是4,则扇形的周长为 ( )A.2B.4C.6D.8任意角的正弦、余弦、正切的定义 2.[2011·江西卷] 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.3.[2011·课标全国卷] 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35 D.454.如图,点A ,B 是单位圆上的两点,A ,B 点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值; (2)求|BC |2的值.5.如图所示,动点P 、Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P 、Q 第一次相遇时所用的时间、相遇点的坐标及P 、Q 点各自 走过的弧长.诱导公式、同角三角函数的基本关系式6.集合M ={x |x =sin nπ3,n ∈Z},N ={x |x =cos nπ2,n ∈N},则M ∩N 等于 ( )A.{-1,0,1}B.{0,1}C.{0}D.∅ 7.已知sin(2π+θ)tan(π+θ)tan(3π-θ)cos(π2-θ)tan(-π-θ)=1,则3sin 2θ+3sin θcos θ+2cos 2θ的值是 ( )A.1B.2C.3D.68.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin(-α-32π)cos(32π-α)cos(π2-α)sin(π2+α)·tan 2(π-α)= .9.(1)若角α是第二象限角,化简tan α 1sin 2α-1; (2)化简:1-2sin130°cos 130°sin130°+1-sin 2130°.10.已知A =sin(kπ+α)sin α+cos(kπ+α)cos α(k ∈Z),则A 的值构成的集合是 ( )A.{1,-1,2,-2}B.{-1,1}C.{2,-2}D.{1,-1,0,2,-2} 三角函数sin y x =,cos y x =,tan y x =的图象和性质 11.函数y =lg(sin x )+cos x -12的定义域为 .12.[2011·湖北卷] 已知函数f (x )=3sin x -cos x ,x ∈R.若f (x )≥1,则x 的取值范围为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x ≤2k π+π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x ≤k π+π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π+π6≤x ≤2k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x ≤k π+5π6,k ∈Z 13.[2011·辽宁卷] 已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图1-7,则f ⎝⎛⎭⎫π24=( )图1-7A .2+ 3 B. 3 C.33D .2- 3 图象变换14.(1)图象上所有点的纵坐标不变,横坐标缩短到原来的12;(2)图象上所有点的纵坐标不变,横坐标伸长到原来的2倍; (3)图象向右平移π3个单位; (4)图象向左平移π3个单位;(5)图象向右平移2π3个单位; (6)图象向左平移2π3个单位.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin(x 2+π3)的图象,那么这两种变换正确的标号是 (要求按变换先后顺序填上一种你认为正确的标号即可).15.函数y =A sin(ωx +ϕ)(ω>0,2||πϕ<,x ∈R)则函数表达式为 ( )A .)48sin(4ππ+-=x yB .)48sin(4ππ-=x yC .)48sin(4ππ--=x y D .)48sin(4ππ+=x y16.[2011·江苏卷] 函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图1-1所示,则f (0)的值是________.图1-1函数sin()y A x ωϕ=+的图象和性质17、函数2()()cos 24f x x x π=+-C ,①图象C 关于直线π61-=x 对称;②函数)(x f 在区间)3π,6π(-内是增函数;③图象C 关于点)0,12π(对称④由x y 2sin 2=的图象向右平移6π个单位长度可以得到图象C .以上三个论断中,正确的论断是__________ 18.下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π; ②终边在y 轴上的角的集合是{α|α=kπ2,k ∈Z};③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点; ④把函数y =3sin(2x +π3)的图象向右平移π6个单位得到y =3sin2x 的图象;⑤函数y =sin(x -π2)在[0,π]上是减函数.其中真命题的序号是 .19.[2011全国卷] 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π, 且f (-x )=f (x ),则( )A .f (x )在⎝⎛⎭⎫0,π2单调递减B .f (x )在⎝⎛⎭⎫π4,3π4单调递减 C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增 20.当时10≤≤x ,不等式kx x≥2sinπ成立,则实数k 的取值范围是____________.两角和与差的正弦、余弦、正切公式21.设a =22(sin56°-cos56°),b =cos50°cos128°+cos40°cos38°,c =1-tan 240°30′1+tan 240°30′,d =12(cos80°-2cos 250°+1),则a ,b ,c ,d 的大小关系为 ( ) A.a >b >d >c B.b >a >d >c C.d >a >b >c D.c >a >d >b 22.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β= .23.[2011·浙江卷] 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则 cos (α+β2)=( )A.33 B .-33 C.539 D .-6924.如果tan α、tan β是方程x 2-3x -3=0的两根,则sin(α+β)cos(α-β)=________.二倍角的正弦、余弦、正切公式25. [2011·全国卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55,则tan2α=________. 26.[2011·辽宁卷] 设sin ⎝⎛⎭⎫π4+θ=13,则sin2θ=( )A .-79B .-19 C.19 D.7927.[2011·重庆卷] 已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________. 正弦定理、余弦定理 28.[2011·重庆卷] 若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B =( )A.154B.34C.31516D.111629.[2011·安徽卷] 已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.图1-530.[2011·福建卷] 如图1-5,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.三角函数任意角的概念、弧度制1.已知扇形的面积为2 cm 2,扇形圆心角的弧度数是4,则扇形的周长为 ( )A.2B.4C.6D.8 解析:设扇形的半径为R ,则12R 2α=2,∴R 2=1,∴R =1,∴扇形的周长为2R +α·R =2+4=6 答案:C任意角的正弦、余弦、正切的定义 2.[2011·江西卷] 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.【解析】 r =x 2+y 2=16+y 2,∵sin θ=-255,∴sin θ=y r =y 16+y 2=-255,解得y =-8.3.[2011·课标全国卷] 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35 D.45B 【解析】 解法1:在角θ终边上任取一点P (a,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos2θ=2cos 2θ-1=25-1=-35.解法2:tan θ=2a a =2,cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35. 4.如图,点A ,B 是单位圆上的两点,A ,B 点分别在第一、二象限,点C 是圆与x 轴正半轴的交点,△AOB 是正三角形,若点A 的坐标为(35,45),记∠COA =α.(1)求1+sin2α1+cos2α的值; (2)求|BC |2的值.解:(1)∵A 的坐标为(35,45),根据三角函数的定义可知,sin α=45,cos α=35,∴1+sin2α1+cos2α=1+2sin αcos α2cos 2α=4918.(2)∵△AOB 为正三角形,∴∠AOB =60°.∴cos ∠COB =cos(α+60°)=cos αcos60°-sin αsin60° =35×12-45×32=3-4310, ∴|BC |2=|OC |2+|OB |2-2|OC |·|OB |cos ∠COB =1+1-2×3-4310=7+435.5.如图所示,动点P 、Q 从点A (4,0)出发沿圆周运动,点P 按逆时针方向每秒钟转π3弧度,点Q 按顺时针方向每秒钟转π6弧度,求P 、Q 第一次相遇时所用的时间、相遇点的坐标及P 、Q 点各自 走过的弧长.解:设P 、Q 第一次相遇时所用的时间是t , 则t ·π3+t ·|-π6|=2π.所以t =4(秒),即第一次相遇的时间为4秒.设第一次相遇点为C ,第一次相遇时P 点已运动到终边在π3·4=4π3的位置,则x C =-cos π3·4=-2,y C =-sin π3·4=-2 3.所以C 点的坐标为(-2,-23), P 点走过的弧长为43π·4=163π,Q 点走过的弧长为23π·4=83π.诱导公式、同角三角函数的基本关系式 6.集合M ={x |x =sin nπ3,n ∈Z},N ={x |x =cos nπ2,n ∈N},则M ∩N 等于 ( )A.{-1,0,1}B.{0,1}C.{0}D.∅ 解析:∵M ={x |x =sin nπ3,n ∈Z}={-32,0,32}, N ={-1,0,1}, ∴M ∩N ={0}. 答案:C 7.已知sin(2π+θ)tan(π+θ)tan(3π-θ)cos(π2-θ)tan(-π-θ)=1,则3sin 2θ+3sin θcos θ+2cos 2θ的值是 ( )A.1B.2C.3D.6 解析:∵sin(2π+θ)tan(π+θ)tan(3π-θ)cos(π2-θ)tan(-π-θ)=sin θtan θtan(π-θ)-sin θtan(π+θ)=-sin θtan θtan θ-sin θtan θ=tan θ=1,∴3sin 2θ+3sin θcos θ+2cos 2θ=3sin 2θ+3cos 2θsin 2θ+3sin θcos θ+2cos 2θ =3tan 2θ+3tan 2θ+3tan θ+2=3+31+3+2=1. 答案:A8.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin(-α-32π)cos(32π-α)cos(π2-α)sin(π2+α)·tan 2(π-α)= .解析:方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,由α是第三象限角,∴sin α=-35,cos α=-45,∴sin(-α-32π)cos(32π-α)cos(π2-α)sin(π2+α)·tan 2(π-α)=-sin(π+π2+α)cos(π+π2-α)sin αcos α·tan 2α=- sin(π2+α)cos(π2-α)sin αcos α·tan 2α=-cos αsin αsin αcos α·tan 2α=-tan 2α=-sin 2αcos 2α=-(-35)2(-45)2=-916.答案:-9169.(1)若角α是第二象限角,化简tan α 1sin 2α-1; (2)化简:1-2sin130°cos 130°sin130°+1-sin 2130° . 解:(1)原式=tan α 1-sin 2αsin 2α=tan α cos 2αsin 2α =sin αcos α|cos αsin α|, ∵α是第二象限角,∴sin α>0,cos α<0,∴原式=sin αα⎧=⎪=sin αcos α|cos αsin α|=sin αcos α·-cos αsin α=-1. (2)原式=sin 2130°+cos 2130°-2sin130°cos 130°sin130°+cos 2130°=|sin130°-cos130°|sin130°+|cos130°|=sin130°-cos130°sin130°-cos130°=1.10.已知A =sin(kπ+α)sin α+cos(kπ+α)cos α(k ∈Z),则A 的值构成的集合是 ( )A.{1,-1,2,-2}B.{-1,1}C.{2,-2}D.{1,-1,0,2,-2} 解析:当k 为偶数时,A =sin αsin α+cos αcos α=2;k 为奇数时,A =-sin αsin α-cos αcos α=-2.答案:C三角函数sin y x =,cos y x =,tan y x =的图象和性质 11.函数y =lg(sin x )+cos x -12的定义域为 .解析:要使函数有意义必须有sin 0,1cos 2x x >⎧⎪⎨-⎪⎩sin 0,1cos 222,()2233x x k x k k k x k πππππππ>⎧⎪⎨⎪⎩<<+⎧⎪∈Z ⎨-++⎪⎩即解得≥≤≤∴2kπ<x ≤π3+2kπ,k ∈Z ,∴函数的定义域为{x |2kπ<x ≤π3+2kπ,k ∈Z}.答案:{x |2kπ<x ≤π3+2kπ,k ∈Z}12.[2011·湖北卷] 已知函数f (x )=3sin x -cos x ,x ∈R.若f (x )≥1,则x 的取值范围为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x ≤2k π+π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x ≤k π+π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π6≤x ≤2k π+5π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x ≤k π+5π6,k ∈Z 课标文数6.C4[2011·湖北卷] A 【解析】 因为f (x )=3sin x -cos x =2sin x -π6,由f (x )≥1,得2sin x -π6≥1,即sin x -π6≥12,所以π6+2k π≤x -π6≤5π6+2k π,k ∈Z ,解得π3+2k π≤x≤π+2k π,k ∈Z.13.[2011·辽宁卷] 已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图1-7,则f ⎝⎛⎭⎫π24=( )图1-7A .2+ 3 B. 3 C.33 D .2- 3 【解析】 由图象知πω=2×⎝⎛⎭⎫3π8-π8=π2,ω=2.又由于2×π8+φ=k π+π2(k ∈Z),φ=k π+π4(k ∈Z),又|φ|<π2,所以φ=π4.这时f (x )=A tan ⎝⎛⎭⎫2x +π4.又图象过(0,1),代入得A =1,故f (x )=tan ⎝⎛⎭⎫2x +π4.所以f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=3,故选B. 图象变换14.(1)图象上所有点的纵坐标不变,横坐标缩短到原来的12;(2)图象上所有点的纵坐标不变,横坐标伸长到原来的2倍; (3)图象向右平移π3个单位;(4)图象向左平移π3个单位;(5)图象向右平移2π3个单位;(6)图象向左平移2π3个单位.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin(x 2+π3)的图象,那么这两种变换正确的标号是 (要求按变换先后顺序填上一种你认为正确的标号即可).解析:y =sin x ――→(4) y =sin(x +π3)――→(2) y =sin(x 2+π3),或y =sin x ――→(2)y =sin 12x ――→(6) y =sin 12(x +2π3)=sin(x 2+π3).答案:(4)(2)或(2)(6)15.函数y =A sin(ωx +ϕ)(ω>0,2||πϕ<,x ∈R)的部分图象如图所示,则函数表达式为 ( )CA .)48sin(4ππ+-=x yB .)48sin(4ππ-=x yC .)48sin(4ππ--=x y D .)48sin(4ππ+=x y16.[2011·江苏卷] 函数f (x)=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)所示,则f (0)的值是________.图1-1 【解析】 由图象可得A =2,周期为4×⎝⎛⎭⎫7π12-π3=π,所以ω=2,将⎝⎛⎭⎫7π12,-2代入得2×7π12+φ=2k π+32π,即φ=2k π+π3,所以f (0)=2sin φ=2sin π3=62.函数sin()y A x ωϕ=+的图象和性质 17、函数2()()cos 24f x x x π=+-C ,①图象C 关于直线π61-=x 对称;②函数)(x f 在区间)3π,6π(-内是增函数;③图象C 关于点)0,12π(对称④由xy 2sin 2=的图象向右平移6π个单位长度可以得到图象C .以上三个论断中,正确的论断是__________ ① ② ③2()()cos 22cos 22sin(2)46f x x x x x x ππ=+-=-=-18.下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π; ②终边在y 轴上的角的集合是{α|α=kπ2,k ∈Z};③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点; ④把函数y =3sin(2x +π3)的图象向右平移π6个单位得到y =3sin2x 的图象;⑤函数y =sin(x -π2)在[0,π]上是减函数.其中真命题的序号是 .解析:①y =sin 2x -cos 2x =-cos2x ,故最小正周期为π,①正确;②k =0时,α=0,则角α终边在x 轴上,故②错;③由y =sin x 在(0,0)处切线为y =x ,所以y =sin x 与y =x 的图象只有一个交点,故③错;④y =3sin(2x +π3)的图象向右平移π6个单位得到 y =3sin[2(x -π6)+π3]=3sin2x ,故④正确; ⑤y =sin(x -π2)=-cos x 在[0,π]上为增函数,故⑤错. 综上,①④为真命题.答案:①④19.[2011全国卷] 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π, 且f (-x )=f (x ),则( )A .f (x )在⎝⎛⎭⎫0,π2单调递减 B .f (x )在⎝⎛⎭⎫π4,3π4单调递减C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增【解析】 原式可化简为f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4,因为f (x )的最小正周期T =2πω=π, 所以ω=2.所以f (x )=2sin ⎝⎛⎭⎫2x +φ+π4, 又因为f (-x )=f (x ),所以函数f (x )为偶函数,所以f (x )=2sin ⎝⎛⎭⎫2x +φ+π4=±2cos2x , 所以φ+π4=π2+k π,k ∈Z , 所以φ=π4+k π,k ∈Z , 又因为||φ<π2,所以φ=π4. 所以f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos2x , 所以f (x )=2cos2x 在区间⎝⎛⎭⎫0,π2上单调递减. 20.当时10≤≤x ,不等式kx x ≥2sinπ成立,则实数k 的取值范围是____________. 答案 k ≤1解析 作出2sin 1xy π=与kx y =2的图象,要使不等式kx x≥2sin π成立,由图可知须k ≤1两角和与差的正弦、余弦、正切公式21.设a =22(sin56°-cos56°),b =cos50°cos128°+cos40°cos38°,c =1-tan 240°30′1+tan 240°30′,d =12(cos80°-2cos 250°+1),则a ,b ,c ,d 的大小关系为 ( ) A.a >b >d >c B.b >a >d >c C.d >a >b >c D.c >a >d >b 解析:a =sin(56°-45°)=sin11°,b =-sin40°cos52°+cos40°sin52°=sin(52°-40°)=sin12°,c =1-tan 240°30′1+tan 240°30′=cos81°=sin9°, d =12(2cos 240°-2sin 240°)=cos80°=sin10°, ∴b >a >d >c .答案:B22.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β= .解析:由(1+3tan α)(1+3tan β)=4,可得tan α+tan β1-tan αtan β=3,即tan(α+β)= 3. 又α+β∈(0,π),∴α+β=π3. 答案:π323.[2011·浙江卷] 若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则 cos (α+β2)=( ) A.33 B .-33 C.539 D .-69【解析】 ∵cos ⎝⎛⎭⎫π4+α=13,0<α<π2,∴sin ⎝⎛⎭⎫π4+α=233.又∵cos ⎝⎛⎭⎫π4-β2=33,-π2<β<0, ∴sin ⎝⎛⎭⎫π4-β2=63,∴cos ⎝⎛⎭⎫α+β2= cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2=cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2=13×33+223×63=539. 24.如果tan α、tan β是方程x 2-3x -3=0的两根,则sin(α+β)cos(α-β)=________. 解析:tan α+tan β=3,tan αtan β=-3,则sin(α+β)cos(α-β)=sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan αtan β=31-3=-32.答案:-32 二倍角的正弦、余弦、正切公式25. [2011·全国卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55,则tan2α=________. 【解析】 ∵sin α=55,α∈⎝⎛⎭⎫π2,π,∴cos α=-255,则tan α=-12,tan2α=2tan α1-tan 2α(=2×⎝⎛⎭⎫-121-⎝⎛⎭⎫-122=-43. 26.[2011·辽宁卷] 设sin ⎝⎛⎭⎫π4+θ=13,则sin2θ=( )A .-79B .-19 C.19 D.79课标理数7.C6[2011·辽宁卷] A 【解析】 sin2θ=-cos ⎝⎛⎭⎫π2+2θ=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π4+θ.由于sin ⎝⎛⎭⎫π4+θ=13,代入得sin2θ=-79,故选A. 27.[2011·重庆卷] 已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________. 【解析】 cos2αsin ⎝⎛⎭⎫α-π4=cos 2α-sin 2α22(sin α-cos α) =(cos α+sin α)(cos α-sin α)22(sin α-cos α)=-2(cos α+sin α), ∵sin α=12+cos α,∴cos α-sin α=-12, 两边平方得1-2sin αcos α=14,所以2sin αcos α=34. ∵α∈⎝⎛⎭⎫0,π2,∴cos α+sin α=(cos α+sin α)2=1+34=72, ∴cos2αsin ⎝⎛⎭⎫α-π4=-142. 正弦定理、余弦定理 28.[2011·重庆卷] 若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B =( )A.154B.34C.31516D.1116【解析】 由正弦定理得sin A =a 2R ,sin B =b 2R ,sin C =c 2R, 代入6sin A =4sin B =3sin C ,得6a =4b =3c ,∴b =32a ,c =2a , 由余弦定理得b 2=a 2+c 2-2ac cos B ,①将b =32a ,c =2a 代入①式,解得cos B =1116.故选D. 29.[2011·安徽卷] 已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.【解析】 不妨设∠A =120°,c <b ,则a =b +4,c =b -4,于是cos120°= b 2+(b -4)2-(b +4)22b (b -4)=-12,解得b =10,所以c =6.所以S =12bc sin120°=15 3.图1-530.[2011·福建卷] 如图1-5,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.课标理数14.C8[2011·福建卷] 【答案】 2【解析】 在△ABC 中,由余弦定理,有cos C =AC 2+BC 2-AB 22AC ·BC =(23)22×2×23=32,则∠ACB =30°. 在△ACD 中,由正弦定理,有AD sin C =AC sin ∠ADC, ∴AD =AC ·sin30°sin45°=2×1222=2,即AD 的长度等于 2.。
三角函数复习题1.若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 [解析] C 因为sin 2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α>0,所以选C.2. 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35 D.45[解析] B 方法一:在角θ终边上任取一点P (a ,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos 2θ=2cos 2θ-1=25-1=-35.方法二:tan θ=2a a =2,cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35. 3.若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512[解析] D 因为α为第四象限角,所以cos α=1-sin 2α=1213,tan α=sin αcos α=-512.4.已知f (x )=⎩⎪⎨⎪⎧cos πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值为( ) A .-2 B .-1 C .1 D .2 [解析] C 因为f ⎝⎛⎭⎫43=f ⎝⎛⎭⎫13+1=f ⎝⎛⎭⎫-23+2= cos ⎝⎛⎭⎫-23π+2=cos 23π+2=-cos π3+2=32, ⎝⎛⎫-43=cos ⎝⎛⎭⎫-4π3=cos ⎝⎛⎭⎫π+π3=-cos π3=-12,所以f ⎝⎛⎭⎫43+f ⎝⎛⎫-43=1.5.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③[解析] A 函数y =cos|2x |=cos 2x ,其最小正周期为π,①正确;函数y =cos x 位于x 轴上方的图像不变,将位于x 轴下方的图像对称地翻转至x 轴上方,即可得到y =|cos x |的图像,所以其最小正周期也为π,②正确;函数y =cos ⎝⎛⎭⎪⎫2x +π6的最小正周期为π,③正确;函数y=tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期为π2,④不正确.6.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π4[解析] A 由题意,函数f (x )=sin(ωx +φ)的最小正周期T =2⎝⎛⎭⎪⎫5π4-π4=2π,又ω>0,所以ω=2πT =1.故f (x )=sin ()x +φ.故⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=1,f ⎝ ⎛⎭⎪⎫5π4=sin ⎝ ⎛⎭⎪⎫5π4+φ=-1, ①或⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫π4+φ=-1,f ⎝ ⎛⎭⎪⎫5π4=sin ⎝ ⎛⎭⎪⎫5π4+φ=1, ②由①得φ=2k π+π4()k ∈Z ;由②得φ=2k π-3π4()k ∈Z . 又已知0<φ<π,所以由①得φ=π4;②无解.综上,φ=π4.故选A.7.设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4,则( )A .y =f (x )在⎝⎛⎭⎫0,π2上单调递增,其图像关于直线x =π4对称B .y =f (x )在⎝⎛⎫0,π2上单调递增,其图像关于直线x =π2对称C .y =f (x )在⎝⎛⎭⎫0,π2上单调递减,其图像关于直线x =π4对称D .y =f (x )在⎝⎛⎭⎫0,π2上单调递减,其图像关于直线x =π2对称[解析] D f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+π4=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x ,所以y =f (x )在⎝ ⎛⎭⎪⎫0,π2内单调递减,又f ⎝ ⎛⎭⎪⎫π2=2cos π=-2是最小值.所以函数y =f (x )的图像关于直线x =π2对称.8.函数y =sin x 2的图像是( )[解析] D 设y =f (x )=sin x 2,则f (-x )=sin(-x )2=sin x 2=f (x ),故f (x )为偶函数,A ,C 不符合.f π2=sin π22=sin π24<1,则B 不符合,故选D.9.下列函数中,最小正周期为π的奇函数是( )A .y =sin2x +π2B .y =cos2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x[解析] B 选项A ,B ,C 中的函数的最小正周期都是π,选项D 中,y =sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4的最小正周期是2π,故排除D.选项A 中,y =cos 2x 是偶函数;选项B 中,y =-sin 2x 为奇函数;选项C 中,y =2sin2x +π4是非奇非偶函数.10.定义在区间[0,3π]上的函数y =sin 2x 的图像与y =cos x 的图像的交点个数是________. [解析] 方法一:令sin 2x =cos x ,即2sin x cos x = cos x ,解得cos x =0或sin x =12,即x =k π+π2或x =2k π+π6或x =2k π+56π(k ∈Z ),又x ∈[0,3π],故x =π2,3π2,5π2或x =π6,5π6,13π6,17π6,共7个解,故两个函数的图像有7个交点. 11.若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2上是减函数,则a 的取值范围是 ( )A .(2,4)B .(-∞,2]C .(-∞,4]D .[4,+∞) [解析] B f (x )=cos 2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,由x ∈⎝⎛⎭⎫π6,π2得t ∈⎝⎛⎭⎫12,1,依题意有g (t )=-2t 2+at +1在⎝⎛⎭⎫12,1上是减函数,所以a 4≤12,即a ≤2.故选B.12. 若tan θ=-13,则cos 2θ=( )A .-45B .-15 C.15 D.45D [解析] cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-191+19=45.13.将函数y =2sin(2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( )A .y =2sin(2x +π4)B .y =2sin(2x +π3)C .y =2sin(2x -π4)D .y =2sin(2x -π3)D [解析] 函数y =2sin(2x +π6)的周期为2π2=π,将函数 y =2sin(2x +π6)的图像向右平移14个周期,即平移π4个单位,所得图像对应的函数为y =2sin[2(x -π4)+π6]=2sin(2x -π3). 14. 函数y =sin x -3cos x 的图像可由函数y =2sin x 的图像至少向右平移________个单位长度得到. 14.π3 [解析] 函数y =sin x -3cos x =2sin (x -π3)的图像可由函数y =2sin x 的图像至少向右平移π3个单位长度得到.15. 已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.15.2 1 [解析] 2cos 2x +sin 2x =sin 2x +cos 2x +1=2sin (2x +π4)+1,故A =2,b=1.16.若函数f (x )=4sin x +a cos x 的最大值为5,则常数a =________.±3 [解析] 根据题意得f (x )=16+a 2sin(x +φ),其中tan φ=a4,故函数f (x )的最大值为16+a 2,则16+a 2=5,解得a =±3.17.为了得到函数y =sin(x +π3)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度A [解析] 根据“左加右减”的原则,要得到y =sin ⎝⎛⎭⎫x +π3的图像,只需把y =sin x 的图像向左平移π3个单位长度.18要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图像,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图像( )A. 向左平移π2个单位长度B. 向右平移π2个单位长度C. 向左平移π4个单位长度D. 向右平移π4个单位长度C [解析] 易知f (x )=cos ⎝⎛⎭⎫2x +π3=sin ⎝⎛⎭⎫2x +5π6, 故把g (x )=sin ⎝⎛⎭⎫2x +π3的图像向左平移π4个单位长度,就可得到f (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3=cos ⎝⎛⎭⎫2x +π3的图像.19. 设f (x )=23sin(π-x )sin x -(sin x -cos x )2.(1)求f (x )的单调递增区间;(2)把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图像向左平移π3个单位,得到函数y =g (x )的图像,求g (π6)的值.解:(1)f (x )=23sin(π-x )sin x -(sin x -cos x )2=23sin 2x -(1-2sin x cos x )=3(1-cos2x )+sin 2x -1=sin 2x -3cos 2x +3-1=2sin (2x -π3)+3-1.由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以f (x )的单调递增区间是[k π-π12,k π+5π12](k ∈Z )或(k π-π12,k π+5π12)(k ∈Z ).(2)由(1)知f (x )=2sin (2x -π3)+3-1,把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin (x -π3)+3-1的图像,再把得到的图像向左平移π3个单位,得到y =2sin x +3-1的图像, 即g (x )=2sin x +3-1,所以g (π6)=2sin π6+3-1= 3.20.已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π. (1)求ω的值;(2)求f (x )的单调递增区间.解:(1)因为f (x )=2sin ωx cos ωx +cos 2ωx =sin 2ωx +cos 2ωx=2sin(2ωx +π4),所以f (x )的最小正周期T =2π2ω=πω.依题意,πω=π,解得ω=1.(2)由(1)知f (x )=2sin(2x +π4).函数y =sin x 的单调递增区间为[2k π-π2,2k π+π2](k ∈Z ),由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),得k π-3π8≤x ≤k π+π8(k ∈Z ),所以f (x )的单调递增区间为[k π-3π8,k π+π8](k ∈Z ).。
初一数学期末复习三角函数计算压轴题难题(附答案详解)题目一已知直角三角形中一边的长为6cm,另一边的长为8cm,求另外两个角的正弦、余弦和正切值。
解答:设直角三角形中两个锐角分别为A和B。
已知边长分别为6cm 和8cm,则根据勾股定理,可得直角边的长为:c = √(a^2 + b^2)c = √(6^2 + 8^2)c = √(36 + 64)c = √100c = 10cm因此,三角形的斜边长为10cm。
对于角A:正弦值(sin) = 对边/斜边 = 6/10 = 0.6余弦值(cos) = 邻边/斜边 = 8/10 = 0.8正切值(tan) = 对边/邻边 = 6/8 = 0.75对于角B:正弦值(sin) = 8/10 = 0.8余弦值(cos) = 6/10 = 0.6正切值(tan) = 8/6 = 1.3333因此,角A的正弦值为0.6,余弦值为0.8,正切值为0.75;角B的正弦值为0.8,余弦值为0.6,正切值为1.3333。
题目二已知一条斜边为12cm的直角三角形,其中一个锐角的正切值为1.5,求另外两个角的正弦、余弦和正切值。
解答:设直角三角形中两个锐角分别为A和B。
已知斜边长为12cm,角A的正切值为1.5。
对于角A:正切值(tan) = 对边/邻边 = a/b = 1.5设对边为a,邻边为b,则可以得到以下两个方程:a^2 + b^2 = 12^2a/b = 1.5从第二个方程可以得到:a = 1.5b将a的值代入第一个方程中,得到:(1.5b)^2 + b^2 = 1442.25b^2 + b^2 = 1443.25b^2 = 144b^2 = 144/3.25b^2 = 44.3077b ≈ 6.648由于b是邻边,所以b ≈ 6.648cm,a ≈ 1.5 * 6.648 ≈ 9.972cm。
因此,三角形的对边和邻边分别为9.972cm和6.648cm。
对于角A:正弦值(sin) = 对边/斜边≈ 9.972/12 ≈ 0.831余弦值(cos) = 邻边/斜边≈ 6.648/12 ≈ 0.554正切值(tan) = 对边/邻边≈ 9.972/6.648 ≈ 1.5对于角B:正弦值(sin) = 对边/斜边≈ 6.648/12 ≈ 0.554余弦值(cos) = 邻边/斜边≈ 9.972/12 ≈ 0.831正切值(tan) = 对边/邻边≈ 6.648/9.972 ≈ 0.667因此,角A的正弦值约为0.831,余弦值约为0.554,正切值约为1.5;角B的正弦值约为0.554,余弦值约为0.831,正切值约为0.667。
初中三角函数专项练习题及答案(DOC)初中三角函数专项练题及答案1、在直角三角形中,各边都扩大2倍,则锐角A的正弦值与余弦值都不变。
2、在Rt△ABC中,∠C=90,BC=4,sinA=5,则AC=3.3、若∠A是锐角,且13sinA-tanA>4,则30<∠A<45.4、若cosA=3,则4sinA+2tanA=11.5、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=1:1:2.6、在Rt△ABC中,∠C=90,则sinA=cosB。
7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么正确的是tanB=3/2.8.点(-sin60°,cos60°)关于y轴对称的点的坐标是(-2,2)。
9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣。
某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°。
若这位同学的目高1.6米,则旗杆的高度约为10.3米。
10.___同学从A地沿北偏西60º方向走100m到B地,再从B地向___方向走200m到C地,此时___同学离A地150m。
11、如图1,在高楼前D点测得楼顶的仰角为30,向高楼前进60米到C点,又测得仰角为45,则该高楼的高度大约为82米。
12、一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距约为67.5海里。
1.在三角形Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=4/5.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=3/7.3.在△ABC中,AB=2,AC=2,∠B=30°,则∠BAC的度数是120°。
4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为2sin15°。
一、解答题1.sin30 +tan60° cos45° °+tan30 .°2.计算:- 12016- 2tan60°+ (-)0-.3.计算: 2sin30 +3cos60° ﹣°4tan45 .°23 .4.计算: 2 2sin30 ° π 3 5.计算:2sin30 tan60cos60 tan45 .6.计算: | ﹣3|+ ( π﹣ 2017)0﹣2sin30 °+( 1) ﹣1.37.计算: 2 2 2cos30 tan60 03.14 .8.计算:2 1 2sin458 tan 2 60 .9.计算:2sin30° 2cos458 .°10 .计算:1) sin 260cos 2 60 ;( 2) 4cos45 tan6082(1 .11sin45o 031cos30 o tan60 o3..计算:11212 .求值:+2sin30 -°tan60 -°tan 45 °13 .计算:( sin30 ﹣°1) 2﹣ × sin45 °+tan60 °× cos30°.14 .( 1) sin 230° +cos 230° +tan30° tan60 ° ( 2) tan 45o sin 45o2sin 30o cos 45o15 .计算: ﹣ 4 ﹣ tan60 +|° ﹣ 2| .16 .计算:﹣ 2sin30 +°(﹣ ) ﹣1﹣ 3tan60 °+( 1﹣ ) 0+.17.( 2015 秋合肥期末)计算: tan 260°﹣ 2sin30 ﹣° cos45 °. 18 .计算: 2cos30°- tan45°- 1tan602.19 .(本题满分 6 分)1 1计算: 229 2cos60o320 .(本题 5 分)计算: -3 - 12+2sin60° + (1) - 131121 .计算: 3tan302312.222 .计算:∣ –5∣ +3sin30 –°( – 6 ) 2+( tan45 )° –121 23.( 6 分)计算 :22sin303tan45.110cos2 60( 6 分)24.计算:3sin 60tan 30 225.计算:2sin45°- tan60 °· cos30°.110 26.计算:2sin 603.22015 27.计算:8tan 30cos 602sin 45 .201501128.计算:1sin30 o 3.14.229.计算:.2sin45 3 tan30cos6032 .30.计算:31.计算: 2sin603tan302tan60cos4532.计算: cos30 - sin602sin 45tan 45.33.计算: 3 tan 60sin 2 453tan 45cos60 .34.计算:27 -3sin60 -cos30° +2tan45°.°02273tan 30o1 35.计算:33136.计算 2014 0+12 sin45° +tan60 .°237.计算: tan30 °cos30 °+sin2 60°-sin245°tan45 °38.计算:(π﹣ 3)0+﹣(﹣1)2017﹣2sin30°39.计算:﹣ 12016﹣(π﹣ 3)0+2cos30 ﹣°2tan45 °tan60 °.40.计算:(1)+|sin60 °﹣ 1|+tan45 °(2) tan 260°+4sin30 cos45° °41.计算:(1)(﹣ 1)2017﹣ 2﹣1+sin30 +°(π﹣ 314)0;(2) cos245°+sin60 tan45° °+sin230.42.计算:.43..44.计算: 2sin 30 -°3tan 45 ·sin ° 45 +°4cos 60 .°1 1345163tan60 o.计算:220073346 .计算: (- 1) 2 019-3+ |3- 8sin60°|- ( ) + (cos68°) 47 .计算:(1) ;(2).48 .计算:(1)sin45 ·cos45° °+ tan60 °·sin60 ;°(2)sin30 -°tan 245°+ tan 230°- cos60 °. 49 .计算:二、填空题150. 12 ﹣ tan30 °+( π﹣ 4) 01=_____.2参考答案1.【解析】【分析】分别代入各特殊角的三角函数值,然后进行计算即可得.【详解】sin30 +tan60° °cos45 °+tan30 °==×+- +=.【点睛】本题考查了特殊角的三角函数值的混合运算,熟练掌握各特殊角的三角函数值是解题的关键 .2.- 4.【解析】分析 :先根据乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则逆用进行计算 ,然后再进行实数加减运算.详解 :- 12016- 2tan 60°+(-)0-,原式=-1- 2×+1- 2,=- 4.点睛 :本题主要考查乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则,解决本题的关键是要熟练掌握实数相关运算法则.3.﹣ .【解析】试题分析:把30°的正弦值、 60°的余弦值、 45°的正切值代入进行计算即可.试题解析: 2sin30 °+3cos60°﹣ 4tan45 °11= 234122=.4.3【解析】试题分析:分别根据二次根式的性质,特殊角的三角函数值,0 指数幂及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:解:原式=2211+3 ,2= 3 .点睛:本题考查的是二次根式的性质,特殊角的三角函数值,0 指数幂及绝对值的性质,熟知以上运算法则是解答此题的关键.5.31 2【解析】试题分析:将特殊角的三角函数值代入求解即可.试题解析:解:原式1311 213.2226. 6【解析】试题分析:按顺序依次先进行绝对值化简、0 次幂计算、特殊角三角函数值、负指数幂计算,然后再按运算顺序进行计算即可.试题解析:原式=3+1-21+3=3+1﹣1+3=6.257.4【解析】试题分析:原式利用特殊角的三角函数值,以及零指数幂法则计算即可得到结果.试题解析: 2-20-2cos30 ° +tan60 ° +( π13123425=48. 2【解析】试题分析:先进行绝对值、二次根式的化简,特殊角的三角函数值,然后再按运算顺序进行计算即可.试题解析:原式 = 2 1 222 2 32 1 2 2 23 2 . 29.12【解析】试题分析:代入 30°角的正弦函数值、45°角的余弦函数值,再按二次根式的相关运算法则计算即可.试题解析:原式= 212222 22= 1 2 2 2= 1 2 .10.( 1) 1;(2).【解析】试题分析:( 1)直接利用特殊角的三角函数值代入化简求出答案;( 2)直接利用特殊角的三角函数值代入化简求出答案.3212试题解析:( 1)原式 =)() 1;22=( 2)原式 = 42 2 21 3 1 .3211. 1.【解析】试题分析:利用三角函数,分母有理化,绝对值性质计算.试题解析:sin45o11otan60o313cos302=1+13331=1+13+3+31 =1.+132222212.【解析】先得出式子中的特殊角的三角函数值,再按实数溶合运算顺序进行计算即可.解:原式=13.【解析】试题分析:此题涉及有理数的乘方、特殊角的三角函数值的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.解:( sin30 °﹣ 1)2﹣× sin45°+tan60°×cos30°=1﹣×+×=1﹣ 1+=【点评】此题主要考查了实数的综合运算能力,方、特殊角的三角函数值的运算.14.(1)2;(2) 0.解决此类题目的关键是熟练掌握有理数的乘【解析】试题分析:根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.试题解析:( 1) sin230° +cos230° +tan30 ° tan60 °= (1)2(3)233 223=1+1=2;( 2)原式 =12212222=0.考点:特殊角的三角函数值.15. 2﹣ 2.【解析】试题分析:原式前两项化为最简二次根式,第三项利用特殊角的三角函数值计算,利用绝对值的代数意义化简,计算即可得到结果.解:原式 =2﹣4×﹣+2﹣=2﹣ 2.最后一项考点:实数的运算;特殊角的三角函数值.16.﹣ 3﹣.【解析】试题分析:直接利用特殊角的三角函数值以及负指数幂的性质以及零指数幂的性质、二次根式的性质化简进而求出答案.解:原式 =﹣ 2× ﹣ 3﹣ 3+1+2=﹣ 3﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.17. 1【解析】试题分析:将特殊角的三角函数值代入求解.解:原式 =()2﹣2× ﹣×=3﹣ 1﹣ 1=1.考点:特殊角的三角函数值.18. -2.【解析】试题分析:分别计算特殊角三角函数值和算术平方根,然后再计算加减法.试题解析:原式31 |1 3 | = 22= 3 131=-2.考点:实数的混合运算 .19. 1.【解析】试题分析:按照实数的运算法则依次计算.试题解析:原式=13 1 1 3 1.4 3 22考点: 1.特殊角的三角函数值;2.有理数的乘方; 3.零指数幂; 4.负指数幂.20. 3.【解析】试题分析:本题首先将各式分别进行计算,然后根据实数的计算法则进行计算.试题解析:原式 = 3- 2 3 +2×33 -2 3 + 3 +3=3.+3=2考点:实数、三角函数的计算21.331【解析】试题分析:先计算三角函数值,零指数,负指数,开方再按照实数的运算计算即可.试题解析:原式 = 331 2 2 3 = 3 1 2 3 = 3 3 1 . 3考点:三角函数值,零指数,负指数,开方.视频322.2【解析】试题分析:分别求值再进行加减运算33试题解析:原式=5+ 2 -6+1= 2考点: 1.特殊角的三角函数 2.实数的运算23.3【解析】试题分析:先计算绝对值,三角函数,零指数,负指数,平方再按照实数的运算计算即可 .21试题解析: 2 2sin303tan45=2+2 ×3-3+12=2+ 3 -3+1= 3考点:三角函数,实数的运算 .24. 21.4【解析】试题分析:任何不是零的数的零次幂都是1,a- p= 1 .a p试题解析:原式 =2-(1)2+1- 3 ′ 3=2-1+1-1=21.223424考点:实数的计算、三角函数的计算.25.1 2【解析】试题分析: sin45° =2; tan60° = 3 ;cos30°=3.22试题解析:原式=223313= 1=.2222考点:二次根式的计算、锐角三角函数的计算. 26.- 3.【解析】试题分析: sin60° =3;任何非零的数的零次幂为1,- 3 = 3 ;( -1)- 1=-2. 22试题解析:原式=-2+ 3 - 3 -1=-3.考点:实数的计算.327. 3 2.6【解析】试题分析:原式 = 2 23122= 323.3226考点:实数的运算.28.1 .211【解析】试题分析:原式112.22考点:实数的运算.视频29. 2.【解析】试题分析:原式 = =2.考点:实数的运算.30.2 1.【解析】231 32 32 = 2 1 .试题分析:原式 =232 考点:实数的运算. 31. 23 6【解析】试题分析: 此题主要考查了特殊角的三角函数值得代入求值问题,因此把相应的特殊角的三角函数值代入即可 .试题解析:解:3 3 2原式 = 232 3232= 2 36考点:特殊角的三角函数32. 2 . 【解析】试题分析:原式3 3 22 2 .2212考点:实数的运算.33. 0. 【解析】2 211 1 试题分析:原式33332130 .222考点:实数的运算.34. 2 3 ﹣ 1.【解析】试题分析:将 sin60 °=3, tan45 °=1, cos30°=3代入,然后化简合并即可得出答案.22试题解析:原式 =2× 3 ﹣ 1+2×3= 3 ﹣ 1+3 =2 3 ﹣ 1.22考点:特殊角的三角函数值.35. 2 3 10 【解析】试题分析: 根据二次根式、 特殊角三角函数值、零次幂、 负整数指数幂的意义进行计算即可 .试题解析:27 3tan 30 (3) ( 1) 233 3 33 9132 3 10考点 : 实数的混合运算 .36. 2 3 .【解析】试题分析:根据零次幂、负整数指数幂、特殊三角函数值的意义进行计算即可.试题解析 : 20140(1 ) 12 sin 45 tan6021 22 3222 3考点 : 1.零次幂 ,2.负整数指数幂 ,3 特殊三角函数值 .37.【解析】【分析】根据特殊三角函数值即可求解.【详解】原式 ==【点睛】本题考查了特殊的三角函数值,属于简单题 ,熟记特殊三角函数值是解题关键.38. 3【解析】【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:(π﹣3)0+﹣(﹣1)2017﹣2sin30°=1+2﹣(﹣ 1)﹣ 2×=3+1﹣ 1=3【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解题关键是熟练掌握零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简、绝对值等考点的运算.39.﹣ 2﹣.【解析】【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【详解】原式 =﹣1 ﹣1+﹣2=﹣ 2﹣.【点睛】本题考查了实数的运算法则,负指数的性质,特殊角是三角函数,熟练特殊角是三角函数是解题的关键.40. (1)4- ;(2)3+【解析】(1)原式利用绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)原式利用特殊角的三角函数值计算即可求出值.【详解】(1)原式 =2+1﹣ +1=4﹣;( 2)原式 =3+4× × =3+.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.41.( 1) 0;(2).【解析】【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案;( 2)直接利用特殊角的三角函数值化简得出答案.【详解】(1)(﹣ 1)2017﹣ 2﹣1 +sin30 +°(π﹣ 314)0;=﹣ 1﹣ + +1=0;(2) cos245°+sin60 tan45° °+sin230=()2+× 1+()2=+ +=.【点睛】本题考查了实数运算,掌握实数运算是解题的关键.42..【解析】分析:代入 45°角的正弦函数值,结合“零指数幂的意义”和“负整数指数幂的意义”进行计算即可.原式 ===.点睛:熟记45°角的正弦函数值、及(为正整数)是正确解答本题的关键 .43.【解析】【分析】根据:分别代入计算.【详解】原式.【点睛】考查了特殊角的三角函数值,解答此类题目的关键是熟记特殊角是三角函数值.44. 3-【解析】【分析】把60°, 30°, 45°的正弦,余弦,正切的值代入计算即可.【详解】解:原式= 2×- 3×1×+ 4×= 1-+2=3-【点睛】本题主要考查特殊角的三角函数值和零指数幂的知识点,牢记特殊角的三角函数值是解答的关键.45. -1.【解析】分析:代入60°角的正切函数值,结合“负指数幂的意义”、“零指数幂的意义”和实数的相关运算法则计算即可 .详解:原式 =3168 1 33=3 2 1 3=1。