三角函数计算题 期末复习(含答案)
- 格式:doc
- 大小:1.06 MB
- 文档页数:24
第二十八章 锐角三角函数 复习题一、单选题1.陕西渭南·九年级期末)如图,在ABC 中,90C ∠=︒,设A ∠,B ∠,C ∠所对的边分别为a ,b ,c ,则下面四个等式一定成立的是( )A .sin c bB =⋅B .cos a c B =⋅C .tan a b B =⋅D .tan b c B=⋅2.陕西咸阳·九年级期末)在Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的是( )A .sin B =23B .cos B =23C .tan B =23D .tan B =323.陕西宝鸡·九年级期末)在△ABC 中,已知∠C =90°,AC =sin A =23,那么BC 边的长是( )A .B .8C .D .124.陕西咸阳·九年级期末)如图,点()3,4A 在第一象限,OA 与x 轴所夹的锐角为α,则cos α=( )A .34B .35C .45D .435.陕西渭南·九年级期末)2cos45°的值为( )A .2BC D .16.陕西西安·九年级期末)在ABC 中,A ∠,B ∠都是锐角,且sin A =,tan B =,则ABC 的形状是( )A .直角三角形B .钝角三角形C .等边三角形D .不能确定7.陕西咸阳·九年级期末)如图,从山下乘缆车上山,缆绳与水平方向成32°的夹角,已知缆车速度为每分钟50米,从山脚下A 到山顶B 需16分钟,则山的高度为( )A .800•sin32°B .800tan32︒C .800•tan32°D .800sin32︒8.陕西宝鸡·九年级期末)如图,路灯距地面8米,身高1.6米的小明从距离灯底(点O )20米的点A 处,沿AO 所在直线行走12米到达点B 时,小明身影长度( )A .变长2.5米B .变短2米C .变短2.5米D .变短3米二、填空题9.陕西咸阳·九年级期末)如图所示的是一款可折叠的木制宝宝画板.若70cm AB AC ==,8cos 35ABC ∠=,则BC 的长为____________cm .10.陕西宝鸡·九年级期末)如图,正六边形ABCDEF 的边长为2,以A 为圆心,AC 的长为半径画弧,得 EC,连接AC ,AE ,则图中阴影部分的面积为________.11.陕西咸阳·九年级期末)在ABC ∆中,(tan cos 0A B =,则∠C 的度数为____.12.陕西宝鸡·九年级期末)已知sinA=12,则锐角∠A=______.三、解答题13.陕西西安·)sin 60cos 456⎫︒-︒-⎪⎪⎭14.陕西咸阳·九年级期末)计算:2221tan 45sin 303cos 304︒+︒-︒.15.陕西宝鸡·九年级期末)计算:4cos 24|+6.16.陕西渭南·九年级期末)计算:212cos302-⎛⎫︒ ⎪⎝⎭.17.陕西咸阳·九年级期末)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,﹣4).(1)请在图中,画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在图中y 轴右侧,画出△A 2B 2C 2,并求出∠A 2C 2B 2的正弦值.18.陕西宝鸡·九年级期末)在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 顶部M 的仰角为35°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E. 请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)19.陕西渭南·九年级期末)某地有一座大桥(图1),某初中数学兴趣小组想测量该大桥的外拱塔的最高点D 距离桥面的高度CD ,他们在桥面上选取了一个测量点A 测得点D 的仰角为26.6°,然后他们沿AC 方向移动40m 到达测量点B (即40m AB =),在B 点测得点D 的仰角为37°,如图2所示.求外拱塔的最高点D 距离桥面的高度CD .[参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,sin 26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50︒≈]20.陕西汉中·九年级期末)某中学数学实践小组决定利用所学知识去测量一古建筑的高度(如图1).如图2,在地面BC 上取E ,G 两点,分别竖立两根高为2m 的标杆EF 和GH ,两标杆间隔EG 为23m ,并且古建筑AB ,标杆EF 和GH 在同一竖直平面内,从标杆EF 后退2m 到D 处(即2m ED =),从D 处观察A 点,A 、F 、D 三点成一线;从标杆GH 后退4m 到C 处(即4m CG =),从C 处观察A 点,A 、H 、C 三点也成一线.已知B 、E 、D 、G 、C 在同一直线上,AB BC ⊥,EF BC ⊥,GH BC ⊥,请根据以上测量数据,帮助实践小组求出该古建筑AB 的高度.21.陕西咸阳·九年级期末)如图,琪琪在一座桥的附近试飞一架小型无人机,为了测量无人机飞行的高度AD ,琪琪通过操控装置测得无人机俯视桥头B ,C 的俯角分别为∠EAB =60°和∠EAC =30°,且D ,B ,C 在同一水平线上.已知桥BC =36米,求无人机的飞行高度AD .22.陕西渭南·九年级期末)如图,小华利用标杆和等腰直角三角尺测量楼高,他先在E 处竖立一根高1.5米的标杆DE ,发现地面上的点A 、标杆顶端D 与楼顶B 在一条直线上,测得1AE =米;然后他站在F 处利用等腰直角三角形测得视线GB 与水平面的夹角45BGM ∠=︒,小华的眼睛到地面的距离 1.5GF =米,1.5AF =米.已知点F 、A 、E 、C 在同一直线上,GF FC ⊥,DE FC ⊥,BC FC ⊥.请根据以上所测数据,计算楼高BC .23.陕西安康·九年级期末)如图,在矩形ABCD 中,O 为边AB 上一点,以点O 为圆心,OA 为半径的O 与对角线相交于点E ,连接BE ,且BC BE =.(1)求证:BE 是O 的切线;(2)若30CAB ∠=︒,BC 长为6,求O 的半径.24.陕西西安·九年级期末)如图,将矩形ABCD 沿AE 折叠,使点D 落在BC 边的点F 处.(1)求证:△ABF ∽△FCE ;(2)已知AB =3,AD =5,求tan DAE 的值.参考答案:1.B【解析】根据∠B 的正弦、余弦、正切的定义列式,根据等式的性质变形,判断即可.解:在△ABC 中,∠C=90°,∵sinB=bc ,∴c=sin b B,A 选项等式不成立;∵cosB=a c,∴a=c•cosB ,B 选项等式成立;∵tanB=b a ,∴a=tan b B,C 选项等式不成立;∵tanB=b a ,∴b=a•tanB ,D 选项等式不成立;故选:B .本题考查了锐角三角函数的定义,掌握锐角是三个三角函数的定义是解题的关键.2.C∵∠C =90°,AC =2,BC =3,∴,∴sinB=AC AB ==,cosB=BC AB ==,tanB=23AC BC =,故选C.3.B【解析】根据锐角三角函数和勾股定理求解即可.解:由sin A =23=BC AB,不妨设BC =2k ,则AB =3k ,由勾股定理得,AC 2+BC 2=AB 2,即(2+(2k )2=(3k )2,解得k =4(取正值),所以BC =2k =8,故选:B .本题考查锐角三角函数,勾股定理,理解锐角三角函数的定义和勾股定理是正确解答的前提.【解析】过A 作AP x ⊥轴于点P ,根据勾股定理求出OA ,再根据锐角三角形函数的定义求解即可过A 作AP x ⊥轴于点PA(3,4)∴4,3AP OP ==由勾股定理得:5OA ===3cos 5OP OA α∴==故选:B .本题考查了勾股定理和锐角三角函数的定义的应用,主要考查学生的理解和计算能力.5.C【解析】根据45°角的三角函数值代入计算即可.解: 2cos452== 故选C .此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.6.C【解析】根据特殊角锐角三角函数值,可得60,60A B ∠=︒∠=︒ ,再由三角形的内角和等于180°,可得60C ∠=︒ ,即可求解.解:∵sin A =,tan B =∴60,60A B ∠=︒∠=︒ ,∴18060C A B ∠=︒-∠-∠=︒ ,∴A B C ∠=∠=∠ ,∴ABC 是等边三角形故选:C本题主要考查了等边三角形的判定,特殊角锐角三角函数值,熟练掌握特殊角锐角三角函数值是解题的关键.【解析】根据题意可得,90BCA ∠=︒,32BAC ∠=︒,5016800AB =⨯=米,再根据三角函数的定义,即可求解.解:根据题意可得,90BCA ∠=︒,32BAC ∠=︒,5016800AB =⨯=米,根据三角函数的定义可得:sin sin 32BC BAC AB∠=︒=∴sin 32800sin 32BC AB =⨯︒=⋅︒(米)故选:A本题考查了解直角三角形的应用,找到直角三角形并熟悉三角函数的定义是解题的关键.8.D【解析】利用相似三角形的对应边成比例可求出AM 的长,同理求出BN 的长,再求出AM 与BN 的差即可.∵OF ⊥OM,DA ⊥OM ,∴QF ∥AD ,∴△ADM ∽△OFM ,∴AM AD AM OA OF =+ ,即 1.620+8AM AM = ,解得AM =5cm ;同理可得,∵△BNE ∽△ONF ,∴BN AD OA AB BN OF =-+ 即 1.620128BN BN =-+ ,解得BN =2m ,∴AM -BN =5-2=3m.故选D.本题考查了相似三角形的应用和中心投影,熟练掌握该知识点是本题解题的关键.9.32【解析】过点A 作AD ⊥BC 于点D ,根据余弦定义可求BD ,然后根据等腰三角形的性质即可求出BC .解:如图,过点A 作AD ⊥BC 于点D ,在Rt △ABD 中,cos BD ABC AB ∠=,又AB =70cm ,8cos 35ABC ∠=,∴87035BD =,∴BD =16cm ,又AB =AC ,∴BC =2BD =32cm .故答案为:32.本题考查了锐角三角函数,等腰三角形的性质等知识,添加辅助线AD 是解题的关键.10.2π【解析】由正六边形ABCDEF 的边长为2,可得AB =BC =2,∠ABC =∠BAF =120°,进而求出∠BAC =30°,∠CAE =60°,过B 作BH ⊥AC 于H ,由等腰三角形的性质和含30°直角三角形的性质得到AH =CH ,BH =1,在Rt △ABH 中,由勾股定理求得AH AC 解:∵正六边形ABCDEF 的边长为2,()6218021206AB BC ABC BAF -⨯︒∴==∠=∠==︒, =120°,∵∠ABC +∠BAC +∠BCA =180°,∴∠BAC =12(180°-∠ABC )=12×(180°-120°)=30°,过B 作BH ⊥AC 于H ,∴AH =CH ,BH =12AB=12×2=1,在Rt △ABH 中,AH=,∴AC,同理可证,∠EAF =30°,∴∠CAE =∠BAF -∠BAC -∠EAF =120°-30°-30°=60°,∴2CAE S π==扇形∴图中阴影部分的面积为2π,故答案为:2π.本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.11.90︒【解析】先根据平方、绝对值的非负性求得tan A 、cos B ,再利用锐角三角函数确定A ∠、B ∠的度数,最后根据直角三角形内角和求得90C ∠=︒.解:∵(tan cos 0A B =∴tan 0cos 0A B ⎧==∴tan cos A B ⎧=⎪⎨=⎪⎩∴6030A B ∠=︒⎧⎨∠=︒⎩∴90C ∠=︒.故答案是:90︒本题考查了平方、绝对值的非负性,锐角三角函数以及三角形内角和,熟悉各知识点是解题的关键.12.30°【解析】根据sin30°=12进行解答即可.∵sinA=12,∠A 为锐角,∴∠A=30°,故答案为30°.本题考查了特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.13.-7【解析】首先代入特殊角的三角函数值,然后进行二次根式的混合运算.解:原式6⎫-⎪⎪⎭16=7- .本题考查特殊角的三角函数值以及二次根式的混合运算,解决问题的关键是牢记特殊角的三角函数值以及掌握二次根式的运算法则.14.74-【解析】先将特殊角三角函数值代入,再计算乘方,然后计算乘法,最后计算加减即可.解:原式222111342⎛⎫=⨯+-⨯ ⎪⎝⎭11313444=⨯+-⨯119444=+-74=-本题考查特殊角的三角函数值,实数混合运算,熟记特殊角三角函数值和实数运算法则是解题的关键.15.7【解析】首先代入特殊角的三角函数值,再利用绝对值的性质和二次根式的乘法法则进行计算,最后计算加减即可.原式=4×2+4﹣=4+3=7.此题主要考查了二次根式的混合运算,关键是掌握特殊角的三角函数值和绝对值的性质,注意计算顺序.16.4--【解析】根据特殊角的三角函数值、二次根式的性质、负整数指数幂的性质进行计算.解:原式24=4=4=-.本题主要考查了实数的运算,正确化简各数是解题的关键.17.(1)见解析(2【解析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求,由图形可知,∠A 2C 2B 2=∠ACB ,过点A 作AD ⊥BC 交BC 的延长线于点D ,由A (2,2),C (4,﹣4),B (4,0),易得D (4,2),故AD =2,CD =6,AC ==∴sin AD ACB AC ∠===即222sin A C B ∠=此题考查了作图−位似变换,平移变换,以及解直角三角形,熟练掌握位似及平移的性质是解本题的关键.18.人民英雄纪念碑MN.的高度约为36.5米.试题分析:由题意得,四边形ACDB ,ACEN 为矩形,从而得EN=AC=1.5.AB=CD=15,在Rt △MED 中,由题意可得ME=DE ,设ME =DE =x ,则EC =x+15,在Rt △MEC 中,可得ME=EC ⋅tan ∠MCE ,从而有x≈0.7(x+15),求出x 的值,从而得MN=ME+EN≈36.5 .试题解析:由题意得,四边形ACDB ,ACEN 为矩形,∴EN=AC=1.5,AB=CD=15,在Rt MED 中,∠MED =90°,∠MDE =45°,∴∠EMD =∠MDE =45°,∴ME =DE ,设ME =DE =x ,则EC =x+15,在Rt MEC 中,∠MEC =90°,∠MCE =35°,∵tan ME EC MCE =⋅∠,∴()0.715x x ≈+ ,∴35x ≈ ,∴35ME ≈ ,∴36.5MN ME EN =+≈,∴人民英雄纪念碑MN.的高度约为36.5米.19.外拱塔的最高点D 距离桥面的高度CD 为60m【解析】分别在两个直角三角形中由三角函数值建立方程,联立即可求出.解:设m DC x =,在Rt ADC 中,26.6A ∠=︒,∴tan 26.60.50CD AC ︒≈=∴2AC CD=在Rt BDC 中,37DBC ∠=︒,∴tan 370.75CDBC︒≈=∴43BC CD =∵40AC BC -=,∴即42403CD CD -=,解得60CD =,答:外拱塔的最高点D 距离桥面的高度CD 为60m .本题考查了解直角三角形应用题,一般步骤为弄清题中的名词、术语的意义,如仰角、俯角、坡度、坡角等概念,然后根据题意画出几何图形,建立数学模型,将实际问题中的数量关系归结为解直角三角形的问题,当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形,寻找直角三角形,并解这个三角形.20.古建筑AB 的高度为25m .【解析】设=AB x ,=BE y ,证明ABD FED ∽,得到222+=x y ,再证明∽ABC HGC △△,得到2724+=x y ,利用227=24++y y 求出=23y ,将=23y 代入222+=x y 得:25x =.解:设=AB x ,=BE y ,∵AB BC ⊥,EF BC ⊥,∴AB EF ∥,∵∠=∠ADB FDE ,∴ABD FED ∽,∴=AB BD FE DE ,即222+=x y ,同理:∽ABC HGC △△,∴=AB BC HG GC,∵=23427++=++=+BC BE EG GC y y ,∴2724+=x y ,∴227=24++y y ,解得:=23y ,将=23y 代入222+=x y 得:25x =,∴古建筑AB 的高度为25m .本题考查解直角三角形,相似三角形的判定及性质,解题关键是利用相似三角形的性质求出227=24++y y ,求出y ,再进一步求出x .21.【解析】由锐角三角函数定义得CD =,BD AD =,再由36BC CD BD AD =-==米,即可求出AD 的长.解:60EAB ∠=︒ ,30EAC ∠=︒,9060CAD EAC ∴∠=︒-∠=︒,9030BAD EAB ∠=︒-∠=︒,tan CD AD CAD ∴=⋅∠=,tan BD AD BAD AD =⋅∠=,36BC CD BD AD ∴=-==米,AD ∴=(米).答:无人机的飞行高度AD 为米.本题考查了解直角三角形的应用中的仰角俯角问题,掌握仰角俯角定义和锐角三角函数定义.22.9m【解析】连接GD ,并延长交BC 于点H ,证明BH =GH ,设BC =x ,则BH =x -1.5,用x 表示出GH 、BH 、EC 、DH ,根据tan DE BC BAE AE AC∠==列出关于x 的方程,解方程即可得出BC .解:连接GD ,并延长交BC 于点H ,∵GF ⊥CF ,DE ⊥CF ,HC ⊥FC ,∴GF DE HC ∥∥,∵GF =DE ,∴四边形DEFG 为平行四边形,∵∠GFE =90°,∴四边形DEFG 为矩形,∴DG =EF ,∵1m AE =, 1.5m AF =,∴ 2.5m DG EF AE AF ==+=,∵∠DEC =∠EDH =∠ECH =90°,∴四边形DECH 为矩形,∴∠DHC =90°,DH =CE ,DE =CH =1.5m ,∴∠DHB =90°,∵∠BGH =45°,∴∠GBH =45°,∴∠BGH =∠GBH ,∴GH =BH ,设BC =x ,则BH =x -1.5,∴GH =BH =x -1.5,∴EC =DH =GH -DG =x -1.5-2.5=x -4,∴143AC AE EC x x =+=+-=-,∵tan DE BC BAE AE AC ∠==,∴1.513x x =-,解得:9x =,即楼高BC 为9m .本题主要考查了矩形的判定和性质,等腰三角形的判定和性质,解直角三角形,根据tan DE BC BAE AE AC∠==列出关于x 的方程,是解题的关键.23.(1)见解析(2)O 的半径为【解析】(1)根据矩形的性质得出∠ABC =90°,由等腰三角形的性质得出∠EAO =∠AEO ,∠CEB =∠ACB ,证出∠OEB =90°,则可得出结论;(2)证明△BCE 为等边三角形,由等边三角形的性质得出∠CBE =60°,CB =BE =6,由直角三角形的性质可得出答案.(1)证明:连接OE ,∵四边形ABCD 是矩形,∴90ABC ∠=︒,∵OA OE =,BE BC =,∴EAO AEO ∠=∠,CEB ACB ∠=∠,∴90ACB CAB AEO CEB ∠+∠=∠+∠=︒,∴90OEB ∠=︒,∵OE 为O 的半径,∴BE 是O 的切线;(2)解:∵30CAB ∠=︒,90ABC ∠=︒,∴60ACB ∠=︒,∵BC BE =,∴BCE 为等边三角形,∴60CBE ∠=︒,6CB BE ==,∴30OBE ∠=︒,∴tan 30OE BE =︒=∴6OE ==O 的半径为本题考查了切线的判定,矩形的性质、直角三角形的边角关系以及特殊锐角三角函数值,掌握直角三角形的边角关系以及矩形、等腰三角形的性质是解题的关键.24.(1)见解析(2)13【解析】(1)由折叠的性质得90AFE D ∠=∠=︒,进而得出BAF CFE ∠=∠,即可证明△ABF ∽△FCE ;(2)设DE x =,则3EC x =-,由折叠的性质知,EF DE x ==,5AF AD ==,利用勾股定理求出BF ,进而求出CF ,在△CEF 中根据勾股定理列方程求出x ,则tan DE DAE AD∠=.(1)证明:∵四边形ABCD 是矩形,∴90B C D ∠=∠=∠=︒,由折叠的性质知,90AFE D ∠=∠=︒,∴90CFE AFB ∠+∠=︒,90BAF AFB ∠+∠=︒,∴BAF CFE ∠=∠.在△ABF 和△FCE 中,BAF CFE B C ∠=∠⎧⎨∠=∠⎩,∴△ABF ∽△FCE ;(2)解:∵矩形ABCD 中,AB =3,AD =5,∴3DC AB ==,5BC AD ==,设DE x =,则3EC x =-,由折叠的性质知,EF DE x ==,5AF AD ==,由勾股定理得,4BF ===,∴541FC BC BF =-=-=,在△CEF 中,由勾股定理得:222EF EC CF =+,即()22231x x =-+,解得53x =,∴53DE =,∴511tan 353DE DAE AD ∠==⨯=.本题考查矩形的性质,折叠的性质,相似三角形的判定,勾股定理,三角函数解直角三角形等知识点,利用折叠的性质得出90AFE D ∠=∠=︒,EF DE =,AF AD =是解题的关键.。
一、解答题1.sin30°+tan60°−cos45°+tan30°.2.计算:-12016-2tan 60°+(-)0-.3.计算:2sin30°+3cos60°﹣4tan45°.4.计算: ()222sin30-°()0π33--+-. 5.计算: 2sin30tan60cos60tan45︒-︒+︒-︒.6.计算:|﹣3|+(π﹣2017)0﹣2sin30°+(13)﹣1. 7.计算: ()0222cos30tan60 3.14π--︒+︒+-。
8.计算: 2212sin458tan 60-+︒-+︒.9.计算: 2sin30°2cos45-°8+.10.计算:(1)22sin 60cos 60︒+︒; (2)()24cos45tan6081︒+︒---. 11.计算: ()()103sin4513cos30tan6012-+-+⋅--. 12.求值:+2sin30°-tan60°— tan 45°13.计算:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°. 14.(1)sin 230°+cos 230°+tan30°tan60° (2)o o o o 45cos 30sin 245sin 45tan -15.计算:﹣4﹣tan60°+|﹣2|.16.计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.17.(2015秋•合肥期末)计算:tan 260°﹣2sin30°﹣cos45°. 18.计算:2cos30°-tan45°-()21tan 60+︒. 19.(本题满分6分) 计算:121292cos603-⎛⎫-+-+ ⎪⎝⎭ 20.(本题5分)计算:3-12+2sin60°+11()321.计算: ()1013tan3023122-⎛⎫︒+--+- ⎪⎝⎭. 22.计算:∣–5∣+3sin30°–(–6)2+(tan45°)–123.(6分)计算: ()()2122sin303tan45--+︒--+︒. 24.计算:()1021cos 603sin 60tan302π-⎛⎫-︒+--︒︒ ⎪⎝⎭(6分)25.计算:2sin45°-tan60°·cos30°.26.计算:()1012sin 60320152-⎛⎫-+︒---- ⎪⎝⎭. 27.计算:︒+︒⋅︒-45sin 260cos 30tan 8.28.计算: ()()12015011sin30 3.142π-⎛⎫-+--+ ⎪⎝⎭. 29.计算:.30.计算:32sin 45330cos602︒︒+︒+-. 31.计算:2sin 603tan 302tan 60cos 45︒+︒-︒⋅︒32.计算:cos30sin602sin 45tan 45︒︒+︒•︒- .33.计算 :23tan60sin 453tan 45cos60︒-︒-︒+︒.34.计算:27-3sin60°—cos30°+2tan45°.35.计算:()201273tan3033π-⎛⎫-+-+ ⎪⎝⎭ 36.计算20140+121-⎪⎭⎫ ⎝⎛−2sin45°+tan60°. 37.计算:tan30°cos30°+sin 260°— sin 245°tan45° 38.计算:(π﹣3)0+﹣(﹣1)2017﹣2sin30° 39.计算:﹣12016﹣(π﹣3)0+2cos30°﹣2tan45°•tan60°. 40.计算:(1)+|sin60°﹣1|+tan45°(2)tan 260°+4sin30°cos45°41.计算:(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0; (2)cos 245°+sin60°tan45°+sin 230.42.计算:。
三角函数高三计算题解析一、单选题1.(2024·湖北·二模)若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A .718-B .718-C .18-D .182.(23-24高三下·重庆·阶段练习)若,π2α⎛⎫∈ ⎪⎝⎭,且cos 13αα=,则sin 212α⎛⎫- ⎪⎝⎭的值为()A B .338C .D .3.(2024·全国·模拟预测)已知角θ的顶点为坐标原点,始边与x轴的正半轴重合,点2023π2023πsin,cos46P⎛⎫⎪⎝⎭在角θ的终边上,则sin21cos2θθ=+()AB.C D.4.(2024·陕西咸阳·二模)当函数3sin4cosy x x=+取得最小值时,sin6x⎛⎫+=⎪⎝⎭()A.4+-B.310+-C.310+D.410+5.(2024·安徽·模拟预测)已知()tan 4αβ-=,()()sin 3cos αβαβ-=+,则tan tan αβ-=()A .12B .35C .65D .536.(2024·山东泰安·一模)若2πcos 24sin 22αα⎛⎫+-=- ⎪⎝⎭,则tan2α=()A .2-B .12-C .2D .127.(2024·贵州毕节·模拟预测)已知sin 125α⎛⎫+= ⎪⎝⎭,0,2α⎛⎫∈ ⎪⎝⎭,则cos 3α⎛⎫+= ⎪⎝⎭()A .10-B .5-C .4D .34-8.(2024·福建泉州·模拟预测)若0,2α⎛⎫∈ ⎪⎝⎭,3sin 2cos 2sin cos 20αααα+=,则tan α=()A .4B .2C .12D .149.(2024·河北·模拟预测)已知1tan 22θ=-,则3cos sin cos θθθ=+()A .925-B .925C .2725-D .272510.(2024·江苏盐城·模拟预测)在ABC 中,已知tan tan tan tan 1A B A B ++=,则cos 2sin C C +的值为()A .2B .2C D .11.(2024·辽宁·一模)已知,αβ满足πππ2π,44αβ≤≤-≤≤,且553π32cos 5,962sin252ααββ⎛⎫-+=+=- ⎪⎝⎭,则24πsin 994αβ⎛⎫+-=⎪⎝⎭()A B C D12.(23-24高三下·内蒙古锡林郭勒盟·开学考试)若cos 20501)a -=,则=a ()A .12B .1C .32D .213.(23-24高三下·江苏扬州·阶段练习)已知()cos(),cos 35αβαβ+=-=,则2log (tan tan )αβ-=()A .12B .12-C .2D .2-【答案】D根据余弦的和差角公式求得tan tan αβ,再求结果即可.【详解】因为()11cos(),cos35αβαβ+=-=,14.(2024高三·全国·专题练习)已知sin 1523α︒⎛⎫-= ⎪⎝⎭,则()cos 30α︒-=()A .13B .13-C .23D .23-【答案】A 【详解】因为sin (15°-)=,所以cos (30°-α)=cos 2(15°-)=1-2sin2(15°-)=1-2×=.15.(2024·吉林白山·二模)若πcos 43πcos 4αα⎛⎫+ ⎪⎝⎭=⎛⎫- ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .7-B .7C .17-D .17【详解】因为πcos cos sin 1tan 43πcos sin 1tan cos 4αααααααα⎛⎫+ ⎪--⎝⎭===++⎛⎫- ⎪⎝⎭,故1tan 2α=-,则22122tan 42tan21tan 3112ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭,故4π1tan2tanπ34tan 27π441tan2tan 143ααα---⎛⎫-== ⎪⎝⎭+⋅-.故选:B.16.(23-24高三下·江西·开学考试)已知α为锐角,且πtan tan 14αα⎛⎫++= ⎪⎝⎭,则sin 21cos 2αα+=()A .12B .3-C .2-D .13【答案】C 【分析】根据已知条件结合两角和的正切公式可得出关于tan α的方程,由已知可得出tan 0α>,可得出关于tan α的方程,求出tan α的值,利用二倍角的正弦和余弦公式可求得所求代数式的值.【详解】因为α为锐角,则tan 0α>,则πtantan π4tan tan tan π41tan tan 4ααααα+⎛⎫++=+⎪⎝⎭-1tan tan 11tan ααα+=+=-,整理可得2tan 3tan 0αα-=,解得tan 3α=,所以,()()()22222cos sin sin 21cos 2sin cos sin cos 2cos sin cos sin cos sin αααααααααααααα++++==--+cos sin 1tan 132cos sin 1tan 13αααααα+++====----.故选:C.17.(2023·全国·高考真题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A .79B .19C .19-D .79-18.(2021·全国·高考真题)若tan 2θ=-,则sin 1sin 2sin cos θθ+=+()A .65-B .25-C .25D .6519.(2021·全国·高考真题)若0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .15B C D20.(1995·全国·高考真题)已知θ是第三象限的角,且44sin cos 9+=θθ,那么sin 2θ的值为A B .C .23D .23-。
(完整版)三角函数的运算经典习题以下是一些关于三角函数运算的经典题,希望能对大家的研究有所帮助。
题一:正弦函数的运算1. 求解 $\sin \left(x + \frac{\pi}{6}\right) = \frac{1}{2}$ 的解集。
2. 计算 $\sin \left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{4}\right)$ 的值。
3. 简化表达式 $\sin \left(\frac{\pi}{2} - x\right)$。
4. 计算 $\sin \left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{4}\right)$ 的值。
题二:余弦函数的运算1. 求解 $\cos \left(2x - \frac{\pi}{3}\right) = 0$ 的解集。
2. 计算 $\cos \left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{3}\right)$ 的值。
3. 简化表达式 $\cos \left(\frac{\pi}{2} + x\right)$。
4. 计算 $\cos \left(\frac{3\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right)$ 的值。
题三:正切函数的运算1. 求解 $\tan \left(\frac{x}{2}\right) = \sqrt{3}$ 的解集。
2. 计算 $\tan \left(\frac{\pi}{4}\right) \cdot \tan\left(\frac{\pi}{6}\right)$ 的值。
3. 简化表达式 $\tan \left(\frac{\pi}{2} - x\right)$。
4. 计算 $\tan \left(\frac{\pi}{3}\right) - \sin\left(\frac{\pi}{6}\right)$ 的值。
第28章 锐角三角函数知识结构(一)例题:1.在Rt △ABC 中,∠C=900,AC=4,AB=5,则sinB 的值是 .2.计算:()101π3182sin 458-⎛⎫-+-︒- ⎪⎝⎭3.解直角三角形:(1)已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 .(2)已知:△ABC 中,∠A =30°,AC =10,25=BC ,求AB 长.4.解直角三角形的应用:(1)如图,水渠边有一棵大木瓜树,树干DO (不计粗细)上有两个木瓜A 、B (不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO.(结果精确到1米)(参考数据:41.12,73.13≈≈)(2)已知:如图,一座商场大楼的顶部竖直立有一个矩形广告牌,小红同学在地面上选择了在一条直线上的三点A (A 为楼底)、D 、E ,她在D 处测得广告牌顶端C 的仰角为60°,在E 两处测得商场大楼楼顶B 的仰角为45°,DE =5米.已知,广告牌的高度BC =2.35米,求这座商场大楼的高度AB (3取1.73,2取1.41,小红的身高不计,结果保留整数).(二)习题:1.计算:cos 245°+tan30°·sin60°=________.【答案】12.如图,Rt △ABC,∠C=900,AB=6,cosB=23,则BC 的长为 【答案】A (A )4 (B)2 5 (C) 18 1313 (D) 1213133.把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值( )【答案】A .A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定4.如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( )【答案】BA .12B .55C .1010D .2555.轮船从B 处以每小时海里的速度沿男偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在观测灯塔A 北偏东60°方向上,则C 处与灯塔A 的距离是( )海里 【答案】DA .325B .225C .50D .256.为了测量被池塘隔开的A ,B 两点之间的距离,根据实际情况,作出如下图形,其中AB BE ⊥,EF BE ⊥,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,∠ACB ; ②CD ,∠ACB ,∠ADB ;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( )【答案】C(A )1组 (B )2组 (C )3组 (D )4组第4题图 第5题图 第6题图 第7题图7.如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)【答案】5151,24-+AB CD EF8.小红同学用仪器测量一棵大树AB 的高度,在C 处测得∠ADG =30︒,在E 处测得∠AFG =60︒,CE =8米,仪器高度CD =1.5米,求这棵树AB 的高度(结果保留两位有效数字,3≈1.732).【答案】约为8.4米.9.黄岩岛平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠A=∠D=90°,AB=BC=15千米,CD=23千米,请据此解答如下问题:(1) 求该岛的周长和面积(结果保留整数,参考数据2≈1.41473.13≈ 45.26≈)(2) 求∠ACD 的余弦值.【答案】周长≈55(千米).面积≈157(平方千米)(2)cos ∠ACD=5121523==AC CD . 10.如图,90D ∠=︒,10BC =,30CBD ∠=︒,15A ∠=︒.(1)求CD 的长;(2)求tan A 的值.D CB A11.如图,线段AB 、DC 分别表示甲、乙两建筑物的高。
三角函数公式1. 同角三角函数基本关系式sin 2α+cos 2α=1sin αcos α=tan α tan αcot α=12. 诱导公式 (奇变偶不变,符号看象限)(一) sin(π-α)=___________ sin(π+α)= ___________cos(π-α)=___________ cos(π+α)=___________tan(π-α)=___________ tan(π+α)=___________sin(2π-α)=___________ sin(2π+α)=___________cos(2π-α)=___________ cos(2π+α)=___________tan(2π-α)=___________ tan(2π+α)=___________(二) sin(π2 -α)=____________ sin(π2+α)=____________ cos(π2 -α)=____________ cos(π2+α)=_____________ tan(π2 -α)=____________ tan(π2+α)=_____________ sin(3π2 -α)=____________ sin(3π2+α)=____________ cos(3π2 -α)=____________ cos(3π2+α)=____________ tan(3π2 -α)=____________ tan(3π2+α)=____________ sin(-α)=-sin α cos(-α)=cos α tan(-α)=-tan α公式的配套练习sin(7π-α)=___________ cos(5π2-α)=___________ cos(11π-α)=__________ sin(9π2+α)=____________ 3. 两角和与差的三角函数cos(α+β)=cos αcos β-sin αsin βcos(α-β)=cos αcos β+sin αsin βsin (α+β)=sin αcos β+cos αsin βsin (α-β)=sin αcos β-cos αsin βtan(α+β)= tan α+tan β1-tan αtan βtan(α-β)=tan α-tan β1+tan αtan β 4. 二倍角公式sin2α=2sin αcos αcos2α=cos 2α-sin 2α=2 cos 2α-1=1-2 sin 2αtan2α=2tan α1-tan 2α5. 公式的变形(1) 升幂公式:1+cos2α=2cos 2α 1—cos2α=2sin 2α(2) 降幂公式:cos 2α=1+cos2α2 sin 2α=1-cos2α2(3) 正切公式变形:tan α+tan β=tan(α+β)(1-tan αtan β)tan α-tan β=tan(α-β)(1+tan αtan β)(4) 万能公式(用tan α表示其他三角函数值)sin2α=2tan α1+tan 2α cos2α=1-tan 2α1+tan 2α tan2α=2tan α1-tan 2α6. 插入辅助角公式asinx +bcosx=a 2+b 2 sin(x+φ) (tan φ= b a) 特殊地:sinx ±cosx = 2 sin(x ±π4) 7. 熟悉形式的变形(如何变形)1±sinx ±cosx 1±sinx 1±cosx tanx +cotx1-tan α1+tan α 1+tan α1-tan α若A 、B 是锐角,A+B =π4 ,则(1+tanA )(1+tanB)=2 cos αcos2αcos22α…cos2 n α= sin2 n+1α 2 n+1sin α8. 在三角形中的结论(如何证明)若:A +B +C=π A+B+C 2 =π2tanA +tanB +tanC=tanAtanBtanCtan A 2 tan B 2 +tan B 2 tan C 2 +tan C 2 tan A 2=19.求值问题(1)已知角求值题如:sin555°(2)已知值求值问题常用拼角、凑角如:1)已知若cos(π4 -α)=35 ,sin(3π4 +β)=513, 又π4 <α<3π4 ,0<β<π4,求sin(α+β)。
三角函数典型习题1 •设锐角ABC的内角A B, C的对边分别为a, b, c,a 2bsi nA.(I )求B的大小;(n)求cosA sin C的取值范围• A B C 厂2 •在ABC中角A,B,C所对的边分别为a, b, c,sin sin— 2 .2 2(1)试判断△ ABC的形状;(II)若厶ABC的周长为16,求面积的最大值•23 •已知在ABC中,A B,且tan A与tan B是方程x 5x 6 0的两个根•(I )求tan (A B)的值;(n )若AB 5 ,求BC的长•2 2 2 14. 在ABC中,角A. B. C所对的边分别是a,b,c,且a c b ac.22A C(1) 求sin cos2B 的值;2(2) 若b=2,求厶ABC面积的最大值.5. 已知函数f(x) 2s in2 n x 3cos2x, xn,-n•4 4 2(1 )求f (x)的最大值和最小值;(2)f(x) m 2在x n,n上恒成立,求实数m的取值范围.4 26. 在锐角△ ABC 中,角A. B. C 的对边分别为a、b、c,已知(b2 c2 a2)ta nA 3bc.(I) 求角A;(II) 若a=2,求厶ABC面积S的最大值?7. 已知函数f (x) (sin x cosx) +cos2 x .(I )求函数f x的最小正周期;(n )当x o,?时,求函数f x的最大值拼写出x相应的取值•8 .在ABC中,已知内角A . B . C所对的边分别为a、b、c,向量r r 2 B r r m 2sin B, 、3 ,n cos2B, 2cos 1,且m//n?2(I) 求锐角B的大小;(II) 如果b 2,求ABC的面积S ABC的最大值?答案解析11【解析】:(I )由a 2bsi nA ,根据正弦定理得si nA 2si n Bsin A ,所以sin B -,2 由ABC 为锐角三角形得B n .6(n )cosA sin C cos A sinAcos A sin -A61 3cos A cos Asin A22、、3sinA -.32【解析】 :I. sinC . sin CC cos .C sin2sin('—222 224C C 即C,所以此三角形为直角三角形2 422••• tanA 3, A 为三角形的内角,二sin A由正弦定理得:-A 艮 -BCsin C sin A-2 2b a b 2 abII.16 号,此时面积的最大值为 32 6 42 .-2ab ,—2ab 64(2 -.2)当且仅当a b 时取等3【解析】:(I )由所给条件 方程x 2 5x 6 ••• tan (A B) tan A tan B1 tan Atan BB C 180 ,• C180 (A 0 的两根 tan A 3, tan B 2 . 1B).由(I )知,tanCtan(A B)1,•/ C 为三角形的内角,• sinC_2 23 10弘知教育内部资料 中小学课外辅导专家2 3••• BC 1 —汇 3.5. 近 y/10 2r r 2B 厂8【解析】:(1) m//n2sinB(2cos ;-1)=-,3cos2B 2sinBcosB=- 3cos2Btan2B=- 32兀 心宀 n••• 0<2B< n,2B=y,A 锐角 B=3① 当B=n^,已知b=2,由余弦定理,得: 4=a 2+c ?-ac > 2aac=ac(当且仅当a=c=2时等号成立)■/ △ ABC 的面积 S ABC =3acsinBh^ac w 3ABC 的面积最大值为.3② 当B=6n 时,已知b=2,由余弦定理,得:4=a 2+c 2+ 3ac 县ac+ . 3ac=(2+ 3)ac(当且仅当 a=c= , 6- . 2时等号成立) •,ac < 4(23)1 1•••△ ABC 的面积 S AABC =2 acsinB^ac <2- , 3 ,△ ABC 的面积最大值为 2- 314【解析】:(1)由余弦定理:cosB=4sid +cos2B=1 24⑵由cos B4 得sinB.15 •/ b=2,4n1 2sin 2x —;=;ac+4 > 2c,得 acw —,c 233 2sin(2x -)2 ,即 0 1 -2sin(2x -) 12 44(2)由 tan2B=- .3n [、. 5nB=3或石 1 V15S\ ABc =~acsi nBw(a=c 时取等号)3故S A ABC 的最大值为5【解析】(I ) T f(x).n _1 cos 2x3cos2x 1 sin2x 3cos2x弘知教育内部资料 中小学课外辅导专家n nn n又••• x —< 2x -<4 2 613 又 S besin A be24所以△ ABC 面积S 的最大值等于32 27【解析】:(I )因为 f (x) (sin x eosx) +eos2 x sin1 sin2x eos2x ( ) =1+.2si n(2x )42所以,T —,即函数f(x)的最小正周期为2(n )因为 0 x ,得 2x L,所以有-sin(2x) 12 4 4 4 24所以,函数f x 的最大值为1 2此时,因为一2x —丄,所以,2x ,即x -4 4 4428即 2 < 1 2sinn2x -3 • f(x) maxf (X)min(n) •/ f (x)f(x)f(x)•- m f (X)maxf ( X) min••• 1 m 4,即m 的取值范围是(1,4).6【解析】:(1)由已知得b 1 2 * 4e 2 a 2 si nA ,32bccos A又在锐角△ ABC 中,所以A=60,[不说明是锐角 △ ABC 中,扣 1 分](II)因为 a=2,A=60 所以 b e be 4,S1 3besin Abe2而 b 2 e 2 2be be 42bcbe 4 ,3x 2sin xeosx eos 2 x eos2x。
绝密★启用前高二数学期末考试复习卷班级: 学号: 姓名: 得分: 一、选择题.1.已知集合{|10}M x x =+≥,{|24}x N x =<,则M N = ( ) A .(,1]-∞- B .[1,2)- C .(1,2]- D .(2,)+∞ 2. 已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6 D .8 3.下列函数中,最小正周期T π=的是( ) A.tan 2y x = C.sin y x = 4.在ABC ∆中,已知030,1A AB BC ∠===,则AC 的长为( ) A .2 B .1 C .2或1 D .45.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,sin :sin :sin 3:2:4A B C =,则cos C 的值为( ) A6.“1a =-”是“直线260a x y -+=与直线()4390x a y --+=互相垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.若,) A . B C . D .8.为了得到函数sin 2cos2y x x =+的图象,可以将函数 )AC D9则tan 2α=( )10.函数()si ()n fx A x ωϕ=+(000A ωϕπ>><<,,)的图象如 )A .0 C .1 D 11.若,是第三象限的角,则等于( )A . B. C . -2 D. 212C ,则下列结论中正确的是( ) ①图象C ②图象C ③函数在区间 ④由C . A .①② B .②③ C .①②③ D .①②③④ 二、填空题.13.曲线2y x =与y x =所围成的图形的面积是 .14.若函数()ln f x kx x =-在区间()1,+∞单调递增,则k 的取值范围是 .15.已知,则= . 16.已知直线l 过点)1,0(-,且与曲线x x y ln =相切,则直线l 的方程为 .0.52a =πlog 3b =b c a >>a b c >>c a b >>54cos -=αα2tan12tan 1αα-+21-21()f x 3sin 2y x =2log x x f (x)f (x ) x >⎧=⎨+≤⎩010)1(-f三、解答题. 17. ,α为第三象限角. (1)求sin ,tan αα的值; (218.(1),求()f α的值.19.在ABC ∆中,角A 、B 、C 的对边分别为c b a 、、,且满足C b B c a coscos )2(=-,()1求角B 的大小; ()2若求ABC ∆的面积.20.(1)求()f x 的最小正周期; (2)求()f x 在区间21. 设函数. (1)若曲线在点(2,(2))f 处与直线相切,求的值; (2)求函数的极值点与极值.22设函数()2()1x f x x e ax =--.(1,求()f x 的单调区间; (2)若当x ≥0时()f x ≥0,求a 的取值范围.3()3(0)f x x ax b a =-+≠()y f x =8y =,a b ()f x。
三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=,则AC=( ) A 、3 B 、4 C 、5 D 、63、若∠A 是锐角,且sinA=,则( ) A 、00<∠A<300 B 、300<∠A<450 C 、450<∠A<600 D 、600<∠A<9004、若cosA= ,则A A AA tan 2sin 4tan sin 3+-=( ) A 、B 、C 、D 、0 5、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:C 、1:1:D 、1:1:6、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=B .cosB=C .tanB=D .tanB=8.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( ) A .(32,12) B .(-32,12) C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m (C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为300,向高楼前进60米到C 点,又测得仰角为450,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里(二)填空题1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为________. (不取近似值. 以下数据供解题使用:sin15°=,cos15°=624 )5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.90,BC=13,AB=12,那么tan B8.在直角三角形ABC中,∠A=0___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(保留两个有效数字,2≈1.41,3≈1.73)三、简答题:1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
九上期末复习5:三角函数一.填空题(共8小题)1.如图,某课外活动实践小组在楼顶的A处进行测量,测得大楼对面山坡上E 处的俯角为30°,对面山脚C处的俯角60°,已知AB⊥BD,AC⊥CE,BC=10米,则C,E两点间的距离为米.2.如图,在一条南北走向的高速公路左侧有一古塔C,小亮爸爸驾驶汽车沿高速公路从南向北匀速行驶,上午9:00他行驶到A点时,测得塔C在北偏西37°方向,上午9:11行驶到B点时,测得塔C在南偏西63.5°方向,若汽车行驶的速度为90km/h,则在行驶的过程中,汽车离塔C的最近距离约是km.(sin37°≈,tan37°≈,sin63.5°≈,tan63.5°≈2)3.如图,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=.4.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于.5.如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为.6.如图,在△ABC中,∠A=30°,∠B=45°,AC=2,则CB的长为.7.某路基的横截面如图所示,路基高BC=1m,斜坡AB的坡度为1:2,则斜坡AB的长为m.8.在△ABC中,∠ACB=90°,cosA=,则tanA=.二.解答题(共23小题)9.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向东南方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后在C处成功拦截不明船只,问我国海监执法船在前往监视巡查的过程中行驶了多少海里?10.在一个阳光明媚的上午,数学陈老师组织学生测量小山坡的一颗大树CD的高度,山坡OM与地面ON的夹角为30°(∠MON=30°),站立在水平面上身高1.5米的小明AB在地面的影长BP为1米,此刻大树CD在斜坡的影长DQ 为4米,求大树的高度.11.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.12.如图,港口A在观测站O的正东方向相距4km,某船从A出发,沿北偏东15°方向航行5分钟后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的速度(精确到整数位).参考数值:≈1.414,≈1.732.13.如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着仰角为30°的山坡前进1000米到达D处,在D处测得山顶B的仰角为60°,求山的高度?14.一天晚上,小颖由路灯A下的B处向正东走到C处时,测得影子CD的长为1米,当她继续向正东走到D处时,测得此时影子DE的一端E到路灯A的仰角为45°,已知小颖的身高为1.5米,求那么路灯AB的高度是多少米?15.如图,一楼房AB后有一假山,其坡面CE与水平地面的夹角为30°,在阳光的照射下,楼房AB落在地上的影长BC=25米,落在坡面上的影长CE=20米,已知小丽测得同一时刻1米高的竹竿在水平地面上的影长为0.8米,求楼房AB的高.(≈1.7)16.矗立在莲花山上的邓小平雕像气宇轩昂,这是中国第一座以城市雕塑形式竖立的邓小平雕像.铜像由像体AD和底座CD两部分组成,某校数学课外小组在地面的点B处测得点A的仰角∠ABC=67°,点D的仰角∠DBC=30°,已知CD=2米,求像体AD的高度.(最后结果精确到1米,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.4,≈1.7)17.如图,某校九年级数学小组为了测量校园内旗杆AB的高度,站在教学楼C 处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°,若旗杆与教学楼的距离BD=9m,求旗杆AB的高度是多少米?(结果保留根号)18.一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).19.如图所示,在Rt△ACB中,∠C=90°,AC=3,BC=2,AD为中线.(1)比较∠BAD和∠DAC的大小.(2)求sin∠BAD.20.如图,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为45°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB、CD的高度.(结果保留根号)21.如图,某大楼的顶部有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知sin∠BAH=,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.22.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)23.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.24.如图,某测量员测量公园内一棵树DE的高度,他们在这棵树左侧一斜坡上端点A处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.(1)求斜坡AC的长;(2)请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).25.如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF为旗杆,气球从A处起飞,几分钟后便飞达C处,此时,在AF延长线上的点B处测得气球和旗杆EF的顶点E在同一直线上.(1)已知旗杆高为12米,若在点B处测得旗杆顶点E的仰角为30°,A处测得点E的仰角为45°,试求AB的长(结果保留根号);(2)在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC 的长(结果保留根号)?26.如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ 上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:,)27.某海域有A、B、C三艘船正在捕鱼作业,C船突然出现故障,向A、B两船发出紧急求救信号,此时B船位于A船的北偏西72°方向,距A船24海里的海域,C船位于A船的北偏东33°方向,同时又位于B船的北偏东78°方向.(1)求∠ABC的度数;(2)A船以每小时30海里的速度前去救援,问多长时间能到出事地点.(结果精确到0.01小时).(参考数据:≈1.414,≈1.732)28.梧桐山是深圳最高的山峰,某校综合实践活动小组要测量“主山峰”的高度,先在梧桐山对面广场的A处测得“峰顶”N的仰角为45°,此时,他们刚好与峰底D在同一水平线上.然后沿着坡度为30°的斜坡正对着“主山峰”前行700米,到达B处,再测得“峰顶”N的仰角为60°,如图,根据以上条件求出“主山峰”的高度?(测角仪的高度忽略不计,结果精确到1米,参考数据:≈1.4,≈1.7).29.随着科技进步,无人机的应用越来越广,如图1,在某一时刻,无人机上的探测器显示,从无人机A处看一栋楼顶部B点的仰角和看与顶部B在同一铅垂线上高楼的底部C的俯角.(1)如果上述仰角与俯角分别为30°与60°,且该楼的高度为30米,求该时刻无人机的竖直高度CD;(2)如图2,如果上述仰角与俯角分别为α与β,且该楼的高度为m米.求用α、β、m表示该时刻无人机的竖直高度CD.30.如图,小明为测量马路的宽度CD,他从楼AB的楼顶A处分别观测马路的两侧C处和D处,测得C、D两处的俯角∠EAC=70°,∠EAD=52°,已知从楼底B处到C处的距离为BC=40m,且B、C、D三点在同一水平直线上.(1)求楼的高度AB;(2)求马路的宽度CD.(结果精确到0.1m)(参考数据sin52°=0.79,cos52°=0.62,tan52°=1.28,sin70°=0.94,cos70°=0.34,tan70°=2.75)31.如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,(1)求点E到建筑物AC的距离;.(2)求旗杆AB的高度.(结果精确到0.1米).参考数据:≈1.73,≈1.41.九上期末复习5:三角函数参考答案与试题解析一.填空题(共8小题)1.如图,某课外活动实践小组在楼顶的A处进行测量,测得大楼对面山坡上E 处的俯角为30°,对面山脚C处的俯角60°,已知AB⊥BD,AC⊥CE,BC=10米,则C,E两点间的距离为米.【分析】在直角△ABC中,根据30度角的性质即可求得AC长,然后在直角△ACE 中利用三角函数即可求解.【解答】解:Rt△ABC中,BC=10,∠ACB=60°,∴∠BAC=30°,∴AC=2BC=20,∵∠FAE=30°,∴∠CAE=90°﹣∠BAC﹣∠FAE=30°,Rt△ACE中,tan∠CAE=,∴CE=tan30°•20==,故答案为:.【点评】本题主要考查了俯角的定义和三角函数的定义,正确利用三角函数的定义是解题的关键.2.如图,在一条南北走向的高速公路左侧有一古塔C,小亮爸爸驾驶汽车沿高速公路从南向北匀速行驶,上午9:00他行驶到A点时,测得塔C在北偏西37°方向,上午9:11行驶到B点时,测得塔C在南偏西63.5°方向,若汽车行驶的速度为90km/h,则在行驶的过程中,汽车离塔C的最近距离约是9 km.(sin37°≈,tan37°≈,sin63.5°≈,tan63.5°≈2)【分析】如图作CH⊥AB于H.设BH=x,根据CH=BH•tan63.5°=AH•tan37°,构建方程即可解决问题.【解答】解:如图作CH⊥AB于H.由题意AB=90×=,设BH=x,∵CH=BH•tan63.5°=AH•tan37°,∴2x=(﹣x),解得x=,∴CH=2x=9(km),故答案为9.【点评】本题考查解直角三角形﹣方向角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程.3.如图,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,则AD=2.【分析】本题介绍两种解法:解法一:如图1,作辅助线,构建全等三角形,证明△BCA≌△QCA,则∠B=∠Q=∠D,根据等腰三角形的性质得:AD=AQ,由三角函数定义可得AH的长,根据勾股定理计算AD的长;解法二:作辅助线,构建三角形全等,根据tanB==,设FG=x,BG=2x,则BF=x,求得x=,即FG=,证明A、B、D、C四点共圆,根据四点共圆的性质得:∠DCE=∠ABD,∠BCA=∠ADB,证明△ABF≌△ADC(SAS),则AF=AC,利用勾股定理得:AB2=BH2+AH2=42+AH2①,由面积法得:S△ABF=AB•GF=BF•AH,则AH2=②,两式计算可得AD的长.【解答】解:解法一:如图1,延长DC至Q,使CQ=BC=5,连接AQ,过A作AH⊥DQ于H,则DQ=DC+CQ=CD+BC=3+5=8,∵∠BCA+∠ACQ+∠BCQ=180°,∵∠BCA=90°﹣∠BCD,设∠BCD=x°,则∠BCA=90﹣x°,∴∠ACQ=180°﹣x°﹣(90°﹣x)=90﹣x°=∠BCA,∴AC=AC,∴△BCA≌△QCA,∴∠B=∠Q=∠D,∴AD=AQ,∵AH⊥DQ,∴DH=QH=QD=4,tan∠B=tan∠Q==,∴AH=2,∴AQ=AD=2;解法二:如图2,在BC上取一点F,使BF=CD=3,连接AF,∴CF=BC﹣BF=5﹣3=2,过F作FG⊥AB于G,∵tanB==,设FG=x,BG=2x,则BF=x,∴x=3,x=,即FG=,延长AC至E,连接BD,∵∠BCA=90°﹣∠BCD,∴2∠BCA+∠BCD=180°,∵∠BCA+∠BCD+∠DCE=180°,∴∠BCA=∠DCE,∵∠ABC=∠ADC,∴A、B、D、C四点共圆,∴∠DCE=∠ABD,∠BCA=∠ADB,∴∠ABD=∠ADB,∴AB=AD,在△ABF和△ADC中,∵,∴△ABF≌△ADC(SAS),∴AF=AC,过A作AH⊥BC于H,∴FH=HC=FC=1,由勾股定理得:AB2=BH2+AH2=42+AH2①,S△ABF=AB•GF=BF•AH,∴AB•=3AH,∴AH=,∴AH2=②,把②代入①得:AB2=16+,解得:AB=,∵AB>0,∴AD=AB=2,故答案为:2.【点评】本题考查了三角形全等的性质和判定、等腰三角形的判定和性质、四点共圆的判定和性质以及三角函数的有关知识,有难度,构建辅助线是关键,以利用tanB=,求FG=为突破口,最终解决问题.4.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于.【分析】连接AB,先根据题意判断出△AOB的形状,再得出∠AOB的度数,由特殊角的三角函数值即可得出结论.【解答】解:∵以O为圆心,任意长为半径画弧,与射线OM交于点A,∴OA=OB,∵以A为圆心,AO长为半径画弧,两弧交于点B,∴△AOB是等边三角形,∴∠AOB=60°,∴sin∠AOB=sin60°=;故答案为:.【点评】本题考查的是特殊角的三角函数值及等边三角形的判定与性质,熟记各特殊角的三角函数值是解答此题的关键.5.如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为.【分析】利用图形构造直角三角形,进而利用sinA=求出即可.【解答】解:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴SinA==.故答案为:.【点评】本题考查了锐角三角函数的定义,解答本题的关键在于利用图形构造直角三角形,进而利用sinA=求解.6.如图,在△ABC中,∠A=30°,∠B=45°,AC=2,则CB的长为.【分析】过C作CD与AB垂直,在直角三角形ACD中,利用30°所对的直角边等于斜边的一半求出CD的长,再利用等腰直角三角形的性质及勾股定理求出CB的长即可.【解答】解:过C作CD⊥AB,交AB于点D,在Rt△ACD中,∠A=30°,AC=2,∴CD=AC=,在Rt△BCD中,∠B=45°,CD=,∴CB=CD=,故答案为:【点评】此题考查了解直角三角形,涉及的知识有:含30°直角三角形的性质,勾股定理,熟练掌握性质及定理是解本题的关键.7.某路基的横截面如图所示,路基高BC=1m,斜坡AB的坡度为1:2,则斜坡AB的长为m.【分析】首先根据题意作出图形,然后根据坡度=1:3,可得到BC和AC之间的关系式,然后根据勾股定理即可求得AB的值.【解答】解:∵斜坡AB的坡度i=BC:AC=1:2,BC=1,∴AC=2.∴AB==(m).故答案为:;【点评】本题考查了坡度坡角的知识,属于基础题,对坡度的理解及勾股定理的运用是解答本题的关键.8.在△ABC中,∠ACB=90°,cosA=,则tanA=.【分析】根据勾股定理得BC,由三角函数的定义可得出tanA=,计算即可.【解答】解:∵∠ACB=90°,∴AC2+BC2=AB2,∵cosA=,∴设AC=12x,则AB=13x,∴BC=5x,∴tanA===,故答案为.【点评】本题考查了同角的三角函数的关系,掌握三角函数的定义是解题的关键.二.解答题(共23小题)9.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向东南方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后在C处成功拦截不明船只,问我国海监执法船在前往监视巡查的过程中行驶了多少海里?【分析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD 的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.【解答】解:过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD=×20=10(海里),在Rt△BCD中,∠C=60°,∠CBD=30°,∴tan∠CBD=,即CD=10×=,则AC=AD+DC=10+(海里),即我海监执法船在前往监视巡查的过程中行驶了10+海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,熟练掌握直角三角形的性质是解本题的关键.10.在一个阳光明媚的上午,数学陈老师组织学生测量小山坡的一颗大树CD的高度,山坡OM与地面ON的夹角为30°(∠MON=30°),站立在水平面上身高1.5米的小明AB在地面的影长BP为1米,此刻大树CD在斜坡的影长DQ 为4米,求大树的高度.【分析】首先得出△ABP∽△CHQ,进而利用相似三角形的性质得出答案.【解答】解:过Q作QH⊥CD交CD于H,则有:∠HQD=∠QON=30°,∵DQ=4,∴DH=2,QH=2,∵△ABP∽△CHQ,∴=,即=,∴CH=3,∴CD=CH+HD=3+2答:大树的高度为(3+2)米.【点评】此题主要考查了相似三角形的性质以及解直角三角形的应用,正确得出△ABP∽△CHQ是解题关键.11.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.【分析】(1)在△ABC中根据正弦的定义得到sinA==,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5;(2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S=S△ADC,则S△BDC=S△ABC,即CD•BE=•AC•BC,于是可计算出BE=,△BDC然后在Rt△BDE中利用余弦的定义求解.【解答】解:(1)在△ABC中,∵∠ACB=90°,∴sinA==,而BC=8,∴AB=10,∵D是AB中点,∴CD=AB=5;(2)在Rt△ABC中,∵AB=10,BC=8,∴AC==6,∵D是AB中点,=S△ADC,∴BD=5,S△BDC=S△ABC,即CD•BE=•AC•BC,∴S△BDC∴BE==,在Rt△BDE中,cos∠DBE===,即cos∠ABE的值为.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.12.如图,港口A在观测站O的正东方向相距4km,某船从A出发,沿北偏东15°方向航行5分钟后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,求该船航行的速度(精确到整数位).参考数值:≈1.414,≈1.732.【分析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD的长度,再由△ABD 是等腰直角三角形,得出BD=AD=2km,则易得AB、AD的长度;最后结合速度=路程÷时间解答问题.【解答】解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4km,∴AD=OA=2km.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°,∴BD=AD=2km,∴AB=AD=2km.即该船航行的距离(即AB的长)为2km.∴2÷=24×1.414÷5≈34(km/h).答:该船航行的速度约为34km/h.【点评】本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.13.如图,测量人员在山脚A处测得山顶B的仰角为45°,沿着仰角为30°的山坡前进1000米到达D处,在D处测得山顶B的仰角为60°,求山的高度?【分析】根据题目所给的度数可判定△ABD是等腰三角形,AD=BD,然后解直角三角形,可求出BE的长和CE的长,从而可求出山高的高度.【解答】解:∵∠BAC=45°,∠DAC=30°,∴∠BAD=15°,∵∠BDE=60°,∠BED=90°,∴∠DBE=30°,∵∠ABC=45°,∴∠ABD=15°,∴∠ABD=∠DAB,∴AD=BD=1000,过点D作DF⊥AC,∵AC⊥BC,DE⊥AC,DE⊥BC,∴∠DFC=∠ACB=∠DEC=90°∴四边形DFCE是矩形∴DF=CE在直角三角ADF中,∵∠DAF=30°,∴DF=AD=500,∴EC=500,BE=1000×sin60°=500.∴BC=500+500米.【点评】本题考查直角三角形的应用仰角俯角问题,关键是根据角判断特殊的三角形,直角三角形或者等腰三角形,从而求出解.14.一天晚上,小颖由路灯A下的B处向正东走到C处时,测得影子CD的长为1米,当她继续向正东走到D处时,测得此时影子DE的一端E到路灯A的仰角为45°,已知小颖的身高为1.5米,求那么路灯AB的高度是多少米?【分析】根据已知得出∠E=∠EAB=45°,得出AB=BE,再利用△DCM∽△DBA的性质得出=,进而求出AB的高度即可.【解答】解:∵∠ABE=90°,∠E=45°,∠E=∠EAB=45°,∴AB=BE,∵MC∥AB,∴△DCM∽△DBA,∴=,设AB=x,则BD=x﹣1.5=x﹣1.5,∴=,解得:x=4.5.∴路灯A的高度AB为4.5m.【点评】此题主要考查了解直角三角形的应用.解题时利用了相似三角形的判定与性质,根据已知得出AB=BE是解题关键.15.如图,一楼房AB后有一假山,其坡面CE与水平地面的夹角为30°,在阳光的照射下,楼房AB落在地上的影长BC=25米,落在坡面上的影长CE=20米,已知小丽测得同一时刻1米高的竹竿在水平地面上的影长为0.8米,求楼房AB的高.(≈1.7)【分析】延长AE交BC的延长线于F,作EG⊥CF,根据CE=20米,∠ECG=30°,分别求出EG、CG的长度,又根据竹竿在水平面上的影长,可得EG:GF=1:0.8,AB:BF=1:0.8,代入求出BF、AB的长度即可.【解答】解:延长AE交BC的延长线于F,作EG⊥CF,∵CE=20米,∠ECG=30°,∴EG=10米,CG=10≈17(米),又∵,∴,∴GF=8米,∴BF=25+17+8=50(米),∵,∴,∴AB=62.5米.即楼房的高度约为62.5米.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据题目所给的角构造直角三角形,利用三角函数的知识求解.16.矗立在莲花山上的邓小平雕像气宇轩昂,这是中国第一座以城市雕塑形式竖立的邓小平雕像.铜像由像体AD和底座CD两部分组成,某校数学课外小组在地面的点B处测得点A的仰角∠ABC=67°,点D的仰角∠DBC=30°,已知CD=2米,求像体AD的高度.(最后结果精确到1米,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.4,≈1.7)【分析】在Rt△DBC有BC=求得BC的长,在Rt△ABC中由AC=BCtan ∠ABC求得AC的长,根据AD=AC﹣CD可得答案.【解答】解:∵在Rt△DBC中,∠DBC=30°,且CD=2米,∴BC===2,∵在Rt△ABC中,∠ABC=67°,∴AC=BCtan∠ABC=2tan67°≈8.16,则AD=AC﹣2≈6,答:像体AD的高度约为6米.【点评】此题主要考查了解直角三角形的应用,正确掌握锐角三角函数关系是解题关键.17.如图,某校九年级数学小组为了测量校园内旗杆AB的高度,站在教学楼C 处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°,若旗杆与教学楼的距离BD=9m,求旗杆AB的高度是多少米?(结果保留根号)【分析】根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD 中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.【解答】解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴,∴AD=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=3+9(m).【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.18.一轮船在P处测得灯塔A在正北方向,灯塔B在南偏东30°方向,轮船向正东航行了900m,到达Q处,测得A位于北偏西60°方向,B位于南偏西30°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A、B间的距离(结果保留根号).【分析】(1)由题意知∠QPB=60°、∠PQB=60°,从而得△BPQ是等边三角形,据此可得答案;(2)由(1)知PQ=BQ=900m,从而得AQ==600,根据∠AQB=180°﹣60°﹣30°=90°知AB==300.【解答】解:(1)相等,由图知∠QPB=60°、∠PQB=60°,∴△BPQ是等边三角形,∴BQ=PQ;(2)由(1)知PQ=BQ=900m,在Rt△APQ中,AQ===600,又∵∠AQB=180°﹣60°﹣30°=90°,∴在Rt△AQB中,AB===300(m),答:A、B间的距离为300m.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是通过角的计算得出BQ=PQ,再由直角三角形先求出AQ,根据勾股定理求出AB.19.如图所示,在Rt△ACB中,∠C=90°,AC=3,BC=2,AD为中线.(1)比较∠BAD和∠DAC的大小.(2)求sin∠BAD.【分析】(1)要比较∠BAD和∠DAC的大小,只要比较它们的正弦值的大小即可,根据题目中的数据可以求得它们的正弦值,从而可以解答本题;(2)根据题目中的数据可以求得DE和AD的长,从而可以求得sin∠BAD.【解答】解:(1)过点D做AB的垂线,垂足记为E,则sin∠DAE=,sin∠DAC=,∵BC=2,AD为中线,∴BD=CD=1,∵BD>DE,∴CD>DE,∴sin∠DAE<sin∠DAC,∴∠BAD<∠DAC;(2)∵在Rt△ACB中,∠C=90°,AC=3,BC=2,AD为中线,∴BD=CD=1,AB=,∴,AD=,解得,DE=,∴sin∠BAD==.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答.20.如图,在楼房MN前有两棵树与楼房在同一直线上,且垂直于地面,为了测量树AB、CD的高度,小明爬到楼房顶部M处,光线恰好可以经过树CD的顶站C点到达树AB的底部B点,俯角为45°,此时小亮测得太阳光线恰好经过树CD的顶部C点到达楼房的底部N点,与地面的夹角为30°,树CD的影长DN为15米,请求出树AB、CD的高度.(结果保留根号)【分析】在Rt△CDN中,由于tan30°=,得到CD=tan30°•DN=5于是得到BD=CD=5,在Rt△ABN中,根据三角函数的定义即可得到结论.【解答】解:在Rt△CDN中,∵tan30°=,∴CD=tan30°•DN=5,∵∠CBD=∠EMB=45°,∴BD=CD=5,∴BN=DN+BD=15+5,在Rt△ABN中,tan30°=,∴AB=tan30°•BN=5+5,∴树高AB是(5+5)米,树高CD是5米.【点评】本题考查了解直角三角形的应用,解答本题的关键是借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21.如图,某大楼的顶部有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知sin∠BAH=,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.【分析】(1)根据正弦的概念求出BH的长;(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE﹣DE即可求出广告牌的高度.【解答】解:(1)由题意得,sin∠BAH==,又AB=10米,∴BH=AB=5米;(2))∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10.答:广告牌CD的高度为(20﹣10)米.【点评】此题综合考查了仰角、坡度的定义,能够正确地构建出直角三角形,将实际问题化归为解直角三角形的问题是解答此类题的关键.22.如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)【分析】过B作BE⊥AD于E,三角形的内角和得到∠ADB=45°,根据直角三角形的性质得到AE=2.BE=2,求得AD=2+2,即可得到结论.【解答】解:过B作BE⊥AD于E,∵∠NAD=60°,∠ABD=75°,∴∠ADB=45°,∵AB=6×=4,∴AE=2.BE=2,∴DE=BE=2,∴AD=2+2,∵∠C=90,∠CAD=30°,∴CD=AD=1+≈2.7千米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.【分析】根据题意作出合适的辅助线,画出相应的图形,可以分别求得CM、DN 的长,由于AB=CN﹣CM,从而可以求得AB的长.【解答】解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.【点评】本题考查解直角三角形的应用,解题的关键是明确题意,画出相应的图形,利用数形结合的思想解答问题.24.如图,某测量员测量公园内一棵树DE的高度,他们在这棵树左侧一斜坡上端点A处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.(1)求斜坡AC的长;(2)请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).【分析】过点A作AF⊥DE于F,可得四边形ABEF为矩形,设DE=x,在Rt△DCE 和Rt△ABC中分别表示出CE,BC的长度,求出DF的长度,然后在Rt△ADF 中表示出AF的长度,根据AF=BE,代入解方程求出x的值即可.【解答】解:(1)如图,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3米,设DE=x,在Rt△CDE中,CE==x,在Rt△ABC中,∵=,AB=3,∴BC=3,AC===6(米).(2)在Rt△AFD中,DF=DE﹣EF=x﹣3,∴AF==(x﹣3),∵AF=BE=BC+CE,∴(x﹣3)=3+x,解得x=9.答:树高为9米.。
三角函数计算练习题及答案详解1.同角三角函数基本关系式sin2α+cos2α=1sinα=tanα cosαtanαcotα=12.诱导公式sin=___________ sin= ___________cos=___________ cos=___________tan=___________ tan=___________sin=___________ sin=___________cos=___________ cos=___________tan=___________ tan=___________ππ sin=____________sin=____________2ππcos=____________ +α)=_____________2ππtan=____________ +α)=_____________2 3π3πsin=____________ sin=____________2 3π3πcos=____________ +α)=____________2 3π3πtan=____________ +α)=____________ 2 sin=-sinα cos=cosα tan=-tanα公式的配套练习5π sin=___________cos=___________9πcos=__________ sin=____________3.两角和与差的三角函数cos=cosαcosβ-sinαsinβcos=cosαcosβ+sinαsinβsin =sinαcosβ+cosαsinβsin =sinαcosβ-cosαsinβtan= tanα+tanβ 1-tanαtanβtanα-tanβ 1+tanαtanβtan=4.二倍角公式sin2α=2sinαcosαcos2α=cos2α-sin2α=cos2α-1=1-sin2α2tanαtan2α= 1-tanα5.公式的变形升幂公式:1+cos2α=2cos2α1—cos2α=2sin2α降幂公式:cos2α=1+cos2α1-cos2α sin2α=2正切公式变形:tanα+tanβ=tantanα-tanβ=tan 万能公式2tanα1-tan2α2tanαsin2α= tan2α= cos2α=1+tanα1+tanα1-tanα6.插入辅助角公式basinx+a+b sin a特殊地:sinx±cosx=sin7.熟悉形式的变形1±sinx±cosx1±sinx 1±cosx tanx+cotx 1-tanα1+tanα1+tanα1-tanα若A、B是锐角,A+B=2π,则=2nsinn+1αcosαcos2αcos2α?cosα=2sinα8.在三角形中的结论若:A+B+C=π A+B+Cπ=2tanA+tanB+tanC=tanAtanBtanCABBCCAtantan +tan tan + tan=122222三角函数计算练习1.已知x∈,cosx=,则tan2x= B. C. D.2.cos240°=A. B. C. D.3.已知cosα=k,k∈R,α∈,则sin= C.± D.﹣k4.已知角α的终边经过点,则cosα=5.cos480°的值为6.已知7.已知sin=,则cos2α等于)为其终边上一点,且cosα=x,则x=.已知α是第二象限角,P=)=..)=,则cos,且sin,则tan2x===﹣.故选D点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式.学生求sinx和tanx时注意利用x 的范围判定其符合.2.B考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:运用诱导公式及特殊角的三角函数值即可化简求值.解答:解:cos240°=cos=﹣cos60°=﹣,故选:B.点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知识的考查.3.A考点:同角三角函数基本关系的运用;运用诱导公式化简求值.专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.解答:解:∵cosα=k,k∈R,α∈,∴sinα==,.∴sin=﹣sinα=﹣故选:A.点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.D考点:任意角的三角函数的定义.专题:三角函数的求值.分析:由条件直接利用任意角的三角函数的定义求得cosα的值.解答:解:∵角α的终边经过点,∴x=﹣4,y=3,r=∴cosα==故选:D.点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.5.D考点:运用诱导公式化简求值.专题:三角函数的求值.分析:运用诱导公式即可化简求值.解答:解:cos480°=cos=cos120°=﹣cos60°=﹣.故选:D.点评:本题主要考查了运用诱导公式化简求值,属于基础题.6.C考点:诱导公式的作用.专题:三角函数的求值.分析:已知等式中的角变形后,利用诱导公式化简,即可求出cosα的值.解答:解:sin=sin=sin=cosα=. =﹣, =5.考点:二倍角的余弦.专题:计算题;三角函数的求值.分析:由sin=及诱导公式可得cosα=,由二倍角的余弦公式可得cos2α的+α)=, =﹣,借助于角的终边上的点,解关于x的方程,便可求得所求的横坐标.解答:解:∵cosα===x,或x=﹣.∴x=0或x=故选:D.点评:本题巧妙运用三角函数的定义,联立方程求出未知量,不失为一种好方法..考点:二倍角的余弦.专题:三角函数的求值.分析:由二倍角的余弦公式化简所求后代入已知即可求值.解答:解:∵sinα=,∴cos2α=1﹣2sinα=1﹣2×=.故答案为:.点评:本题主要考查了二倍角的余弦公式的应用,属于基本知识的考查. 10.考点:二倍角的余弦;两角和与差的余弦函数.专题:计算题;三角函数的求值.分析:由二倍角的余弦函数公式根据已知即可求值.解答:解:cos=2cos﹣1=2×﹣1=.点评:本题主要考查了二倍角的余弦函数公式的应用,属于基本知识的考查.11.﹣考点:二倍角的正切;两角和与差的正弦函数.专题:三角函数的求值.分析:依题意,可得sinθ﹣cosθ=①,sinθ+cosθ=②,联立①②得:sinθ=,cosθ=,于是可得cos2θ、sin2θ的值,从而可得答案.解答:解:∵sin==,,2sinθcosθ=),,>0,又=1+sin2θ=∴sinθ+cosθ=,②联立①②得:sinθ=,cosθ=,∴cos2θ=2cosθ﹣1=﹣2,三角函数公式练习题1.1.sin29??A.11.?C. D22C试题分析:由题可知,sin考点:任意角的三角函数.已知sin?sin??;662?4)?772,cos2??,sin??25104343B.? C.?D.555D 试题分析由?7sin??sin??cos??45①,77?cos2??sin2?? 52571所以?cos??sin???cos??sin???②,由①②可得cos??sin??? ③,2553由①③得,sin?? ,故选D5cos2??考点:本题考查两角和与差的三角函数,二倍角公式点评:解决本题的关键是熟练掌握两角和与差的三角函数,二倍角公式.cos690?A.1133B.?C. D.?222C试题分析:由cos690?cos2?360?30?cos??30??cos30?,故选C考点:本题考查三角函数的诱导公式点评:解决本题的关键是熟练掌握三角函数的诱导公式以及特殊角的三角函数值.tan16?的值为A.?B. C. D.?3C试题分析tanπ=tan=﹣tan=.考点:三角函数的求值,诱导公式.点评:本题考查诱导公式的应用,三角函数的化简求值..若??????1?cos? ???0???,cos?,cos?4243222A.33536B.? C. D.?399C.试题分析:因为????1??3?,且???0???,cos?,所以????2243444?22???;又因为cos?,且????0,所以??)?43422??????6??????,所以.又因为?????,且sin?24424234422cos?cos[?]?coscos?sinsin1322653.故应选C. ?????33339考点:1、同角三角函数的基本关系;2、两角差的余弦公式..若角?的终边在第二象限且经过点P?,那么sin2x=518247?? 252525258.已知cos?1??52524考点:二倍角公式,三角函数恒等变形5?1??)?,那么cos?? 52112A.?B.?C.D.55559.已知sin?=sin?cosa,所以选C.52考点:三角函数诱导公式的应用1,则cos2a的值为231177A. B.? C. D.?339910.已知sin?D试题分析:由已知得cos??1272,从而cos2??2cos??1??1??,故选D.99考点:诱导公式及余弦倍角公式.11.已知点P在第三象限,则角?在 A.第一象限B.第二象限 C.第三象限 D.第四象限B试题分析:由已知得,?考点:三角函数的符号.?tan??0,,故角?在第二象限.cos??0?5,则sin?? 121155A. B.? C. D.?55131312.已知?是第四象限角,tan???D22试题分析:利用切化弦以及sin??cos??1求解即可. tan??sin?5??cos?12,?sin2??cos2??1,?sin2??525sin??0,sin???,13,169又?是第四象限角,2?故选:D.考点:任意角的三角函数的定义 y?sin?xT?213.化简cos?sin2得到A.sin2?B.?sin2?C.cos2?D.?cos2? A 试题分析:cos2?sin2?cos2?sin2?cos2?cos?sin2?考点:三角函数的诱导公式和倍角公式. 14.已知cos?? 3???,0????,则tan?????4??A.11B.C.?1D.?57D3?44?0可知0???,因此sin??,tan??,25354??1tan??tan?由和角公式可知tan????7,故答案为D。
精选三⾓函数解答题30道带答案1 / 29三⾓函数综合练习三学校:___________姓名:___________班级:___________考号:___________⼀、解答题1.已知函数21()cos cos 2f x x x x ωωω=+-(0ω>),其最⼩正周期为2π.(1)求()f x 在区间,84ππ??-上的减区间;(2)将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向右平移4π个单位,得到函数()g x 的图象,若关于x 的⽅程()0g x k +=在区间0,2π上有且只有⼀个实数根,求实数k 的取值范围. 2.设函数()22cos cos f x x x x m =++g .其中,m x R ∈.(1)求()f x 的最⼩正周期;(2)当0,2x π??∈时,求实数m 的值,使函数()f x 的值域恰为17,22,并求此时()f x 在R 上的对称中⼼.3.已知函数23cos 3sin )2sin()(2+--=x x x x f π. (1)求)(x f 的最⼩正周期;(2)讨论)(x f )在]65,6[ππ上的单调性,并求出在此区间上的最⼩值.4.已知函数()4cos sin()16f x x x π=+-.(1)求()f x 的最⼩正周期;(2)求()f x 在区间[,]64ππ-上的最⼤值和最⼩值 5.已知函数.(1)求最⼩正周期;(2)求在区间上的最⼤值和最⼩值.6.已知函数()()cos sin 2424x x f x x πππ=++-+ ? ?.(1)求()f x 的最⼩正周期;(2)若将()f x 的图象向右平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间[]0,π上的最⼤值和最⼩值.7.已知函数2()cos 222x x x f x =.(Ⅰ)求()f x 的最⼩正周期;(Ⅱ)求()f x 在区间[π0]-,上的最⼩值. 8.已知函数()tan(2),4f x x π=+,(1)求()f x 的定义域与最⼩正周期;(2)设0,4πα?∈,若()2cos 2,2f αα=求α的⼤⼩.9.已知函数()2cos 2cos 1f x x x x =+- , x R ∈(1)求函数()f x 的最⼩正周期及在区间0,2π上的最⼤值和最⼩值;(2)若()006,,542f x x ππ??=∈,求0cos 2x 的值。
1. 已知方程(a 为大于1的常数)的两根为,,且、,则的值是_________________.解析:属于易错题,由于限定了角的范围,所以最终答案只有一个,1>a ∴a 4tan tan -=+βα0<,o a >+=⋅13tan tan βα∴βαtan ,tan 是方程01342=+++a ax x 的两个负根 又⎪⎭⎫ ⎝⎛-∈2,2,ππβα ⎪⎭⎫⎝⎛-∈∴0,2,πβα 即⎪⎭⎫ ⎝⎛-∈+0,22πβα由tan ()βα+=βαβαtan tan 1tan tan ⋅-+=()1314+--a a =34可得.22tan -=+βα2.函数f(x)=的值域为______________。
解析:易错题,错因:令x x t cos sin +=后忽视1-≠t ,从而121)(-≠-=t t g ,得到错解:⎥⎦⎤⎢⎣⎡---2122,2122 正解:⎥⎦⎤ ⎝⎛--⋃⎪⎪⎭⎫⎢⎣⎡---2122,11,2122 3.在△ABC 中,2sinA+cosB=2,sinB+2cosA=,则∠C 的大小应为( )A .B .C .或D .或解析:遇到这类型题,首先排除两个答案,因为给定条件就是让我们去排除4.已知tana tanb 是方程x 2+3x+4=0的两根,若a ,b ∈(-),则a+b=( )A .B .或-C .-或D .-解析:tana .tanb=4;tana +tanb=-3,所以tana tanb 均为负,即a ,b 都属于四象限 5.在中,,则的大小为( )A. B. C.D.解析:由3s i n 463c o s 41A B A B +=+=⎧⎨⎩c o s s i n 平方相加得115sin()sin 2266A B C C ππ+=∴=∴=或若C =56π, 则A B +=π6113cos 4sin 0cos 3A B A -=>∴<又1312<5366A C C πππ∴>∴≠∴= ∴选A ,实际上首先排除两个答案的6.函数为增函数的区间是……………… ( ) A.B.C.D.解析:注意x 前面系数为负7.已知且,这下列各式中成立的是( ) A.B.C.D.解析:解法1sin β>-cos α=sin (3π/2-α),因为β、(3π/2-α)都在二象限,sinx 二象限为减函数,所以β<(3π/2-α)解法2:首先排除AC(为什么),由特殊值法排除B8.△ABC中,已知cosA=,sinB=,则cosC的值为()A、 B、 C、或 D、9.设cos1000=k,则tan800是()A、 B、 C、 D、10.函数的单调减区间是()A、()B、C、 D、11.在△ABC中,则∠C的大小为()A、30°B、150°C、30°或150°D、60°或150°12.若,且,则_______________.13、设ω>0,函数f(x)=2sinωx在上为增函数,那么ω的取值范围是_____14已知奇函数单调减函数,又α,β为锐角三角形内角,则()A、f(cosα)> f(cosβ)B、f(sinα)> f(sinβ)C、f(sinα)<f(cosβ)D、f(sinα)> f(cosβ)15.函数的值域是.16.若,α是第二象限角,则=__________17.已知定义在区间[-p,]上的函数y=f(x)的图象关于直线x= -对称,当xÎ[-,]时,函数f(x)=Asin(wx+j)(A>0, w>0,-<j<),其图象如图所示。
三角函数专项练习1.在△ABC中,角 A.B.C对应边a.b.c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sinB.(1)证实a2+b2﹣c2=ab;(2)求角C和边c.2.在△ABC中,内角A,B,C所对的边分离为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.5.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.6.在△ABC中,内角A,B,C所对的边分离为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2)(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),个中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为本来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.8.在△ABC中,内角A,B,C所对的边分离为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.9.△ABC的内角A,B,C的对边分离为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.10.△ABC的内角A,B,C的对边分离为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.11.已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.12.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x 的值.13.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.14.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.15.在△ABC中,内角A,B,C所对的边分离为a,b,c,已知b+c=2acosB.(1)证实:A=2B;(2)若cosB=,求cosC的值.16.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到本来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y =g(x)的图象,求g()的值.17.在△ABC中,内角A,B,C所对的边分离为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.18.在△ABC中,内角A,B,C所对的边分离为a,b,c,已知b+c=2acosB.(Ⅰ)证实:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.19.在△ABC中,角A,B,C所对的边分离是a,b,c,且+=.(Ⅰ)证实:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的界说域与最小正周期;(2)评论辩论f(x)在区间[﹣,]上的单调性.22.△ABC的内角A,B,C的对边分离为a,b,c,已知2cosC (acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.参考答案1.在△ABC中,角 A.B.C对应边a.b.c,外接圆半径为1,已知2(sin2A﹣sin2C)=(a﹣b)sinB.(1)证实a2+b2﹣c2=ab;(2)求角C和边c.【解答】证实:(1)∵在△ABC中,角A.B.C对应边a.b.c,外接圆半径为1,∴由正弦定理得:=2R=2,∴sinA=,sinB=,sinC=,∵2(sin2A﹣sin2C)=(a﹣b)sinB,∴2()=(a﹣b)•,化简,得:a2+b2﹣c2=ab,故a2+b2﹣c2=ab.解:(2)∵a2+b2﹣c2=ab,∴cosC===,解得C=,∴c=2sinC=2•=.2.在△ABC中,内角A,B,C所对的边分离为a,b,c.已知bsinA=acos(B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA =asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.3.已知α,β为锐角,tanα=,cos(α+β)=﹣.(1)求cos2α的值;(2)求tan(α﹣β)的值.【解答】解:(1)由,解得,∴cos2α=;(2)由(1)得,sin2,则tan2α=.∵α,β∈(0,),∴α+β∈(0,π),∴sin(α+β)==.则tan(α+β)=.∴tan(α﹣β)=tan[2α﹣(α+β)]==.4.在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:=,即=,∴sin∠ADB==,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB==.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB=,∵DC=2,∴BC===5.5.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,求m的最小值.【解答】解:(I)函数f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+,f(x)的最小正周期为T==π;(Ⅱ)若f(x)在区间[﹣,m]上的最大值为,可得2x﹣∈[﹣,2m﹣],即有2m﹣≥,解得m≥,则m的最小值为.6.在△ABC中,内角A,B,C所对的边分离为a,b,c.已知asinA=4bsinB,ac=(a2﹣b2﹣c2)(Ⅰ)求cosA的值;(Ⅱ)求sin(2B﹣A)的值【解答】(Ⅰ)解:由,得asinB=bsinA,又asinA=4bsinB,得4bsinB=asinA,两式作比得:,∴a=2b.由,得,由余弦定理,得;(Ⅱ)解:由(Ⅰ),可得,代入asinA=4bsinB,得.由(Ⅰ)知,A为钝角,则B为锐角,∴.于是,,故.7.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),个中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为本来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=si nωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为本来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.8.在△ABC中,内角A,B,C所对的边分离为a,b,c.已知a>b,a=5,c=6,sinB=.(Ⅰ)求b和sinA的值;(Ⅱ)求sin(2A+)的值.【解答】解:(Ⅰ)在△ABC中,∵a>b,故由sinB=,可得cosB=.由已知及余弦定理,有=13,∴b=.由正弦定理,得sinA=.∴b=,sinA=;(Ⅱ)由(Ⅰ)及a<c,得cosA=,∴sin2A=2sinAcosA=, cos2A=1﹣2sin2A=﹣.故sin(2A+)==.9.△ABC的内角A,B,C的对边分离为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.10.△ABC的内角A,B,C的对边分离为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴16(1﹣cosB)2+cos2B﹣1=0,∴16(cosB﹣1)2+(cosB﹣1)(cosB+1)=0,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,∵S△ABC=ac•sinB=2,∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.11.已知函数f(x)=cos(2x﹣)﹣2sinxcosx.(I)求f(x)的最小正周期;(II)求证:当x∈[﹣,]时,f(x)≥﹣.【解答】解:(Ⅰ)f(x)=cos(2x﹣)﹣2sinxcosx,=(co2x+sin2x)﹣sin2x,=cos2x+sin2x,=sin(2x+),∴T==π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[﹣,],∴2x+∈[﹣,],∴﹣≤sin(2x+)≤1,∴f(x)≥﹣12.已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x 的值.【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,当cosx=0时,sinx=1,不合题意,当cosx≠0时,tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最小值﹣2.13.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,∵sin2C+cos2C=1,又由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,∴S△ABC=acsinB=×7×3×=6.14.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(1)求ω的值;(2)求f(x)的单调递增区间.【解答】解:f(x)=2sinωxcosωx+cos2ωx,=sin2ωx+cos2ωx,=,因为函数的最小正周期为π,则:T=,解得:ω=1.(2)由(1)得:函数f(x)=,令(k∈Z),解得:(k∈Z),所以函数的单调递增区间为:[](k∈Z).15.在△ABC中,内角A,B,C所对的边分离为a,b,c,已知b+c=2acosB.(1)证实:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证实:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.16.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到本来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y =g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx ﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到本来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.17.在△ABC中,内角A,B,C所对的边分离为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.18.在△ABC中,内角A,B,C所对的边分离为a,b,c,已知b+c=2acosB.(Ⅰ)证实:A=2B;(Ⅱ)若△ABC的面积S=,求角A的大小.【解答】(Ⅰ)证实:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∴sinB+sin(A+B)=2sinAcosB∴sinB+sinAcosB+cosAsinB=2sinAcosB∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B)∵A,B是三角形中的角,∴B=A﹣B,∴A=2B;(Ⅱ)解:∵△ABC的面积S=,∴bcsinA=,∴2bcsinA=a2,∴2sinBsinC=sinA=sin2B,∴si nC=cosB,∴B+C=90°,或C=B+90°,∴A=90°或A=45°.19.在△ABC中,角A,B,C所对的边分离是a,b,c,且+=.(Ⅰ)证实:sinAsinB=sinC;(Ⅱ)若b2+c2﹣a2=bc,求tanB.【解答】(Ⅰ)证实:在△ABC中,∵+=,∴由正弦定理得:,∴=,∵sin(A+B)=sinC.∴整顿可得:sinAsinB=sinC,(Ⅱ)解:b2+c2﹣a2=bc,由余弦定理可得cosA=.sinA=,=+==1,=,tanB=4.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,B∈(0,π),∴sinB=,∵,∴AB==5;(2)cosA═﹣cos(π﹣A)=﹣cos(C+B)=sinBsinC﹣cosBcosC =﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.21.已知函数f(x)=4tanxsin(﹣x)cos(x﹣)﹣.(1)求f(x)的界说域与最小正周期;(2)评论辩论f(x)在区间[﹣,]上的单调性.【解答】解:(1)∵f(x)=4tanxsin(﹣x)cos(x﹣)﹣.∴x≠kπ+,即函数的界说域为{x|x≠kπ+,k∈Z},则f(x)=4tanxcosx•(cosx+sinx)﹣=4sinx(cosx+sinx)﹣=2sinxcosx+2sin2x﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣),则函数的周期T=;(2)由2kπ﹣<2x﹣<2kπ+,k∈Z,得kπ﹣<x<kπ+,k∈Z,即函数的增区间为(kπ﹣,kπ+),k∈Z,当k=0时,增区间为(﹣,),k∈Z,∵x∈[﹣,],∴此时x∈(﹣,],由2kπ+<2x﹣<2kπ+,k∈Z,得kπ+<x<kπ+,k∈Z,即函数的减区间为(kπ+,kπ+),k∈Z,当k=﹣1时,减区间为(﹣,﹣),k∈Z,∵x∈[﹣,],∴此时x∈[﹣,﹣),即在区间[﹣,]上,函数的减区间为∈[﹣,﹣),增区间为(﹣,].22.△ABC的内角A,B,C的对边分离为a,b,c,已知2cosC (acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式应用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整顿得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.。
初一数学期末复习三角函数计算压轴题难题(附答案详解)题目一已知直角三角形中一边的长为6cm,另一边的长为8cm,求另外两个角的正弦、余弦和正切值。
解答:设直角三角形中两个锐角分别为A和B。
已知边长分别为6cm 和8cm,则根据勾股定理,可得直角边的长为:c = √(a^2 + b^2)c = √(6^2 + 8^2)c = √(36 + 64)c = √100c = 10cm因此,三角形的斜边长为10cm。
对于角A:正弦值(sin) = 对边/斜边 = 6/10 = 0.6余弦值(cos) = 邻边/斜边 = 8/10 = 0.8正切值(tan) = 对边/邻边 = 6/8 = 0.75对于角B:正弦值(sin) = 8/10 = 0.8余弦值(cos) = 6/10 = 0.6正切值(tan) = 8/6 = 1.3333因此,角A的正弦值为0.6,余弦值为0.8,正切值为0.75;角B的正弦值为0.8,余弦值为0.6,正切值为1.3333。
题目二已知一条斜边为12cm的直角三角形,其中一个锐角的正切值为1.5,求另外两个角的正弦、余弦和正切值。
解答:设直角三角形中两个锐角分别为A和B。
已知斜边长为12cm,角A的正切值为1.5。
对于角A:正切值(tan) = 对边/邻边 = a/b = 1.5设对边为a,邻边为b,则可以得到以下两个方程:a^2 + b^2 = 12^2a/b = 1.5从第二个方程可以得到:a = 1.5b将a的值代入第一个方程中,得到:(1.5b)^2 + b^2 = 1442.25b^2 + b^2 = 1443.25b^2 = 144b^2 = 144/3.25b^2 = 44.3077b ≈ 6.648由于b是邻边,所以b ≈ 6.648cm,a ≈ 1.5 * 6.648 ≈ 9.972cm。
因此,三角形的对边和邻边分别为9.972cm和6.648cm。
对于角A:正弦值(sin) = 对边/斜边≈ 9.972/12 ≈ 0.831余弦值(cos) = 邻边/斜边≈ 6.648/12 ≈ 0.554正切值(tan) = 对边/邻边≈ 9.972/6.648 ≈ 1.5对于角B:正弦值(sin) = 对边/斜边≈ 6.648/12 ≈ 0.554余弦值(cos) = 邻边/斜边≈ 9.972/12 ≈ 0.831正切值(tan) = 对边/邻边≈ 6.648/9.972 ≈ 0.667因此,角A的正弦值约为0.831,余弦值约为0.554,正切值约为1.5;角B的正弦值约为0.554,余弦值约为0.831,正切值约为0.667。
期末复习二———两角和与差的三角函数复习一、复习要点:2.化特殊式子:sin cos a x b x +为一个角的一个三角函数形式,如:cos 2sin()6x x x π=+ 3.角的代换。
要学会灵活拆角,如:2()(),ααβαβ=++-()βαβα=+-等等。
4.公式的逆用和变用。
如:cos()cos sin()sin cos αββαββα---= tan tan tan()(1tan tan )tan tan tan()(1tan tan )αβαβαβαβαβαβ+=+⋅--=-⋅+二、典型例题 23331sin ,(,),cos ,(,2),3242cos()sin()ππααπββπβααβ=-∈=∈-+例.已知求、的值例2.求值:①cos 24cos36cos66cos54-= ②tan17tan 433tan17tan 43++=sin()cos 0,tan()6212πππαααα++=-<<+例3.已知求的值。
,,)αβθαθββθααβαβ--例4.已知都为锐角,且sin +sin =sin ,cos +cos =cos .求(1)求cos(的值;(2)求的值例5求证:1sin 2cos 2tan 1sin 2cos 2θθθθθ+-=++ 33536.cos(),sin(),0sin()45413444πππππαβαβαβ-=+=<<<<+例已知其中,求的值三、巩固练习。
1.,33αβαβαβππππ+已知sin ==且为锐角,则的值是( )510 A. B.或 C. D.以上都不对44442、已知tan(α+β) =53 , tan(β-4π )=41 ,那么tan(α+4π )为 ( ) A . 1318 B .1322 C .722 D .318+tan20)+tan10tan20的值是( )1114.,,tan ,tan ,tan 25855αβγαβγαβγππππ===++都是锐角,,则等于( ) A. B. C. D.34645.sin(36)cos(54)cos(36)sin(54)______αααα+-++-=化简6.已知)0,2(π-∈x ,53sin -=x ,则tan2x= ABC 357.在中,若sinA=,cosB=-,则sinC=______513 312,cos()sin 213ππβααβαβα<<<-=+38.已知,sin()=-,求的值2459.化简:①tan70cos10(3tan 201)- ②证明:sin(2)sin 2cos()sin sin αββαβαα+-+=11),)23sin cos 5cos sin ;(2)5αβαβαβαβαβ+=-===10.已知sin(sin(求证:(1)tan tan11.,()cos 22x f x x x x ππ-≤≤=+若求的最大值和最小值,并求出此时的值。
一、解答题1.sin30°+tan60°−cos45°+tan30°.2.计算:-12016-2tan 60°+(-)0-.3.计算:2sin30°+3cos60°﹣4tan45°.4.计算: ()222sin30-°()0π33--+-. 5.计算: 2sin30tan60cos60tan45︒-︒+︒-︒.6.计算:|﹣3|+(π﹣2017)0﹣2sin30°+(13)﹣1. 7.计算: ()0222cos30tan60 3.14π--︒+︒+-.8.计算: 2212sin458tan 60-+︒-+︒.9.计算: 2sin30°2cos45-°8+.10.计算:(1)22sin 60cos 60︒+︒; (2)()24cos45tan6081︒+︒---. 11.计算: ()()103sin4513cos30tan6012-+-+⋅--. 12.求值:+2sin30°-tan60°- tan 45° 13.计算:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°. 14.(1)sin 230°+cos 230°+tan30°tan60° (2)o o o o 45cos 30sin 245sin 45tan -15.计算:﹣4﹣tan60°+|﹣2|.16.计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.17.(2015秋•合肥期末)计算:tan 260°﹣2sin30°﹣cos45°.18.计算:2cos30°-tan45°-()21tan 60+︒. 19.(本题满分6分) 计算:121292cos603-⎛⎫-+-+ ⎪⎝⎭ 20.(本题5分)计算:3-12+2sin60°+11()321.计算: ()1013tan3023122-⎛⎫︒+--+- ⎪⎝⎭. 22.计算:∣–5∣+3sin30°–(–6)2+(tan45°)–123.(6分)计算: ()()2122sin303tan45--+︒--+︒. 24.计算:()1021cos 603sin 60tan 302π-⎛⎫-︒+--︒︒ ⎪⎝⎭(6分)25.计算:2sin45°-tan60°·cos30°.26.计算:()1012sin 60320152-⎛⎫-+︒---- ⎪⎝⎭. 27.计算:︒+︒⋅︒-45sin 260cos 30tan 8.28.计算: ()()12015011sin30 3.142π-⎛⎫-+--+ ⎪⎝⎭. 29.计算:.30.计算:32sin 453cos602︒︒+︒+-.31.计算:2sin603tan302tan60cos45︒+︒-︒⋅︒32.计算:cos30sin602sin 45tan 45︒︒+︒•︒- .33.计算 :23tan 60sin 453tan 45cos 60︒-︒-︒+︒. 34.计算:27-3sin60°-cos30°+2tan45°.35.计算:()201273tan 3033π-⎛⎫-+-+ ⎪⎝⎭ 36.计算20140+121-⎪⎭⎫ ⎝⎛−2sin45°+tan60°. 37.计算:tan30°cos30°+sin 260°- sin 245°tan45°38.计算:(π﹣3)0+﹣(﹣1)2017﹣2sin30°39.计算:﹣12016﹣(π﹣3)0+2cos30°﹣2tan45°•tan60°.40.计算:(1)+|sin60°﹣1|+tan45°(2)tan 260°+4sin30°cos45°41.计算:(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;(2)cos 245°+sin60°tan45°+sin 230.42.计算:.43..44.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°. 45.计算: ()103116220073tan6033π-⎛⎫⎛⎫+÷-+-- ⎪ ⎪⎝⎭⎝⎭ 46.计算:(-1)2 019-()-3+(cos 68°)0+|3-8sin 60°|47.计算:(1);(2).48.计算:(1)sin45°·cos45°+tan60°·sin60°;(2)sin30°-tan245°+tan230°-cos60°. 49.计算:二、填空题5012﹣tan30°+(π﹣4)0112-⎛⎫- ⎪⎝⎭=_____.参考答案1.【解析】【分析】分别代入各特殊角的三角函数值,然后进行计算即可得.【详解】sin30°+tan60°−cos45°+tan30°==×+-+=.【点睛】本题考查了特殊角的三角函数值的混合运算,熟练掌握各特殊角的三角函数值是解题的关键.2.-4.【解析】分析:先根据乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则逆用进行计算,然后再进行实数加减运算.详解: -12016-2tan60°+(-)0-,原式=-1-2×+1-2,=-4.点睛:本题主要考查乘方运算法则,特殊三角函数值,零指数幂,二次根式乘法法则,解决本题的关键是要熟练掌握实数相关运算法则.3.﹣1.5.【解析】试题分析:把30°的正弦值、60°的余弦值、45°的正切值代入进行计算即可. 试题解析:2sin30°+3cos60°﹣4tan45° =11234122⨯+⨯-⨯ =1.5.4【解析】试题分析:分别根据二次根式的性质,特殊角的三角函数值,0指数幂及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:解:原式=12212-⨯-点睛:本题考查的是二次根式的性质,特殊角的三角函数值,0指数幂及绝对值的性质,熟知以上运算法则是解答此题的关键.5.12【解析】试题分析:将特殊角的三角函数值代入求解即可.试题解析:解:原式= 112122⨯- 12=. 6.6【解析】试题分析:按顺序依次先进行绝对值化简、0次幂计算、特殊角三角函数值、负指数幂计算,然后再按运算顺序进行计算即可.试题解析:原式=3+1-212⨯+3=3+1﹣1+3=6. 7.54【解析】试题分析:原式利用特殊角的三角函数值,以及零指数幂法则计算即可得到结果. 试题解析:2-2-2cos30°+tan60°+(π-3.14)01214=- =548.2【解析】试题分析:先进行绝对值、二次根式的化简,特殊角的三角函数值,然后再按运算顺序进行计算即可.试题解析:原式123132+-==.9. 1+【解析】试题分析:代入30°角的正弦函数值、45°角的余弦函数值,再按二次根式的相关运算法则计算即可. 试题解析:原式 = 12222⨯-⨯+= 1= 1.10.(1)1;(2).【解析】试题分析:(1)直接利用特殊角的三角函数值代入化简求出答案;(2)直接利用特殊角的三角函数值代入化简求出答案.试题解析:(1)原式=22312+()()=1; (2)原式=24322131⨯+--=-. 11.1.【解析】试题分析:利用三角函数,分母有理化,绝对值性质计算.试题解析:()()103sin4513cos30tan6012-+-+⋅-- =1+13-+3331⨯+-=1+13++32+31-=1. 12.【解析】先得出式子中的特殊角的三角函数值,再按实数溶合运算顺序进行计算即可.解:原式=13.【解析】试题分析:此题涉及有理数的乘方、特殊角的三角函数值的求法,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果即可.解:(sin30°﹣1)2﹣×sin45°+tan60°×cos30°=1﹣×+× =1﹣1+ =【点评】此题主要考查了实数的综合运算能力,解决此类题目的关键是熟练掌握有理数的乘方、特殊角的三角函数值的运算.14.(1)2;(2)0.【解析】试题分析:根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案. 试题解析:(1)sin 230°+cos 230°+tan30°tan60° =22133()(3223++ =1+1=2;(2)原式=212 122⨯-⨯⨯=0.考点:特殊角的三角函数值.15.2﹣2.【解析】试题分析:原式前两项化为最简二次根式,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解:原式=2﹣4×﹣+2﹣=2﹣2.考点:实数的运算;特殊角的三角函数值.16.﹣3﹣.【解析】试题分析:直接利用特殊角的三角函数值以及负指数幂的性质以及零指数幂的性质、二次根式的性质化简进而求出答案.解:原式=﹣2×﹣3﹣3+1+2=﹣3﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.17.1【解析】试题分析:将特殊角的三角函数值代入求解.解:原式=()2﹣2×﹣×=3﹣1﹣1=1.考点:特殊角的三角函数值.18.-2.【解析】试题分析:分别计算特殊角三角函数值和算术平方根,然后再计算加减法.试题解析:原式=21|1-+11=-2.考点:实数的混合运算.19.1.【解析】试题分析:按照实数的运算法则依次计算.试题解析:原式=1432311312-+-⨯+=--+=.考点:1.特殊角的三角函数值;2.有理数的乘方;3.零指数幂;4.负指数幂.20.3.【解析】试题分析:本题首先将各式分别进行计算,然后根据实数的计算法则进行计算.试题解析:原式×2-考点:实数、三角函数的计算21.331- 【解析】试题分析:先计算三角函数值,零指数,负指数,开方再按照实数的运算计算即可. 试题解析:原式=331223⨯+-+=3123-+=331-. 考点:三角函数值,零指数,负指数,开方.视频22.32 【解析】试题分析:分别求值再进行加减运算试题解析:原式=5+32-6+1=32考点:1.特殊角的三角函数2.实数的运算233【解析】试题分析:先计算绝对值,三角函数,零指数,负指数,平方再按照实数的运算计算即可.试题解析: (()2122sin303tan45--+︒-+︒ 33考点:三角函数,实数的运算.24.214. 【解析】试题分析:任何不是零的数的零次幂都是1,1p pa a .试题解析:原式=2-21()2+13=2-14+1-12=214. 考点:实数的计算、三角函数的计算.25.21- 【解析】试题分析:sin45°=2;tan60°cos30°. 试题解析:原式=233222⨯-⨯=123-=21-. 考点:二次根式的计算、锐角三角函数的计算.26.-3.【解析】试题分析:sin60°=2;任何非零的数的零次幂为1,33;11()2=-2.试题解析:原式=--1=-3.考点:实数的计算.27.6323-. 【解析】 试题分析:原式=222213322⨯+⨯-=6323-. 考点:实数的运算.28.12. 【解析】试题分析:原式11122=-+-+ 12=. 考点:实数的运算.视频29.2.【解析】试题分析:原式==2.考点:实数的运算.3021.【解析】 试题分析:原式=23132322++21.考点:实数的运算.31.236【解析】试题分析:此题主要考查了特殊角的三角函数值得代入求值问题,因此把相应的特殊角的三角函数值代入即可.试题解析:解:原式=2322+= 考点:特殊角的三角函数32.【解析】试题分析:原式21== 考点:实数的运算.33.0.【解析】 试题分析:原式211322332+⨯-⎪⎪⎭⎫ ⎝⎛-⨯=213213+--=0=. 考点:实数的运算. 34.1.【解析】试题分析:将tan45°=1,代入,然后化简合并即可得出答案.试题解析:原式=2×32﹣1+2×32=3﹣1+3=23﹣1. 考点:特殊角的三角函数值.35.2310+【解析】试题分析:根据二次根式、特殊角三角函数值、零次幂、负整数指数幂的意义进行计算即可. 试题解析:21273tan 30(3)()3π--︒+-︒+ 333319=-⨯++ 2310=+考点: 实数的混合运算.36.23+.【解析】试题分析:根据零次幂、负整数指数幂、特殊三角函数值的意义进行计算即可. 试题解析:0112014()2sin 45tan 602-+-︒+︒ 21223=+-⨯+ 23=+考点: 1.零次幂,2.负整数指数幂,3特殊三角函数值.37.【解析】【分析】根据特殊三角函数值即可求解.【详解】原式==【点睛】本题考查了特殊的三角函数值,属于简单题,熟记特殊三角函数值是解题关键.38.3【解析】【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】解:(π﹣3)0+﹣(﹣1)2017﹣2sin30°=1+2﹣(﹣1)﹣2×=3+1﹣1=3【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解题关键是熟练掌握零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简、绝对值等考点的运算.39.﹣2﹣.【解析】【分析】原式利用乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【详解】原式=﹣1﹣1+﹣2=﹣2﹣.【点睛】本题考查了实数的运算法则,负指数的性质,特殊角是三角函数,熟练特殊角是三角函数是解题的关键.40.(1)4-;(2)3+【解析】【分析】(1)原式利用绝对值的代数意义,以及特殊角的三角函数值计算即可求出值;(2)原式利用特殊角的三角函数值计算即可求出值.【详解】(1)原式=2+1﹣+1=4﹣;(2)原式=3+4××=3+.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.41.(1)0;(2).【解析】【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案;(2)直接利用特殊角的三角函数值化简得出答案.【详解】(1)(﹣1)2017﹣2﹣1+sin30°+(π﹣314)0;=﹣1﹣++1=0;(2)cos245°+sin60°tan45°+sin230=()2+×1+()2=++=.【点睛】本题考查了实数运算,掌握实数运算是解题的关键.42..【解析】分析:代入45°角的正弦函数值,结合“零指数幂的意义”和“负整数指数幂的意义”进行计算即可.详解:原式===.点睛:熟记45°角的正弦函数值、及(为正整数)是正确解答本题的关键.43.【解析】【分析】根据:分别代入计算.【详解】原式.【点睛】考查了特殊角的三角函数值,解答此类题目的关键是熟记特殊角是三角函数值.44.3-【分析】把60°,30°,45°的正弦,余弦,正切的值代入计算即可.【详解】解:原式=2×-3×1×+4×=1-+2=3-【点睛】 本题主要考查特殊角的三角函数值和零指数幂的知识点,牢记特殊角的三角函数值是解答的关键.45.-1.【解析】分析:代入60°角的正切函数值,结合“负指数幂的意义”、“零指数幂的意义”和实数的相关运算法则计算即可.详解:原式=()3168133+÷-+-⨯=3213-+-=1-。