八年级数学上册第十七章特殊三角形17.1等腰三角形第3课时等腰三角形的判定习题课件新版冀教版
- 格式:pptx
- 大小:2.41 MB
- 文档页数:31
第3课时等边三角形的性质和判定
班级_________ 姓名_________
1.探索并掌握等边三角形的性质及判定方法.
2.能够运用等边三角形的知识解决相应的数学问题.
如图,在△ABC中,∠B=∠C,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是_____________.
【学习任务一】知识回顾
1.等腰三角形的性质和判定:
名称图形性质判定等腰三角形
___________________
__________
___________________
___________________
__________
___________________
学习目标
课前学习任务
课堂学习任务
2.三角形按边的相等关系分类:
等边三角形是三边都相等的特殊的______________________.【学习任务二】新知学习
思考1把等腰三角形的性质用于等边三角形,能得到什么结论?
新知等边三角形的性质:
边:______________________.
角:______________________.
对称性:____________________________________________.
思考2一个普通三角形满足什么条件是等边三角形?
思考3等腰三角形满足什么条件时是等边三角形?
新知等边三角形的判定:
【学习任务三】典例精讲
例题如图,△ABC是等边三角形,DE∥BC,分别交AB,AC于点D,E.求证:△ADE 是等边三角形.
本课小结
请根据本课所学内容,画出你的思维导图吧!
课后任务
完成教材第80页练习1~2题.。
等腰三角形的性质一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.37.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.参考答案与试题解析一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BCD.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【分析】根据三角形的内角和和等腰三角形的性质即可得到结论.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°【分析】由在△ABC中,AB=AC,∠A=100°,根据等边对等角的性质,可求得∠ABC 的度数,又由BD平分∠ABC,即可求得∠DBE的度数,又由等边对等角的性质,可求得∠BED的度数,根据平角的定义就可求出∠DEC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBE=∠ABC=20°,∴∠BDE=∠BED=80°,∴∠DEC=100°.故选:B.6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3【分析】根据等腰三角形三线合一的性质即可求解.【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.7.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB【分析】由图中操作可知:AD所在直线是△ABC的对称轴,即可得出结论.【解答】解:由图中操作可知:AD所在直线是△ABC的对称轴,∴AD⊥BC,BD=CD,∠B=∠C,AB=AC,∴A,B,C正确,D错误,故选:D.8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【分析】根据等腰三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°【分析】根据等腰三角形的性质和三角形内角和定理,求得∠C=40°,然后根据直角三角形两锐角互余,即可求得∠D=50°.【解答】解:∵AB=AC,∠BAC=100°,∴∠C=∠B=40°,∵DE⊥BC于点E,∴∠D=90°﹣∠C=50°,故选:B.10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【解答】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=30°,∴顶角∠A=90°﹣30°=60°;②当高在三角形外部时(如图2),∵∠ABD=30°,∴顶角∠CAB=90°+30°=120°.故选:D.二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.【分析】根据等腰三角形的性质和三角形的内角和定理即可得到结论.【解答】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【分析】(1)根据三角形外角的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD =90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=(180°﹣∠B)=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.【分析】(1)当点D在BC的中点时,DE=DF,根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(3)类似(2)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC 的面积=三角形ABD的面积﹣三角形ACD的面积.【解答】(1)解:当点D在BC的中点时,DE=DF.理由:如图1中,连接AD.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠ACB,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)解:DE+DF=CG.证明如下:如图2,连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF.∵AB=AC,∴DE+DF=CG.(3)解:当点D在BC的延长线上时,(2)中的结论不成立,但有DE﹣DF=CG.理由如下:如图3,延长BC至点D,连接AD,过点D作DF⊥AC,交AC的延长线于点F,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF.∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.【分析】由AD=AC,BC=BE,根据等边对等角得出∠ACD=∠ADC,∠BEC=∠ECB,再利用三角形内角和定理得出∠A=180°﹣2∠ADC,∠B=180°﹣2∠DEC,而∠A+∠B=90°,那么求出∠ADC+∠DEC=135°,则∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.【解答】解:∵AD=AC,∴∠ADC=∠ACD.∵BE=BC,∴∠BEC=∠ECB.∵∠ACB=90°,∴∠A+∠B=90°.在△ACD中,∠A=180°﹣2∠ADC,在△BCE中,∠B=180°﹣2∠DEC,∴∠A+∠B=180°﹣2∠ADC+180°﹣2∠DEC=90°.∴360°﹣2(∠ADC+∠DEC)=90°.∴∠ADC+∠DEC=135°.∴∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.。
教学设计教学环节(注明教师活学生活设计意个环节设的时间让学生一设置问题情过欣赏让学生观察生活(投影显示学生在实际丽的图片这些图片中抽的一些美丽的图片境中进入对感受几出哪种平面几何图形形的研究与图形在人字型衣架(金字塔、斜拉桥活中的顶的)泛应用、共同回忆等腰三角形、等腰直角2 画图给出等腰三角形三角形的概念,学生在小中的有关概念并给出几何语言学已经初并剪、把一张长方形的纸片对折,3步了解过得到一个等下一部分使它展开后,,等腰三角腰三角形形,一起回忆,体会到在剪裁过程中学生会出现多种方式,学生动手操数学学习要给予展示作,的连续性,对折--分析—在同一问剪裁题的不断学生独立深入探讨二、猜想与探究思考回答出对思深化中通过我们得到等腰三角形的过程,1、折后重合的线维品质你对这种图形有什么新的认识?段和角通过对折的学生回答过程中,教师板书之后继续让学过程学生不如果学生有困难可以继续引导学生生带着问题2开难发现是轴从边和角的方面去发现展讨论,分组讨对称图形 2、观察折痕的作用论,采用“中心在此过程中教师要关注到学生是否学生在此过发言人”制,综能用规范清晰的数学语言表达自己程中发展自述表达小组同的猜想,主探究的品学的观点质和对学习活动的强烈.的参与意识三、作图与证、两底角相性条件和结论分别是什么引导学生用数学符号规范的写出学生作的语言转知条件,和证明过程图,写出已知求证换能力,对在此性质证明过程中发现所做辅助及证明过几从而为性质二的顺线和折痕的关系,何语言程的应利推导做好铺垫用更规范性,2性质、三线合一学生亲自验在此环节中,教师要关注证了猜想,1、学生几何语言的规范性学生的应用意识和模仿能力认识到性质的正确性,提高了演绎推理能力四、整体认知让学生体三角形三边长度的变化投影展示学生通过观察会到事物三角当三边不同时,引起角的变化,思图形的变化,当有两边相等即等腰三角形不相等,考边与角之间之间的内当三边相等时三个角时两个角相等,的关系在联系。
第十七章特殊三角形17.1第1课时等腰三角形及其性质知识点1等腰三角形的有关概念1.如图17-1-1,在△ABC中,AB=AC,其中________和________是腰,________是底边,__________是顶角,__________和________是底角,等腰三角形是__________图形,它的对称轴是________________________.图17-1-12.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或173.在数学课上,老师请同学们思考这样一个问题:“已知一个等腰三角形的一边长为3,周长为15,求其他两边的长.”小梅回答说:“其他两边的长分别为3,9或6,6.”你认为小梅回答的结果是否正确?答:________(填“正确”或“不正确”),你的理由是________________________________________________________________________.4.在等腰三角形ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长为________.知识点2等腰三角形的性质5.如图17-1-2,在△ABC中,AB=AC.图17-1-2(1)∵AB=AC,∴∠B=________.(2)①∵AD平分∠BAC,∴BD=________,AD⊥________;②∵BD=CD,∴AD平分________,________⊥BC;③∵AD⊥BC,∴________平分∠BAC,________=CD.6.2018·唐山路南区期中如图17-1-3,在△ABC中,已知AB=AC,点D在CA的延长线上,∠DAB=50°,则∠B的度数为()图17-1-3A.25°B.30°C.40°D.45°6.教材习题A组第1题变式如图17-1-4,已知等腰三角形ABC,AB=AC.若以B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()图17-1-4A.AE=EC B.AE=BEC.∠EBC=∠BAC D.∠EBC=∠ABE8.2018·成都等腰三角形的一个底角为50°,则它的顶角的度数为________.9.已知在△ABC中,AB=AC,∠B=40°,D是边BC的中点,那么∠CAD=________°.10.2018·吉林我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=12,则该等腰三角形的顶角为________°.知识点3等边三角形的概念及性质11.2018·湘潭如图17-1-5,在等边三角形ABC中,D是边BC的中点,则∠BAD =________°.图17-1-5 图17-1-612.如图17-1-6所示,P,Q是△ABC的边BC上两点,且BP=PQ=QC=AP=AQ,则∠BAC的度数为________.13.已知:如图17-1-7,在等边三角形ABC的AC边上取中点D,在BC的延长线上取一点E,使CE=CD.求证:∠DBE=∠DEB.图17-1-714.2018·宿迁若实数m,n满足等式|m-2|+n-4=0,且m,n恰好是等腰三角形ABC的两条边的边长,则等腰三角形ABC的周长是()A.12 B.10 C.8 D.615.2018·遵义如图17-1-8,在△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为________°.图17-1-816.已知等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是________.17.2018·绥化已知等腰三角形的一个外角为130°,则它的顶角的度数为________.18.如图17-1-9,在等边三角形ABC中,D为BC延长线上一点,E为CA延长线上一点,且AE=CD,求证:AD=BE.图17-1-919.已知:如图17-1-10,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC 于点E.求证:∠CBE=∠BAD.图17-1-1020.2018·孝感如图17-1-11,在△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是________________;(2)若∠ABC=70°,求∠BPC的度数.图17-1-1121.在△ABC中,AB=AC.(1)如图17-1-12①,若∠BAD=30°,AD是BC上的高,E为AC上一点,且AD=AE,则∠EDC=________°;(2)如图②,若∠BAD=40°,AD是BC上的高,E为AC上一点,且AD=AE,则∠EDC =________°;(3)通过以上两题,你发现在△ABC中,若AD是BC上的高,E为AC上一点,且AD =AE,则∠BAD与∠EDC之间有什么数量关系?用式子表示为________;(4)如图③,如果AD不是BC上的高,E为AC上一点,且AD=AE,是否仍有上述关系?如有,请说明理由.图17-1-12教师详解详析1.AB AC BC ∠A ∠B ∠C 轴对称 底边的垂直平分线(底边上的中线所在的直线或顶角的平分线所在的直线)2.D [解析] 当腰长为5时,周长为5+5+6=16;当腰长为6时,周长为6+6+5=17,所以周长为16或17.故选D.3.不正确 三角形的任意两边之和要大于第三边[解析] 当另外两条边长为3,9时,∵3+3<9,不能构成三角形,∴另外两条边长为3,9的说法是错误的;当另外两条边长为6,6时,6+3>6,能构成三角形,∴另外两条边长为6,6,不能为3,9.4.7或11 [解析] 根据题意,①当15是腰长与腰长一半的和时,AC +12AC =15,解得AC =10,所以底边长为12-12×10=7;②当12是腰长与腰长一半的和时,AC +12AC =12,解得AC =8,所以底边长为15-12×8=11.所以底边长为7或11.5.(1)∠C (2)①CD BC ②∠BAC AD ③AD BD6.A [解析] ∵AB =AC ,∴∠B =∠C ,∵∠DAB =∠B +∠C =50°,∴∠B =25°. 7.C [解析] ∵AB =AC , ∴∠ABC =∠ACB .∵以B 为圆心,BC 长为半径画弧,交腰AC 于点E , ∴BE =BC , ∴∠ACB =∠BEC ,∴∠BEC =∠ABC =∠ACB , ∴∠EBC =∠BAC .8.80° [解析] ∵等腰三角形的两个底角相等,∴顶角的度数为180°-50°×2=80°. 9.50 [解析] ∵AB =AC ,∠B =40°, ∴∠C =∠B =40°.∵D 是边BC 的中点, ∴AD ⊥BC ,∴∠CAD =50°.10.36 [解析] 根据题意,该等腰三角形的顶角与底角的度数之比为1∶2.设顶角为x °,则底角为2x °,x +2x +2x =180,解得x =36.11.30 [解析] ∵△ABC 是等边三角形,∴∠BAC =60°,AB =AC .∵D 是BC 的中点,∴AD 平分∠BAC ,∴∠BAD =30°.12.120° [解析] 因为PQ =AP =AQ ,所以△APQ 是等边三角形, 所以∠P AQ =∠APQ =∠AQP =60°. 因为BP =AP ,所以∠BAP =∠B . 又因为∠BAP +∠B =∠APQ =60°, 所以∠BAP =30°,同理∠QAC =30°,所以∠BAC =∠BAP +∠P AQ +∠QAC =120°. 13.证明: ∵△ABC 为等边三角形,D 是AC 的中点, ∴BD 平分∠ABC ,∠ABC =∠ACB =60°. ∴∠DBE =12∠ABC =30°.∵CD =CE ,∴∠CDE =∠E .∵∠ACB =60°,且∠ACB 为△CDE 的外角,∴∠CDE +∠E =60°,∴∠CDE =∠E =30°,∴∠DBE =∠DEB .14.B [解析] ∵|m -2|+n -4=0,∴m -2=0,且n -4=0,解得m =2,n =4. 当m =2作腰时,三边长为2,2,4,不符合三角形的三边关系; 当n =4作腰时,三边长为2,4,4,符合三角形的三边关系, 周长为2+4+4=10.15.37 [解析] ∵AD =AC ,E 为CD 的中点,∴∠DAC =2∠CAE =32°,∴∠ADC =12(180°-∠DAC )=74°.∵BD =AD ,∴∠B =12∠ADC =37°.16.70°或110° [解析] 当等腰三角形为锐角三角形时,顶角为70°;当等腰三角形为钝角三角形时,顶角为110°.17.50°或80° [解析] 因为等腰三角形的一个外角为130°,所以该等腰三角形有一个内角为50°.当50°的角为顶角时,其他两角为65°,65°;当50°的角为底角时,其他两角为50°,80°,所以等腰三角形的顶角为50°或80°.18.证明:在等边三角形ABC 中,AB =CA , ∠BAC =∠ACB =60°, ∴∠EAB =∠DCA =120°.在△EAB 和△DCA 中,⎩⎨⎧AE =CD ,∠EAB =∠DCA ,AB =CA ,∴△EAB ≌△DCA (SAS),∴AD =BE .19.证明:∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC ,∠BAD =∠CAD .又∵BE ⊥AC ,∴∠CBE +∠C =∠CAD +∠C =90°,∴∠CBE =∠CAD ,∴∠CBE =∠BAD .20.解:(1)∵AB =AC ,AM 平分∠BAC ,∴AD 所在直线是BC 的垂直平分线,∴PB =PC .∵EF 是AB 的垂直平分线,∴P A =PB ,∴P A =PB =PC .(2)∵AB =AC ,∴∠ACB =∠ABC =70°,∴∠BAC =180°-2×70°=40°.∵AM 平分∠BAC ,∴∠BAD =∠CAD =20°.∵P A =PB ,∴∠ABP =∠BAP =20°,∴∠BPD =∠ABP +∠BAP =40°,同理,得∠CPD =40°,∴∠BPC =∠BPD +∠CPD =40°+40°=80°21.解:(1)∵在△ABC 中,AB =AC ,AD 是BC 上的高,∴∠ADC =90°,∠CAD =∠BAD =30°.∵AD =AE ,∴∠ADE =∠AED =180°-30°2=75°,∴∠EDC =∠ADC -∠ADE =90°-75°=15°.(2)∵在△ABC 中,AB =AC ,AD 是BC 上的高,∴∠ADC =90°,∠CAD =∠BAD =40°. ∵AD =AE ,∴∠ADE =∠AED =180°-40°2=70°, ∴∠EDC =∠ADC -∠ADE =90°-70°=20°.(3)∠BAD =2∠EDC (或∠EDC =12∠BAD ). (4)仍有上述关系.理由如下:∵AD =AE ,∴∠ADE =∠AED ,∴∠BAD +∠B =∠ADC =∠ADE +∠EDC =∠AED +∠EDC =(∠EDC +∠C )+∠EDC =2∠EDC +∠C .又∵AB =AC ,∴∠B =∠C ,∴∠BAD =2∠EDC .。
课题17.1等腰三角形第1课时备课教师学习目标1.理解并掌握等腰三角形的定义,探索等腰三角形和等边三角形的性质.2.在探索等腰三角形的性质的过程中体会知识间的关系,感受数学与生活的联系.重点等腰三角形的定义及性质难点等腰三角形的三线合一一、预习案1.全等三角形的5种判定方法。
2.有两边相等的三角形叫,相等的两边叫,另一边叫,两腰的夹角叫,腰和底边的夹角叫(请在图中标出来)3.如图,在△ABC中,AB=AC,标出各部分名称二、探究案探究一:等腰三角形的性质。
问题一:△ABC是等腰三角形,其中,AB=AC.∠B和∠C有怎样的关系?问题二:底边上的高、中线及∠A的平分线有怎样的关系?问题解决提示:等腰三角形是轴对称图形,如果把等腰三角形沿着某条直线对折,哪些边和角是相互重合的?这说明什么?(等腰三角形的两个底角相互重合,所以两底角相等.三线互相重合)归纳等腰三角形的性质定理3.探究二:等边三角形的性质。
探究活动:中,如果AB=BC=AC。
那么∠A=∠B=∠C.提示:等边三角形是等腰三角形的一种特殊形式,它具有等腰三角形所有的性质,因此可以从等腰三角形的性质定理入手。
归纳:三、训练案(1)在△ABC中,AB=AC,若∠A=40°则∠C=;若∠B=72°,则∠A=.(2)在△ABC中,AB=AC,∠BAC=40°,M是BC的中点,那么∠AMC=,∠BAM=.(3)如图,在△ABC中,AB=AC,∠DAC是△ABC的外角。
∠BAC=180°-∠B,∠B=()∠DAC=∠C(4)如图,在△ABC中,AB=AC,外角∠DCA=100°,则∠B=度.(5)如图①∵AB=BC∴= (等边对等角)②∵AB=BC,AD是角平分线∴⊥,= (三线合一)③∵AB=BC ,AD是中线∴⊥,∠=∠(三线合一)④∵AB=BC ,AD是高∴= ,∠=∠(三线合一)三、训练案1.在△ABC中,∠A的相邻外角是110°,要使△ABC是等腰三角形,则∠B= 。
第5讲等腰三角形“三线合一”的性质知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要重点学习等腰三角形“三线合一”的性质。
我们知道等腰三角形是一种特殊的三角形,它除了具有一般三角形所有的性质外,还有许多特殊性,正是由于它的这些特殊性,使得它比一般三角形的应用更广泛。
因此,我们有必要把这部分内容学得更扎实。
知识梳理讲解用时:20分钟等腰三角形1、等腰三角形的概念:有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另外一条边叫做底,两腰所夹的角叫做顶角,底边和腰的夹角叫做底角。
2、等腰三角形的性质:(1)等腰三角形的两个底角相等;(简写成“等边对等角”)(2)等腰三角形的角平分线、底边上的中线、底边上的高互相重合.(简写成“三线合一”)3、等腰三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义法)(2)如果一个三角形有两个角相等,那么这两个角对应的边也相等.(简写成“等角对等边”)AB C等边三角形我们知道等边三角形是特殊的等腰三角形,所以接下来要研究等边三角形的性质和判定!1、等边三角形的概念:在等腰三角形中,有一种特殊的等腰三角形——三条边都相等的三角形,我们把这样的三角形叫做等边三角形。
2、等边三角形的性质:(1)等边三角形的三条边都相等;(定义)(2)等边三角形的三个内角都相等,都等于60°;(3)等腰三角形“三线合一”的性质同样适用于等边三角形.3、等边三角形的判定方法:(1)有两条边相等的三角形叫做等腰三角形;(定义)(2)三个内角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.AB C课堂精讲精练【例题1】如图,点D、E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【答案】BD=CE【解析】要证明线段相等,只要过点A作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.证明:如图,过点A作AP⊥BC于P.∵AB=AC,∴BP=PC;∵AD=AE,∴DP=PE,∴BP﹣DP=PC﹣PE,∴BD=CE.讲解用时:3分钟解题思路:本题考查了等腰三角形的性质;做题时,两次用到三线合一的性质,由等量减去等量得到差相等是解答本题的关键;教学建议:熟练运用等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB交AD的延长线于点E,求证:CE=AB.【答案】CE=AB【解析】先根据等腰三角形的性质,得到∠BAE=∠CAE,再根据平行线的性质,得到∠E=∠CAE,最后根据等量代换即可得出结论.证明:∵AB=AC,AD是BC边上的高,∴∠BAE=∠CAE.∵CE∥AB,∴∠E=∠BAE.∴∠E=∠CAE.∴CE=AC.∵AB=AC,∴CE=AB.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质以及平行线的性质,解题时注意:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.教学建议:熟练运用等腰三角形“三线合一”的性质以及平行线的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题2】如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.【答案】115°【解析】根据等腰三角形的性质和三角形的内角和得到∠C=50°,进而得到∠BAC=80°,由∠BAD=55°,得到∠DAE=25°,由DE⊥AD,进而求出结论.解:∵AB=AC,∴∠B=∠C,∵∠B=50°,∴∠C=50°,∴∠BAC=180°﹣50°﹣50°=80°,∵∠BAD=55°,∴∠DAE=25°,∵DE⊥AD,∴∠ADE=90°,∴∠DEC=∠DAE+∠ADE=115°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,三角形的内角和定理,垂直定义,熟练应用等腰三角形的性质是解题的关键.教学建议:熟练掌握等腰三角形等腰对等角的性质以及三角形的内角和定理. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.【答案】10cm,10cm,1cm【解析】根据题意,分两种情况进行分析,从而得到腰和底边的长,注意运用三角形的三边关系对其进行检验.解:①如图,AB+AD=6cm,BC+CD=15cm,∵AD=DC,AB=AC,∴2AD+AD=6cm,∴AD=2cm,∴AB=4cm,BC=13cm,∵AB+AC<BC,∴不能构成三角形,故舍去;②如图,AB+AD=15cm,BC+CD=6cm,同理得:AB=10cm,BC=1cm,∵AB+AC>BC,AB﹣AC<BC,∴能构成三角形,∴腰长为10cm,底边为1cm.故这个等腰三角形各边的长为10cm,10cm,1cm.讲解用时:3分钟解题思路:本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这是解题的关键.教学建议:熟练掌握等腰三角形的性质以及三角形的三边关系.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】如图,在△ACB中,AC=BC,AD为△ACB的高线,CE为△ACB的中线.求证:∠DAB=∠ACE.【答案】∠DAB=∠ACE【解析】根据等腰三角形的性质证明即可.证明:∵AC=BC,CE为△ACB的中线,∴∠CAB=∠B,CE⊥AB,∴∠CAB+∠ACE=90°,∵AD为△ACB的高线,∴∠D=90°.∴∠DAB+∠B=90°,∴∠DAB=∠ACE.讲解用时:3分钟解题思路:此题考查等腰三角形的性质,关键是根据等腰三角形的性质解答.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,在△ABC中,AB=AC,AD是BC边上的中线,E是AC 边上的一点,且∠CBE=∠CAD.求证:BE⊥AC.【答案】BE⊥AC【解析】根据等腰三角形的性质得出AD⊥BC,再得出∠CBE+∠C=90°.证明:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,∴∠CAD+∠C=90°,又∵∠CBE=∠CAD,∴∠CBE+∠C=90°,∴BE⊥AC.讲解用时:3分钟解题思路:本题主要考查等腰三角形的性质,掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合是解题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】如图所示,已知△ABC中,AB=AC,∠BAD=30°,AD=AE,求∠EDC的度数.【答案】15°【解析】可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15.所以∠EDC的度数是15°.讲解用时:3分钟解题思路:本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.教学建议:熟练掌握等腰三角形等边对等角的性质.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.【答案】20°【解析】根据等腰三角形的性质得到∠CAD=∠BAD=40°,由于AD=AE,于是得到∠ADE==70°,根据三角形的内角和即可得到∠CDE=90°﹣70°=20°.解:∵AB=AC,AD⊥BC,∴∠CAD=∠BAD=40°,∠ADC=90°,又∵AD=AE,∴∠ADE==70°,∴∠CDE=90°﹣70°=20°.讲解用时:3分钟解题思路:本题考查等腰三角形的性质,三角形外角的性质,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边对等角的性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题5】如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.【答案】(1)△ACD为等腰三角形;(2)60°或30°【解析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.讲解用时:4分钟解题思路:本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.教学建议:学会通过等角对等边证明三角形是全等三角形.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.【答案】△DBE是等腰三角形【解析】首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.讲解用时:3分钟解题思路:此题主要考查等腰三角形的判定和性质,关键是根据等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.教学建议:熟练掌握等腰三角形的判定和性质.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.【答案】M是BE的中点【解析】要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.讲解用时:4分钟解题思路:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.教学建议:熟练掌握等腰三角形“三线合一”的性质以及等边三角形的性质. 难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习6.1】如图,等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE⊥AC交BC 于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,试求BF的长.【答案】(1)CD=BE;(2)4【解析】(1)先作DM∥AB,交CF于M,可得△CDM为等边三角形,再判定△DMF ≌△EBF,最后根据全等三角形的性质以及等边三角形的性质,得出结论;(2)根据ED⊥AC,∠A=60°=∠ABC,可得∠E=∠BFE=∠DFM=∠FDM=30°,由此得出CM=MF=BF=BC,最后根据AB=12即可求得BF的长.解:(1)如图,作DM∥AB,交CF于M,则∠DMF=∠E,∵△ABC是等边三角形,∴∠C=60°=∠CDM=∠CMD,∴△CDM是等边三角形,∴CD=DM,在△DMF和△EBF中,,∴△DMF≌△EBF(ASA),∴DM=BE,∴CD=BE;(2)∵ED⊥AC,∠A=60°=∠ABC,∴∠E=∠BFE=∠DFM=∠FDM=30°,∴BE=BF,DM=FM,又∵△DMF≌△EBF,∴MF=BF,∴CM=MF=BF,又∵AB=BC=12,∴CM=MF=BF=4.解题思路:本题主要考查了等边三角形的性质、全等三角形的判定与性质的综合应用,解决问题的关键是作平行线,构造等边三角形和全等三角形,根据全等三角形的性质以及等边三角形的性质进行求解.教学建议:熟练掌握等边三角形的性质以及全等三角形的判定和性质.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题7】如图所示,BO平分∠CBA,CO平分∠ACB,过O作EF∥BC,若AB=12,AC=8,求△AEF的周长.【答案】20【解析】根据角平分线的定义可得∠OBE=∠OBC,∠OCF=∠OCB,再根据两直线平行,内错角相等可得∠OBC=∠BOE,∠OCB=∠COF,然后求出∠OBE=∠BOE,∠OCF=∠COF,再根据等角对等边可得OE=BE,OF=CF,即可得证.解:∵BO平分∠CBA,∴∠EBO=∠OBC,∵CO平分∠ACB,∴∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,CF=OF,∴△AEF的周长=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC,∵AB=12,AC=8,∴C=12+8=20.△AEF解题思路:本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.教学建议:熟练掌握等腰三角形的判定和性质以及平行线的性质.难度:4 适应场景:当堂例题例题来源:无年份:2018【练习7.1】在△ABC中,AB=AC,DE∥BC,若M为DE上的点,且BM平分∠ABC,CM平分∠ACB,若△ADE的周长为20,BC=8,求△ABC的周长.【答案】28【解析】分别利用角平分线的性质和平行线的性质,说明DB=DM,EM=EC.把求△ABC的周长转化为△ADE的周长+BC边的长.解:∵BM平分∠ABC,∴∠ABM=∠CBM,∵DE∥BC,∴∠CBM=∠DMB,∴∠ABM=∠DMB,∴DB=DM.同理可证EM=CE∴AB+AC=AD+DB+AE+EC=AD+DM+ME+AE=AD+DE+AE∵△ADE的周长为20∴AB+AC=20∴△ABC的周长=AB+AC+BC=20+8=28.答:△ABC的周长为28.讲解用时:3分钟解题思路:此题主要考查了平行线的性质,角平分线的性质及等腰三角形的判定.本题的关键是利用平行线和角平分线的性质将△ABC的周长转化为△ADE的周长+BC边的长.教学建议:熟练掌握平行线的性质、角平分线的性质以及等腰三角形的判定. 难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题8】如图,D为等边三角形ABC内一点,将△BDC绕着点C旋转成△AEC,则△CDE是怎样的三角形?请说明理由.【答案】△CDE是等边三角形【解析】因为△ABC为等边三角形,所以△BDC绕着点C旋转60°成△AEC,则∠DCE=60°,DC=EC,故可判定△CDE是等边三角形.解:△CDE是等边三角形.理由:∵△ABC为等边三角形,∴∠ACB=60°∴将△BDC绕着点C旋转成△AEC,旋转角为60°∴∠DCE=60°∴DC=EC∴△CDE是等边三角形.讲解用时:3分钟解题思路:本题利用了等边三角形的判定和性质,旋转的性质等知识解决问题.考查学生综合运用数学知识的能力.教学建议:熟练掌握等边三角形的判定和性质,了解“手拉手”模型.难度: 4 适应场景:当堂例题例题来源:无年份:2018【练习8.1】已知,如图,△ABC是正三角形,D,E,F分别是各边上的一点,且AD=BE=CF.请你说明△DEF是正三角形.【答案】△DEF是正三角形【解析】根据等边△ABC中AD=BE=CF,证得△ADE≌△BEF≌△CFD即可得出△DEF是等边三角形.解:∵△ABC为等边三角形,且AD=BE=CF,∴AE=BF=CD,又∵∠A=∠B=∠C=60°,∴△ADE≌△BEF≌△CFD(SAS),∴DF=ED=EF,∴△DEF是等边三角形.讲解用时:3分钟解题思路:本题主要考查了等边三角形的判定与性质和全等三角形判定,根据已知得出△ADE≌△BEF≌△CFD是解答此题的关键.教学建议:熟练掌握等边三角形的判定和性质以及全等三角形的判定.难度: 4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,D,E在△ABC的边BC上,AB=AC,AD=AE,在图中找出一条与BE相等的线段,并说明理由.【答案】BE=CD【解析】根据等腰三角形的性质可得到两组角相等,再根据AAS可判定△ABE ≌△ACD,由全等三角形的性质即可证得BE=CD.解:BE=CD.理由如下:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED.在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD.故答案为CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】如图,已知∠BAC=60°,D是BC边上一点,AD=CD,∠ADB=80°,求∠B的度数.【答案】80°【解析】先根据三角形外角的性质求出∠C的度数,再根据三角形内角和定理即可得出∠B的度数.解:∵∠ADB=80°又∵AD=CD∴∠DAC=∠C=40°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣60°﹣40°=80°.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】已知:如图,AB=BC,∠A=∠C.求证:AD=CD.【答案】AD=CD【解析】连接AC,根据等边对等角得到∠BAC=∠BCA,因为∠A=∠C,则可以得到∠CAD=∠ACD,根据等角对等边可得到AD=DC.证明:连接AC,∵AB=BC,∴∠BAC=∠BCA.∵∠BAD=∠BCD,∴∠CAD=∠ACD.∴AD=CD.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=DB+EC是否成立?为什么?【答案】成立【解析】根据BF和CF分别平分∠ABC和∠ACB,和DE∥BC,利用两直线平行,内错角相等和等量代换,求证出DB=DF,FE=EC.然后即可得出答案.解:DE=DB+EC成立.理由如下:∵在△ABC中,FB和FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠FCB,∵DE∥BC,∴∠DFB=∠FBC=∠DBF,∠EFC=∠FCB=∠ECF,∴DB=DF,FE=EC,∵DE=DF+FE,∴DE=BD+EC.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018【作业5】如图,等边△ABC中,点D在延长线上,CE平分∠ACD,且CE=BD.说明:△ADE是等边三角形.【答案】△ADE是等边三角形【解析】由条件可以容易证明△ABD≌△ACE,进一步得出AD=AE,∠BAD=∠CAE,加上∠DAE=60°,即可证明△ADE为等边三角形.证明:∵△ABC为等边三角形,∴∠B=∠ACB=60°,AB=AC,即∠ACD=120°,∵CE平分∠ACD,∴∠ACE=∠DCE=60°,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,又∵∠BAC=60°,∴∠DAE=60°,∴△ADE为等边三角形.讲解用时:3分钟难度: 4 适应场景:练习题例题来源:无年份:2018。