外文翻译-自动浇花系统
- 格式:doc
- 大小:199.00 KB
- 文档页数:16
自动浇水花盆作文英文回答:Self-watering planters are a type of container that allows plants to access water as needed, without the need for manual watering. They typically have a reservoir that holds water, and a wick or other absorbent material that draws water up to the plant's roots. This type of planteris particularly useful for people who are away from homefor extended periods of time, or who have difficulty watering their plants regularly.There are many different types of self-watering planters available, each with its own advantages and disadvantages. Some planters have a built-in reservoir, while others require the use of a separate container. Some planters have a wick or other absorbent material that draws water up to the plant's roots, while others use a capillary action to draw water up through the soil.When choosing a self-watering planter, it is important to consider the size of the plant, the type of soil, and the amount of water the plant needs. It is also important to consider the environment in which the planter will be used, and the amount of maintenance that is required.Self-watering planters can be a great way to keep plants healthy and hydrated, even when you are away from home. They can also be a good way to save water, and to reduce the amount of time you spend watering your plants.中文回答:自动浇水花盆是一种允许植物在需要时获取水分的容器,无需手动浇水。
本科毕业设计(外文翻译)题目自动浇花系统的设计姓名刘富强专业自动化学号 ********* 指导教师赵明冬郑州科技学院电气工程学院二○一四年五月New Environment Parameters Monitoring And Control System For Greenhouse Based On Master-slave DistributedAbstractAccording to the actual need of monitoring and control of greenhouse environment parameters in rural areas,a master-slave distributed measurement and control system is designed,in which PC is taken as the host. The system consists of PC ,soil moisture measurement and control module,temperature and humidity, and CO2 monitoring and control module. In the system,PC has large amount of data storage which is easy to make use of fuzzy control expert system,configuration software-KingView is used to develop software for PC,by which the development cycle is shorten and a friendly human-computer interaction is provided.Each monitoring and control module consists of STC12 series of microcontrollers,sensors,relays etc.Different modules are select based on the need if system to achieve control greenhouse in partition and block.I INTRODUCTIONTo modern indoor agriculture, the automatic measurement and control of environment parameters is the key to achieve crop yield and quality of greenhouse.In recent years,facilities agriculture develops vigorously in our country,matched with it,the monitoring and control instrument of greenhouse have also made certain development.After nearly 10 years of unremitting hard work,our research team of measurement and control system of agriculture environment parameters,designed an intelligent measurement and control system of distribution combined of greenhouse which can be popularized in the vast rural areas.This system is mainly control of temperature,humidity,CO2 concentration,soil moisture and illumination of greenhouse.OF SCM,as the data storage is small,display interface is single,amount of information is limited,but its capability price ratio is high,so it is used as a front unit of data acquisition and control;and of PC,it has a large amount of data storage,rich software,convenient human-computer interaction,and so on.If we use outdated andlow-priced PC,taking the PC as the upper machine,taking the different function control modules composed of multiple microcomputers as the lower machines,then a master-slave distributed and intelligent control system bases on microcomputer is made up,by which both better monitoring and control,display and data collection or management are achieved,but also lower cost of system is get according to the actual need.II SYSTEM STRUCTURE AND PRINCIPLEThe most marked feature of the distribution combined and intelligent control system greenhouse is that of incorporating with data acquisition, control and management as a whole,module combination, simple structure,convenient human-computer interaction,and using technology of intelligent expert fuzzy control,which can adapt to a variety of crop management control in greenhouse.The basic structure of the system is shown in Fig.1.The structure of the distributed system is composed of two layers:the upper and lower.In the top-price PC is taken as the host to make system management and experts fuzzy operation in intelligent,and to provide a friendly human-computer interface,and to realize the united monitoring and management of greenhouse; the lower is composed of a series of modules of different function,and in each module,a single chip of AT89C is adopted as the lower machine,RS485 is used to communicate PC with all AT89C,and then the collection,processing and control of the greenhouse parameters is achieved.Each function module is completely isolated in electrical,any failure on the nodule does not produce any effect on other modules.The system collects separately ways of environment information through each monitoring andcontrol module,and sends it to host PC through the RS485 interface.And in the PC configuration control system,the acquired parameters are compared with the values of setting,then according to a variety of expert intelligent fuzzy control system of crops at different growth stages,the fuzzy control instructions on the environment temperature,humidity,CO2 concentration,soil water content and the corresponding operation instructions or alarm are given.The system is applied in rural greenhouses in ually at 1/4 near East and West end in a greenhouse,and at the height of 1.5m from the ground in the middle in the northern half (near the wet curtain) and the southern half (near the fan ),a module of air temperature and humidity ,CO2 concentration and a module of soil moisture content are set;a module of soil moisture content will be added in the middle of the greenhouse according to the actual condition;at the height of 1.5m in the main entrance,a water tank is set,of which the solenoid of drip tube should be set based on the need and controlled by module of soil moisture content;and the PC is placed in the main entrance to the greenhouse.III HARDWARE DESIGNA.The CP and communication systemIn the distributed system of data acquisition and control,as the micro control unit is limited in data storage and slow in calculating of complex functions,so PC is used and the master-slave module is adopted in the system,that is a system of,taking PC as the host and taking the SCM systems located in the scene as slave.In this distributed system,communication is the key to it.Generally,the serial port of PC is standard RS232,of which transmission distance is shorter.But in agriculture control system.its communication distance is of tens of meters or several kilometers, so RS232/RS485 converter is used to achieve communication between the PC and SCM.To reduce investment,both considering the user convenience and friendly human-computer interaction,low-price PC of above 486 and below PIV is adopted;and considering the operation of configuration software,it is required that memory is 64M or above and hard disk is 10Gb or above.B. The control modules of temperature and humidity,illuminance and CO2 concentrationEach control unit consists of SCM,sensors,signal processing circuit,RS485 interface and output circuit.The hardware structure of module of temperature andhumidity,CO2 concentration is shown in Fig.2.CO2 concentration is measured by sensor based on NDIR technology,measurement is of 0~2×103mol.Through the sensor,control system,by software of digital filter,linear interpolation and temperature compensation,the CO2 concentration is output as digital adhered to UART protocol,and then is input directly to the SCM.The new intelligent sensor of SHT11 based on CMOSens technology is chosen in the measurement of temperature and humidity.In SHT11,the temperature and humidity sensors,signal amplification,A/D,I2C bus are all integrated in a chip;it has full-scale calibration,second-line digital output,and humidity measuring range of 0~100% RH,temperature measurement range of -40℃~+123.8℃,humidity measurement accuracy of ±3.0% RH,temperature measurement accuracy of ±0.4℃,the response time of <4s.The illuminance sensor of JY1-TBQ-6 of silicon photovoltaic detection is used Light measuring.Its measurement range is 0~200,000 Lux;spectral range is 400~700(nm) visible light;measurement error is less than 2%; output is 4~20mA or 0~20mV;output signal can be directly send to the A/D of the SCM after being amplified to 0~4V.Modules accept the instructions form the the Upper,and output via the output circuit .The output circuit consists of optical isolation,the signal driver and the output relays.C. The measurement and control modules of soil moistureWater is a polar medium, the dielectric constant of the soil containing water is mainly determined by the water,when water content is different,the wave impedanceis different.The soil moisture is measured by standing wave radio method in this system.Based on the theory of Engineering Electromagnetic Field,for lossy medium,the electromagnetic wave impedance as follows:Z0=√μ/ε(1+jλ/(ωε))Where μ is medium permeability,and μ of soil is μ≈μ0 is the vacuum permeability;ε is medium dielectric constant;λ is medium conductivity;ω is electromagnetic wave frequency.In the very low audio(<2000Hz),the loss tangent of dry soil dielectric is λ/ωε≈0.07,if you choose the frequency of the signal source at above 20MHz.then,ε≈ε∞,the imaginary part of the soil wave impedance is neglect,only the real part,which amounts to a pure resistance.Soil moisture sensor consists of 100MHz signal source,a coaxial transmission line and a 4-pin stainless probe.The electromagnetic waves of signal transmit to the probe along the lines.As the probe impedance and line impedance are different,the superimposition of incident waves and reflected waves forms a standing waves.Taking the coaxial transmission line as a lossless uniform line,wave impedance is Z0,Z l is the load impedance.Then the reflected coefficient of voltage wave at the probe is:Γ=(Z L-Z0)/(Z L+Z0)Choosing the length of transmission line is l=λ/4,the maximum and minimum of both ends of the line are U max and U min,Then the standing wave radio in the line can be expressed as:S=U max /U min =(1-|Γ|)/(1+|Γ|)In the way,the soil moisture radio can be measured by measuring the standing wave rate of transmission line.As shown in Fig.3.,soil moisture module consists of sensors and controllers,the sensors are subordinated to controllers,controllers can be omitted without the need of irrigation in greenhouse.To simplify the control,irrigation technology of node-type in partition is adopted in the control soil moisture in this system.To a certain extent,the parameters of upper and lower the ground can be decoupled by adopting this technology.IV CONTROL SYSTEM PROGRAMMINGThe software of PC is developed by KingView 6.51 of Beijing-controlled Asia.This configuration software has high reliability,shorter development cycle,perfect capability of graphical interface generation,and friendly human-computer interaction;and can create dynamic images and charts in accordance with the layout of equipment in the scene;can visually display the changes of parameters,control status,and can give an alarm when over-limited;and can achieve fuzzy control of greenhouse parameters by using the history curve of environment parameters stored in the specific database and adopting the agricultural expert system.The software of SCM of the slave is developed by Keil C51 to achieve real-time collecting,processing,uploading of the parameters and accept the fuzzy control instructions from the host computer and complete local control of the device.A.Program design of the control moduleThe software of the sub-slave machine of soil moisture module,that include the main function,subroutines of data acquisition and processing,interrupt handling andcommunicating etc,read the value of standing wave voltage through the parallel data port and obtained the value of soil moisture content by function calculating.The software of the slave machine of monitoring and control of soil moisture mainly complete data communication with the sub-slave machine,uploading measurement data and current control state to the host computer,accepting the fuzzy control instructions from the host computer and output the implementation instructions.The software of the slave machine of temperature and humidity,and CO2 mainly complete reading data of CO2 concentrations and temperature and humidity through the I2C concentration,uploading measurement data and current control state to the host computer,accepting the fuzzy control instructions from the host computer and output the implementation instructions.The structure of the main program and interrupt subroutine of temperature and humidity module are shown in Fig.4.The serial interrupt mode 3 is adopted by all slaves to communicate with the host,transmit the digital collecting and receive instructions.B. Program design of PC and fuzzy control system1)The communication settings of KingView 6.51:In order to ensure the correctness of communication,the upper and lower must follow the same communication protocol,set the communication ually in communication,master-slave mode is adopted in style and responder is adopted in the process.That is ,the master sent a command to the slave first,then et slave give an answer after receiving the command,thus once communication is completed.In KingView ,a scheduled polling method is adopted to do reading and writing between the lower machine by PC.In the project browser of KingView,first,click device →COM1;in the wizard of device configuration,select intelligent modules→SCM→current SCM of HEX→serial port,and then ser parameters for the host computer’s communication.2)The connection of KingView 6.51 and database:Database is the core of the software,that not only contains the definition of variables,real-time parameters and the historical parameters,but also is needed by parameters alarming,fuzzy calculating,reporting ,and displaying.Access2003 desktop database is used as records database of the system,and by using SQL,it is operated by KingView via ODBC.The procedure is :to create data variables in KingView to create a body of records toestablish a data source of ODBC to create query screens and make the screen connection.To connected with Microsoft Access2003,the functions of SQLConnect(),SQLSelect(),SQLLast(),SQLNext(),SQLFist(),SQLPrew(),SQLInsrt() ,and so on,should be implemented in the command language,and then real-time storage and inquiry of data are completed.3)Software design of PC :For the control system of greenhouse,data storage capacity of the PC is unlimited,so if the existing mature software modules are include into the system,it both be relaxed and can improve the system reliability.The software of software consists of control module and management module.V CONCLUSIONAccording to the economic bearing capacity of farmer in Qinhuangdao ,with the existing technology of monitoring and control of environment parameters of greenhouse,a master-slave distributed automatic control system of greenhouse environment in which PC is taken as the host computer is developed.The system has following characteristics:1)With the large amount of data storage of PC,fuzzy control expert system is easy of data storage,modification and system upgrading.2)By using KingView to develop software of PC,the system reliability is improved,and the development cycle is shorten,and a friendly human-computer interface is get.3)A distributed and modular structure is used in the system,it makes the system maintenance easier and adapts to production needs more. The monitoring and control modules of the slave are connected to the host through the RS485 bus based on needs,then the control of greenhouse in partition or block can be achieved.基于新的温室环境参数监测和控制系统根据实际在农村地区的温室环境参数的监测和控制,主从分布式测量和控制系统的设计需要,以其中一台计算机作为主机,该系统由PC、土壤水分测量和控制模块,温度、湿度、CO2监测和控制模块组成。
[每日一酷]Blossom 智能灌溉控制器
bossom 是一个简单、智能且经济实用的灌溉控制器,它可以根据你花园的植物类型并结合天气情况为你定制精准的灌溉计划。
并通过你的智能设备将信息呈现给您,与传统靠感觉为植物浇水相比,bossom灌溉系统即科学合理而且还可以让你避免浪费水资源。
bossom灌溉系统包括三部分组成,控制器是整个系统的中枢系统,直觉与云端相连通过数据和智能算法为你优化灌溉计划。
桥接器可以将你的控制器通过wifi或者网线介入家里的路由让控制器接入互联网。
app应用,通过应用你可以随时随地查看灌溉系统的浇水状态。
bossom综合来看主要为我们解决了植物的合理灌溉,即为你简化了灌溉的繁琐工作,又节约了水资源,是不是非常实用呢?目前该产品在kickstarter上众筹,如果你家里有一片小花园你不妨一试。
[每日一酷] 用最简洁的文字、精美的图片每天为您推荐一款新奇特智能产品。
本科毕业设计(外文翻译)题目自动浇花系统的设计姓名刘富强专业自动化学号201042048 指导教师赵明冬郑州科技学院电气工程学院二○一四年五月New Environment Parameters Monitoring AndControl System For Greenhouse Based OnMaster-slave DistributedAbstractAccording to the actual need of monitoring and control of greenhouse environment parameters in rural areas,a master-slave distributed measurement and control system is designed,in which PC is taken as the host. The system consists of PC ,soil moisture measurement and control module,temperature and humidity, and CO2 monitoring and control module. In the system,PC has large amount of data storage which is easy to make use of fuzzy control expert system,configuration software-KingView is used to develop software for PC,by which the development cycle is shorten and a friendly human-computer interaction is provided.Each monitoring and control module consists of STC12 series of microcontrollers,sensors,relays etc.Different modules are select based on the need if system to achieve control greenhouse in partition and block.I INTRODUCTIONTo modern indoor agriculture, the automatic measurement and control of environment parameters is the key to achieve crop yield and quality of greenhouse.In recent years,facilities agriculture develops vigorously in our country,matched with it,the monitoring and control instrument of greenhouse have also made certain development.After nearly 10 years of unremitting hard work,our research team of measurement and control system of agriculture environment parameters,designed an intelligent measurement and control system of distribution combined of greenhouse which can be popularized in the vast rural areas.This system is mainly control of temperature,humidity,CO2 concentration,soil moisture and illumination of greenhouse.OF SCM,as the data storage is small,display interface is single,amount of information is limited,but its capability price ratio is high,so it is used as a front unit of data acquisition and control;and of PC,it has a large amount of data storage,rich software,convenient human-computer interaction,and so on.If we use outdated and low-priced PC,taking the PC as the upper machine,taking the different function control modules composed of multiple microcomputers as the lower machines,then a master-slave distributed and intelligent control system bases on microcomputer is made up,by which both better monitoring and control,display and data collection or management are achieved,but also lower cost of system is get according to the actual need.II SYSTEM STRUCTURE AND PRINCIPLEThe most marked feature of the distribution combined and intelligent control system greenhouse is that of incorporating with data acquisition, control and management as a whole,module combination, simple structure,convenient human-computer interaction,and using technology of intelligent expert fuzzy control,which can adapt to a variety of crop management control in greenhouse.The basic structure of the system is shown in Fig.1.The structure of the distributed system is composed of two layers:the upper and lower.In the top-price PC is taken as the host to make system management and experts fuzzy operation in intelligent,and to provide a friendly human-computer interface,and to realize the united monitoring and management of greenhouse; the lower is composed of a series of modules of different function,and in each module,a single chip of AT89Cis adopted as the lower machine,RS485 is used to communicate PC with all AT89C,and then the collection,processing and control of the greenhouse parameters is achieved.Each function module is completely isolated in electrical,any failure on the nodule does not produce any effect on other modules.The system collects separately ways of environment information through each monitoring and control module,and sends it to host PC through the RS485 interface.And in the PC configuration control system,the acquired parameters are compared with the values of setting,then according to a variety of expert intelligent fuzzy control system of crops at different growth stages,the fuzzy control instructions on the environment temperature,humidity,CO2 concentration,soil water content and the corresponding operation instructions or alarm are given.The system is applied in rural greenhouses in ually at 1/4 near East and West end in a greenhouse,and at the height of 1.5m from the ground in the middle in the northern half (near the wet curtain) and the southern half (near the fan ),a module of air temperature and humidity ,CO2 concentration and a module of soil moisture content are set;a module of soil moisture content will be added in the middle of the greenhouse according to the actual condition;at the height of 1.5m in the main entrance,a water tank is set,of which the solenoid of drip tube should be set based on the need and controlled by module of soil moisture content;and the PC is placed in the main entrance to thegreenhouse.III HARDWARE DESIGNA.The CP and communication systemIn the distributed system of data acquisition and control,as the micro control unit is limited in data storage and slow in calculating of complex functions,so PC is used and the master-slave module is adopted in the system,that is a system of,taking PC as the host and taking the SCM systems located in the scene as slave.In this distributed system,communication is the key to it.Generally,the serial port of PC is standard RS232,of which transmission distance is shorter.But in agriculture control system.its communication distance is of tens of meters or several kilometers, so RS232/RS485 converter is used to achieve communication between the PC and SCM.To reduce investment,both considering the user convenience and friendly human-computer interaction,low-price PC of above 486 and below PIV is adopted;and considering the operation of configuration software,it is required that memory is 64M or above and hard disk is 10Gb or above.B. The control modules of temperature and humidity,illuminance and CO2 concentrationEach control unit consists of SCM,sensors,signal processing circuit,RS485 interface and output circuit.The hardware structure ofmodule of temperature and humidity,CO2 concentration is shown in Fig.2.CO2 concentration is measured by sensor based on NDIR technology,measurement is of 0~2×103mol.Through the sensor,control system,by software of digital filter,linear interpolation and temperature compensation,the CO2 concentration is output as digital adhered to UART protocol,and then is input directly to the SCM.The new intelligent sensor of SHT11 based on CMOSens technology is chosen in the measurement of temperature and humidity.In SHT11,the temperature and humidity sensors,signal amplification,A/D,I2C bus are all integrated in a chip;it has full-scale calibration,second-line digital output,and humidity measuring range of 0~100% RH,temperature measurement range of -40℃~+123.8℃,humidity measurement accuracy of ±3.0% RH,temperature measurement accuracy of ±0.4℃,the response time of <4s.The illuminance sensor of JY1-TBQ-6 of silicon photovoltaicdetection is used Light measuring.Its measurement range is 0~200,000 Lux;spectral range is 400~700(nm) visible light;measurement error is less than 2%; output is 4~20mA or 0~20mV;output signal can be directly send to the A/D of the SCM after being amplified to 0~4V.Modules accept the instructions form the the Upper,and output via the output circuit .The output circuit consists of optical isolation,the signal driver and the output relays.C. The measurement and control modules of soil moistureWater is a polar medium, the dielectric constant of the soil containing water is mainly determined by the water,when water content is different,the wave impedance is different.The soil moisture is measured by standing wave radio method in this system.Based on the theory of Engineering Electromagnetic Field,for lossy medium,the electromagnetic wave impedance as follows:Z0=√μ/ε(1+jλ/(ωε))Where μ is medium permeability,and μ of soil is μ≈μ0 is the vacuum permeabil ity;ε is medium dielectric constant;λ is medium conductivity;ω is electromagnetic wave frequency.In the very low audio(<2000Hz),the loss tangent of dry soil dielectric is λ/ωε≈0.07,if you choose the frequency of the signal source at above 20MHz.then,ε≈ε∞,the imaginary part of the soil wave impedance is neglect,only the real part,which amounts to a pure resistance.Soil moisture sensor consists of 100MHz signal source,a coaxial transmission line and a 4-pin stainless probe.The electromagnetic waves of signal transmit to the probe along the lines.As the probe impedance and line impedance are different,the superimposition of incident waves and reflected waves forms a standing waves.Taking the coaxial transmission line as a lossless uniform line,wave impedance is Z0,Z l is the load impedance.Then the reflected coefficient of voltage wave at the probe is:Γ=(Z L-Z0)/(Z L+Z0)Choosing the length of transmission line is l=λ/4,the maximum and minimum of both ends of the line are U max and U min,Then the standing wave radio in the line can be expressed as:S=U max /U min =(1-|Γ|)/(1+|Γ|)In the way,the soil moisture radio can be measured by measuring the standing wave rate of transmission line.As shown in Fig.3.,soil moisture module consists of sensors and controllers,the sensors are subordinated to controllers,controllers can be omitted without the need of irrigation in greenhouse.To simplify the control,irrigation technology of node-type in partition is adopted in the control soil moisture in this system.To a certain extent,the parameters of upper and lower the ground can be decoupled by adopting this technology.IV CONTROL SYSTEM PROGRAMMINGThe software of PC is developed by KingView 6.51 of Beijing-controlled Asia.This configuration software has high reliability,shorter development cycle,perfect capability of graphical interface generation,and friendly human-computer interaction;and can create dynamic images and charts in accordance with the layout of equipment in the scene;can visually display the changes of parameters,control status,and can give an alarm when over-limited;and can achieve fuzzy control of greenhouse parameters by using the history curve of environment parameters stored in the specific database and adopting the agricultural expert system.The software of SCM of the slave is developed by Keil C51 to achieve real-time collecting,processing,uploading of the parameters and accept the fuzzy control instructions from the host computer and complete local control of the device.A.Program design of the control moduleThe software of the sub-slave machine of soil moisture module,that include the main function,subroutines of data acquisition and processing,interrupt handling and communicating etc,read the value of standing wave voltage through the parallel data port and obtained the value of soil moisture content by function calculating.The software of the slave machine of monitoring and control of soil moisture mainly complete data communication with the sub-slave machine,uploading measurement data and current control state to the host computer,accepting the fuzzy control instructions from the host computer and output the implementation instructions.The software of the slave machine of temperature and humidity,and CO2 mainly complete reading data of CO2 concentrations and temperature and humidity through the I2C concentration,uploading measurement data and current control state to the host computer,accepting the fuzzy control instructions from the host computer and output the implementation instructions.The structure of the main program and interrupt subroutine of temperature and humidity module are shown in Fig.4.The serial interrupt mode 3 is adopted by all slaves to communicate with the host,transmit the digital collecting and receive instructions.B. Program design of PC and fuzzy control system1)The communication settings of KingView 6.51:In order to ensurethe correctness of communication,the upper and lower must follow the same communication protocol,set the communication ually in communication,master-slave mode is adopted in style and responder is adopted in the process.That is ,the master sent a command to the slave first,then et slave give an answer after receiving the command,thus once communication is completed.In KingView ,a scheduled polling method is adopted to do reading and writing between the lower machine by PC.In the project browser of KingView,first,click device →COM1;in the wizard of device configuration,select intelligent modules→SCM→current SCM of HEX→serial port,and then ser parameters for the host computer’s communication.2)The connection of KingView 6.51 and database:Database is the core of the software,that not only contains the definition of variables,real-time parameters and the historical parameters,but also is needed by parameters alarming,fuzzy calculating,reporting ,and displaying.Access2003 desktop database is used as records database of the system,and by using SQL,it is operated by KingView via ODBC.The procedure is :to create data variables in KingView to create a body of records to establish a data source of ODBC to create query screens and make the screen connection.To connected with Microsoft Access2003,the functions of SQLConnect(),SQLSelect(),SQLLast(),SQLNext(),SQLFist(),SQLPrew(),SQLInsrt(),and so on,should be implemented in the command language,and then real-time storage and inquiry of data are completed.3)Software design of PC :For the control system of greenhouse,data storage capacity of the PC is unlimited,so if the existing mature software modules are include into the system,it both be relaxed and can improve the system reliability.The software of software consists of control module and management module.V CONCLUSIONAccording to the economic bearing capacity of farmer in Qinhuangdao ,with the existing technology of monitoring and control of environment parameters of greenhouse,a master-slave distributed automatic control system of greenhouse environment in which PC is taken as the host computer is developed.The system has following characteristics:1)With the large amount of data storage of PC,fuzzy control expert system is easy of data storage,modification and system upgrading.2)By using KingView to develop software of PC,the system reliability is improved,and the development cycle is shorten,and a friendly human-computer interface is get.3)A distributed and modular structure is used in the system,it makes the system maintenance easier and adapts to production needs more. The monitoring and control modules of the slave are connectedto the host through the RS485 bus based on needs,then the control of greenhouse in partition or block can be achieved.基于新的温室环境参数监测和控制系统根据实际在农村地区的温室环境参数的监测和控制,主从分布式测量和控制系统的设计需要,以其中一台计算机作为主机,该系统由PC、土壤水分测量和控制模块,温度、湿度、CO2监测和控制模块组成。
AUTO SPRAY (全润)智能喷灌控制器操作使用手册一、 功能:1、全润(Auto Spray)智能喷灌控制器的功能及作用:1.1、科学合理地保证地面喷灌与空中喷雾,通过有效保证植物叶面湿度、降低植物叶面蒸腾系数,从而有效降低植物体内生理水份散失,提高苗木特别是返苗期的成活率;1.2、通过人工智能控制,可以有效保证土壤合理含水量、保证土壤具有良好的通气性能,促进植物根系呼吸作用,提高各类植物成活率,减少施工企业由于苗木死亡带来无谓的重复投资;1.3、人工智能管理园林施工及后期养护工作中的浇灌工作,最大限度降低浇灌人工费用投入,可节约浇灌人工费的98%;1.4、可将灌溉与园林喷药及叶面施肥相灵活结合,更大程度地节约人工。
1.5、一次投资、多次使用、节省浇灌人工投入、多次受益。
全润人工智能灌溉控制系统在总结多年植物种植及养护工程实践中的经验,拆卸、安装方便,运行稳定,启动方便,一套系统可多次使用,特别适合于园林施工企业投资购买。
2、全润智能喷灌控制器的适用范围:2.1、草坪草籽播种后的浇灌工作;2.2、播种草坪的成坪期浇灌工作;2.3、草坪植生带栽植后的返苗浇灌工作;2.4、灌木种植过程浇灌工作;2.5、灌木返苗期期浇灌工作;2.6、乔木返苗期浇灌工作;2.7、模糊灌溉工作;3、全润智能喷灌控制器的比较优势国内外市面上现有的喷灌控制器如索罗润(Solo Rain)、托罗(Toro)、雨鸟(Rain Bird)、亨特(Hunter)等控制器,都是在设定的时间段内进行浇灌控制,这些控制器大部分都可以设定每天几个时间段进行浇灌、每个时间段有多长时间等,由操作员对每个控制器按每天计划浇灌的时间进行设定,虽然也可以节省人工,但并不能合理地为植物提供水份需求。
我们知道,不同植物在不同生长时期对水份的需求是有很大差异的,而植物返苗期间或炎热的夏季仅仅通过地面浇水也是片面的,对植物的浇灌工作应从更为全面的情况考虑。
自动浇花器作文The automatic watering system is a technological innovation that has revolutionized the way we care for our plants. 这种自动浇水系统是一种技术创新,已经彻底改变了我们照顾植物的方式。
One of the key advantages of an automatic watering system is the convenience it offers. 通过自动浇水系统,我们可以轻松地对植物进行定时浇水。
Imagine not having to worry about remembering to water your plants every day – the automatic watering system takes care of that for you. 想象一下不用担心每天记得给植物浇水——自动浇水系统为你打理这些。
This can be especially helpful for individuals who may have busy schedules or are forgetful when it comes to plant care. 这对于那些可能有忙碌日程或在植物护理方面健忘的人来说尤其有帮助。
Another benefit of an automatic watering system is the ability to provide consistent and precise watering for your plants. 自动浇水系统的另一个好处是能够为植物提供一致和精确的浇水。
This can help prevent both over-watering and under-watering, which are common problems that can lead to damaged or unhealthy plants. 这可以帮助防止过度浇水和欠水,这是可能导致植物受损或不健康的常见问题。
基于AT89S52自动浇花系统的设计汪晓晨【摘要】This stystem use AT89S52 as the core chip,use SLHT5-4 as the soil moisture content.Through information col ection、information comparing 、through the relay control imformation ,It can drive pump control system,the automatic flower watering work is completed,this stystem provide hardware design block diagram and software design process.%本系统采用AT89S52单片机为核心芯片,利用温度传感器SLHT5-4来采集土壤的湿度。
经过信息采集、信息比较、通过继电器控制信息,驱动水泵控制电路工作,实现自动浇花,给出硬件设计电路框图、软件设计流程。
【期刊名称】《电子制作》【年(卷),期】2015(000)002【总页数】1页(P2-2)【关键词】AT89S52;自动浇花;SLHT5-4【作者】汪晓晨【作者单位】新乡学院物理与电子工程学院河南新乡 453000【正文语种】中文【中图分类】TP368.2现代生活的节奏越来越快,很多人喜欢在工作地点、生活区间、公共场所等地方用绿色植物来点缀。
但对绿色植物的维护、保养是需要花不少时间去完成的,当由于种种原因忘记定时对花卉及时浇水时,设计一个家用自动浇花系统就十分必要。
本系统主要使用AT89S52单片机为控制芯片,输入信号由土壤湿度传感器SLHT5-4提供,系统中还包含电源部分、独立键盘、LCD显示和继电器控制部分等组成。
软件部分采用C语音编程,对各功能部分采用模块化设计思路。
系统设计框图如图1所示。
基于单片机的自动浇花系统的设计作者:***来源:《微型电脑应用》2019年第07期摘要:针对人们由于工作繁忙或出差而导致植物浇水难的问题,设计一个基于单片机的智能自动浇花系统。
系统由单片机、电源电路、显示电路、土壤检测模块、按键电路和水泵电路组成。
AT89C51单片机作为控制器,接收湿度传感模块YL69测得的土壤湿度,当湿度小于设置的下限值时,水泵自动打开进行浇水,直到湿度大于设置的上限值,水泵自动关闭,LCD 显示器显示当前土壤湿度及设定湿度的上下限值。
系统操作简便,成本低廉,在实际生活中有很好的应用价值。
关键词:自动浇花; 单片机; 湿度传感器中图分类号: TP311文献标志码: ADesign of Automatic Watering System Based on Single Chip MicrocomputerLIU Ruini(College of Engineering and Technology,Xi’an Fanyi University, X i’an 710105)Abstract: In order to solve the problem that people are difficult to water the plants due to busy work or business trip, an intelligent automatic watering system based on single chip microcomputer is designed. The system consists of ;single chip microcomputer, ;power supply circuit, ;display circuit, ;soil detecting module, ;button circuit, and ;water pump circuit. The AT89C51 singlechip microcomputer is used as the controller to receive the soil moisture measured by the humidity sensing module YL69. When the humidity is lower than the lower limit value, the water pump automatically opens for watering until the humidity is greater than the upper limit value, and the water pump automatically shuts down. LCD display shows current soil moisture and upper and lower limits of set humidity. The system is easy to operate, low in cost, and has good application value in real life.Key words: Automatic watering; Single chip microcomputer; Humidity sensor0引言现今,很多生活在城市中的人们纷纷在家中或办公室种植各种绿色植物,用于净化空气,改善生活、工作环境,享受田园生活,陶冶情操。
改善浇水系统英语作文Improving the Watering System。
Watering plants is an essential part of gardening, but it can be a time-consuming and labor-intensive task. To improve efficiency and effectiveness, many gardeners have turned to advanced watering systems. In this essay, we will explore the various ways to improve the watering system and the benefits it brings to gardening.One of the most popular ways to improve the watering system is by installing a drip irrigation system. This system delivers water directly to the roots of the plants, reducing water waste and minimizing evaporation. It also allows for precise control over the amount of water each plant receives, ensuring that they get just the right amount of moisture they need. Additionally, drip irrigation systems can be automated, saving gardeners time and effort.Another way to improve the watering system is by usinga soaker hose. Similar to drip irrigation, a soaker hose delivers water directly to the base of the plants. It is a cost-effective and efficient way to water plants, as it reduces water runoff and evaporation. Soaker hoses are also easy to install and can be used in various garden settings, from vegetable gardens to flower beds.In addition to these advanced watering systems, there are also simple yet effective ways to improve thetraditional watering methods. For example, using a watering can with a narrow spout allows for precise watering, ensuring that the water reaches the roots of the plants without splashing onto the leaves. This helps to prevent diseases and fungal growth, which can occur when thefoliage remains wet for extended periods.Furthermore, mulching the soil is another effective way to improve the watering system. Mulch helps to retain moisture in the soil, reducing the frequency of watering and preventing water loss through evaporation. It also helps to regulate soil temperature, suppress weeds, and improve the overall health of the plants.By improving the watering system, gardeners can enjoy a range of benefits. Firstly, it saves time and effort, as advanced watering systems can be automated and require less manual labor. This allows gardeners to focus on other aspects of gardening, such as planting, pruning, and harvesting. Secondly, it conserves water, as advanced watering systems are designed to minimize water waste and evaporation. This is not only beneficial for the environment but also helps to reduce water bills for gardeners. Lastly, it promotes healthier plants, as precise watering and soil moisture control contribute to theoverall well-being of the plants.In conclusion, improving the watering system is essential for efficient and effective gardening. Whether it is through the installation of advanced watering systems like drip irrigation and soaker hoses, or through simple yet effective methods like using a watering can with a narrow spout and mulching the soil, there are various ways to enhance the way we water our plants. By doing so, gardeners can save time and effort, conserve water, andpromote healthier plants, ultimately leading to a more successful and enjoyable gardening experience.。
题目盆花自动浇水系统的设计与实现学生某某 ***** 学号 1013014014 所在学院物理与电信工程学院专业班级电子***指导教师******** __ _完成地点某某理工学院2014年 6月16日盆花自动浇水系统的设计与实现*****〔某某理工学院物理与电信工程学院电子信息工程专业,20**级*班,某某某某 723003〕指导教师:******[摘要]本次设计的盆花自动浇水系统用STC89C52RC单片机为主控芯片,用DHT11温湿度传感器进展土壤温湿度的检测,用时钟芯片DS1302进展定时控制,并通过雨水检测器进展雨水检测,再将温湿度采集结果与当前时间在LCD1602显示屏上进展显示。
如遇雨天自动停止浇水,否如此假如湿度低于设定的下限值时,单片机输出一个控制信号,蓝灯亮,继电器工作,开始浇水;假如湿度高于上限值时,单片机输出一个控制信号,蓝灯灭,继电器关闭,停止浇水。
[关键词]STC89C52RC ;温湿度传感器DHT11 ;时钟芯片DS1302 ;液晶显示器LCD ;继电器The design and implementation of the potted flowerautomatic watering system******(Class*,20**, School of Physics and Electronic Information Engineering,Electronics and Information Engineering Dept, Shaanxi University of Technology,Hanzhong 723003,Shaanxi)Tutor:******Abstract:The design of the potted flower automatic watering system with STC89C52RC microcontroller as main control chip, using DHT11 temperature and humidity sensors for the detection of soil temperature and humidity, applying a time clock chip DS1302 for timing control, and through the rain detector testform rain, and temperature and humidity collection results and the current time on the LCD1602 screen for display.In case of rain automatically stop watering, otherwise if the humidity is below the lower limit set by the microcontroller outputs a control signal, blue lights, relays, start watering; If the humidity is higher than the upper limit, the microcontroller outputs a control signal, the blue light off, relay closed and stop watering.Keyword:STC89C52RC;DHT11 temperature and humidity sensor;DS1302 clock chip;liquid crystal display LCD;relay目录引言11 设计方案选择3342 主要元器件介绍52.1STC89C52单片机 (5)682.4DS1302时钟芯片103 硬件电路设计13晶振电路13复位电路133.3DHT11温湿度传感器模块133.4LCD显示模块14定时器模块14按键模块15雨水检测器模块15继电器电路154 软件设计174.1土壤温湿度的检测与浇水控制系统 (17)4.2定时器的设置与浇水控制系统 (17)5 安装与调试19195.2定时器的设置与浇水控制系统 (20)总结22致谢23参考文献24附录A 外文翻译25附录B 整理电路图33附录C 实物图34附录D元器件清单35附录E 程序36引言“有喜有忧,有笑有泪,有花有果,有香有色〞这是老舍先生对养花的乐趣和对生活热爱的朴实表述。
自动浇水花盆作文英文回答:Automatic watering flower pots are a great invention that has made gardening much easier and more convenient. With the help of technology, these pots are able to provide the right amount of water to the plants, ensuring their proper growth and health.One of the main advantages of automatic watering flower pots is that they save a lot of time and effort. As a busy person, I often find it difficult to remember to water my plants regularly. However, with these pots, I don't have to worry about forgetting to water them. The pots are equipped with sensors that detect the moisture level of the soil and automatically release water when needed. This means that even if I am away for a few days, my plants will still receive the necessary hydration.Another benefit of automatic watering flower pots isthat they prevent overwatering. Overwatering is a common mistake that many gardeners make, which can lead to rootrot and other plant diseases. These pots have a built-in system that ensures the plants receive just the right amount of water, preventing any excess water from accumulating in the soil. This not only keeps the plants healthy, but also saves water in the long run.In addition, automatic watering flower pots are environmentally friendly. They use water efficiently and only provide water when it is needed. This reduces water wastage and helps conserve this precious resource. Moreover, these pots are often made from recycled materials, further reducing their environmental impact.Furthermore, these pots are also aesthetically pleasing. They come in various designs and colors, allowing me to choose the ones that complement my garden or indoor space. Some pots even have LED lights that create a beautiful ambiance at night. This adds a touch of elegance and sophistication to my garden or home.Overall, automatic watering flower pots have revolutionized the way we take care of our plants. They save time and effort, prevent overwatering, are environmentally friendly, and add beauty to our surroundings. With these pots, gardening has become much more enjoyable and stress-free.中文回答:自动浇水花盆是一项伟大的发明,使园艺工作变得更加轻松和便利。
农业滴灌系统英语介绍作文英文:Agricultural irrigation is a crucial aspect of farming, and the use of drip irrigation systems has revolutionizedthe way we water our crops. Drip irrigation, also known as micro-irrigation, is a method of delivering small, precise amounts of water directly to the roots of plants. This isin contrast to traditional flood irrigation, which can lead to water wastage and uneven distribution.One of the main advantages of drip irrigation is its water efficiency. By delivering water directly to the roots, it minimizes evaporation and runoff, ensuring that theplants receive the water they need without wasting any.This is especially important in areas where water is scarce or expensive.Another benefit of drip irrigation is its ability to deliver nutrients directly to the plants. Farmers can mixfertilizers or other nutrients with the irrigation water, ensuring that the plants receive a steady supply of essential nutrients for their growth.In addition, drip irrigation systems can be automated, allowing farmers to set timers and control the frequency and duration of watering. This not only saves time and labor, but also ensures that the plants receive consistent and uniform watering.Furthermore, drip irrigation can also help to control weeds and reduce the spread of diseases. By delivering water only to the plants, it creates a drier environment between the rows, making it less favorable for weed growth. Additionally, by keeping the foliage dry, it can help to prevent the spread of certain plant diseases that thrive in wet conditions.Overall, the use of drip irrigation systems has led to increased crop yields, improved water efficiency, and reduced labor costs for farmers. It has trulyrevolutionized the way we approach agricultural irrigation.中文:农业灌溉是农业生产中至关重要的一环,滴灌系统的使用彻底改变了我们浇灌作物的方式。
智能浇花系统系统的毕业设计英文回答:Abstract.This graduation project aims to develop a smart watering system utilizing advanced sensors and IoT connectivity to optimize plant irrigation and water conservation. The system comprises several automated components, including soil moisture sensors, water valves, and a central controller. The sensors monitor soil moisture levels in real-time, triggering the water valves to dispense precise amounts of water when necessary. The controller manages the irrigation schedule based on pre-defined parameters, ensuring efficient water usage and healthy plant growth.System Architecture.The smart watering system is designed with a modulararchitecture, consisting of the following components:Soil Moisture Sensors: Capacitive sensors continuously monitor soil moisture content, providing real-time data to the controller.Water Valves: Solenoid valves are connected to the water supply and are controlled by the controller to dispense water as needed.Central Controller: A microcontroller serves as the brain of the system, collecting data from the sensors, managing the watering schedule, and actuating the water valves.IoT Connectivity: The controller is connected to a cloud platform via Wi-Fi or cellular connectivity, enabling remote access and data analysis.Features.The smart watering system offers several key features:Automated Irrigation: The system automatically irrigates plants based on soil moisture levels, eliminating the need for manual watering.Precise Water Control: The water valves dispense precise amounts of water, ensuring plants receive the optimal amount of moisture.Water Conservation: The system optimizes water usage by only watering when necessary, preventing overwatering and water waste.Plant Health Monitoring: The soil moisture data can be analyzed to monitor plant health and identify potential issues early on.Remote Access: The IoT connectivity allows users to remotely monitor the system, adjust watering schedules, and receive alerts from anywhere with an internet connection.Implementation and Testing.The smart watering system was implemented using a microcontroller, soil moisture sensors, water valves, and an IoT module. The system was tested in a controlled greenhouse environment using various plant species and soil conditions. The results demonstrated that the system effectively maintained optimal soil moisture levels, resulting in healthy plant growth and significant water savings.Conclusion.In conclusion, the smart watering system developed in this graduation project offers a comprehensive solution for optimizing plant irrigation and water conservation. Its automated operation, precise water control, and remote monitoring capabilities make it an ideal tool for both indoor and outdoor gardening applications, ensuring healthy plants and sustainable water usage.中文回答:摘要。
题目自动浇花系统的设计学生姓名薛婵娟学号 ********** 所在学院物理与电信工程学院专业班级通信工程1201班指导教师刘亚锋完成地点物理与电信工程学院实验室2016年 6 月 5 日陕西理工学院本科毕业设计任务书院(系) 物理与电信工程学院专业班级通信工程(通信1201) 学生姓名薛婵娟一、毕业设计题目自动浇花系统的设计二、毕业设计工作自 2015 年 12 月 9 日起至 2016 年 6 月 18 日止三、毕业设计进行地点: 物理与电信工程学院实验室四、毕业设计应完成内容及相关要求:现代生活的节奏越来越快,很多人喜欢在工作地点、生活区间、公共场所等地方用绿色植物来点缀,既美化环境又能改善空气质量。
但对绿色植物的维护、保养是需要花不少时间去完成的,当由于种种原因忘记定时对花卉及时浇水时,或浇水的量过多或过少,反而会给人们带来很多麻烦和损失,因此设计一个家用自动浇花系统就十分必要。
本系统采用单片机为核心芯片,利用湿度传感器来采集土壤的湿度。
经过信息采集、信息比较、通过继电器控制信息,驱动水泵控制电路工作,实现自动浇花。
五、毕业设计应收集资料及参考文献:1、应收集与课题相关文献12篇(其中包括一篇英文文献),文献的发表年限应为2010年至2016年;2、除了文献之外,所参考的书目不能超过3篇;3、所有的参考资料要留存电子版,在交论文时一并打包交予指导教师。
六、毕业设计的进度安排:1、必须查阅大量资料(包括一定数量的外文资料),了解课题的研究背景、意义,熟悉设计中要用到的相关电路知识;完成开题报告;并完成一篇外文文献的全文翻译工作;(1月1日-3月18日)2、进行系统的概要设计;(3月19日-4月10日)3、熟悉设计软件,并提交中期报告;(4月10日-4月20日)4、系统的设计与实现;准备作品的验收;完成论文第一稿;(4月21日-5月10日)5、根据要求对对论文及作品进行完善,完成论文第二稿;(5月11日-5月20日)6、制作答辩PPT,准备答辩材料,准备答辩,并完成后续工作;(5月21日-6月10日)7、必须定期与指导老师见面,汇报进展情况,按时完成论文的撰写工作。
盆花自动浇水系统的设计与实现THE DESIGN AND IMPLEMENTATION OF THE AUTOMATIC FLOWERWATERING SYSTEM专业:电气工程及其自动化姓名:指导教师姓名:申请学位级别:学士论文提交日期:2012年6月10日学位授予单位:天津科技大学摘要随着社会经济的发展,人们生活水平的提高,花卉逐渐收到人们的青睐,可以说绿色植物正逐渐成为人们生活中不可或缺的一部分。
很多家庭都种植有花卉植物,这些植物不仅美化了人们的生活,工作环境,还能净化空气,陶冶情操,人们看见往往会赏心悦目。
众所周知,花没有了水就会枯萎,当主人外出旅游或出差时,这些花卉植物就会处于无人浇水的境地,所以设计一种可以自动对花卉按时浇水,且浇水量可根据土壤的实际湿度而按时调整的盆花自动浇水系统是十分必要的。
而单片机作为能实现这一功能的元器件当然当仁不让的成为了主角。
利用单片机设计一款家庭智能浇花器,小者来说实现自动浇花,节省人力,当人们外出的时候,不至于影响花卉的生长,如果在家也可以关断浇花器,手动浇花。
往大的方面,盆花自动浇水系统还可以拓展到农业的庄稼自动浇水,果树自动浇水和园林的草地自动喷灌等好多方面。
盆花自动浇水系统虽然有局限性,但是弄懂其精髓,会有举一反三的效果关键词:数码管;单片机;湿度传感器;按键; DS1302;继电器;定时;切换;湿度检测ABSTRACTPulse information in traditional Chinese medicine and Western medicine is very important significance, as this information has always been the clinical diagnosis and treatment of medical attention. This thesis is based on microprocessor-type pulse detector means, the main research work are as follows: pulse with infrared photoelectric sensor that detects the body's pulse signal, after two second-order, low pass filter circuit effectively removes frequency noise. Get the analog signal and then through the A / D converted into digital signals, input microcontroller. Single chip pick digital signal pulse of real-time acquisition and analysis of the data processing. Meanwhile, in order to ensure the effective pickup pulse signals, to reduce unnecessary interference power, specially designed for the entire system of linear DC power supply. System can display real time measured by the pulse beats, per minute and the pulse will be measured by comparing the situation with the normal. If the results are quite different, the system will automatically set sound and light alarm. After debugging, the system can more accurately read the pulse of the pulse sensors pick up information, and can display and alarm, so as to achieve the desired design goals. The whole system has a simple structure, small size, high reliability, low cost and easy to use and so on, with higher versatility and value in applications. Keywords:LCD1602; SCM; Pulse transducer; Low amplifier circuit目录第一章绪论 (1)第一节本课题的研究背景和意义 (1)第二节盆花自动浇水系统的研究状况 (2)第二章盆花自动浇水系统的结构设计 (4)第一节盆花自动浇水系统简介 (4)第二节系统的总体结构 (7)第三章系统硬件设计 (9)第一节温湿度传感器模块 (9)第二节DS1302模块 (10)第三节数码管模块 (18)第四章系统软件设计 (26)第一节软件主程序 (26)第二节各模块驱动程序 (29)第五章结论 (35)参考文献致谢附录 1附录 2附录 3第一章绪论第一节本课题的研究背景和意义随着社会的进步经济的发展,人们生活质量的逐渐提高,花卉受到了人们的青睐。
毕业设计(论文)-基于A T89C52单片机的自动浇花系统. 课题:自动浇花系统摘要本系统以方便人们花卉的浇水,实现智能浇花,让人们从繁琐的浇花工作中解放出来,自动浇花系统的设计和应用应运而生。
本系统采用AT89C52单片机,配以相应的外围电路完成土壤含水量的检测和自动浇花的控制过程。
由土壤湿度传感器采集土壤信息,再经过信息处理模块处理后由ADC0832 A/D转换芯片转换成数字信号,AT89C52单片机作为控制中心。
配以DS1302 时钟芯片、LCD1602液晶显示模块等组成数据处理控制模块,实现智能浇花,显示时钟功能。
通过一系列的设计实现,简单的电路及低价的成本实现自动浇花系统是可行的,进一步可以推广到蔬菜大棚,园林,草地等的自动浇灌管理。
对于实现科技服务生活具有重要意义。
关键词:浇花,AT89C52单片机,ADC0832,DS1302,土壤湿度传感器,时钟AbstractThis system for people convenience and intelligent water flowers and plants, let people work from trival watering the flowers liberate,automatic watering the flowers system design and application arises at the historic moment. The system uses the AT89C52 single chip computer,match with corresponding buffer circuit for the soil moisture content detection and finish the control process of automatic watering the flowers. From the soil humidity sensors to collect soil information, and then after the information processing module processing by ADC0832 after A/D conversion chip converted into digital signals, AT89C52 single chip computer as the control center. Match with DS1302 clock chip, LCD1602 LCD module data processing control module, realize intelligent water flowers,display clock function. Through a series of design and implementation, simple circuit and low cost to implement the automatic watering the flowers system is feasible, further can be extended to vegetable shed, garden, the automatic watering system. For technology service life is Important significance.Keywords: water flowers, AT89C52, ADC0832, DS1302, soil moisture sensor, clock目录1 前言......................................................... 11.1论文设计的意义.......................................................................................................... 11.2湿度测量方法及湿度测量方案.................................................................................. 11.3论文的主要内容.......................................................................................................... 32 自动浇花系统的基本理论....................................... 42.1土壤湿度传感器.......................................................................................................... 42.2土壤湿度信号转换...................................................................................................... 42.3土壤湿度信号调理...................................................................................................... 53 系统硬件设计................................................. 63.1系统技术指标.............................................................................................................. 63.2系统框图...................................................................................................................... 63.3芯片选择...................................................................................................................... 63.4系统传感电路设计...................................................................................................... 83.4.1 土壤湿度传感器的设计................................................................................... 83.4.2 土壤湿度信号调理电路................................................................................. 93.4.3 A/D转换处理模块..................................................................................... 123.5系统显示电路设计.................................................................................................. 133.5.1 显示模块的选择........................................................................................... 133.5.2 显示电路....................................................................................................... 143.6系统控制电路设计.................................................................................................. 153.6.1 按键电路....................................................................................................... 153.6.2 电磁阀控制电路........................................................................................... 163.7电路原理图.............................................................................................................. 164 系统软件设计............................................... 184.1总设计框图.............................................................................................................. 184.2传感转换流程图...................................................................................................... 184.3控制模块流程图...................................................................................................... 195 系统调试................................................... 215.1 系统硬件测试......................................................................................................... 215.2 系统的软件测试..................................................................................................... 215.3系统整体调试.......................................................................................................... 215.4系统测量与误差分析.............................................................................................. 226 总结...................................................... 23附录......................................................... 24附录A 原理图................................................ 24附录B PCB图................................................ 25附录C 程序 ................................................ 26参考文献..................................................... 41致谢......................................................... 431 前言1.1论文设计的意义在电子技术日新月异的今天,生活中到处都可以看到嵌入式单片机的应用实例。
本科毕业设计(外文翻译)题目自动浇花系统的设计姓名刘富强专业自动化学号 ********* 指导教师赵明冬郑州科技学院电气工程学院二○一四年五月New Environment Parameters Monitoring And Control System For Greenhouse Based On Master-slave DistributedAbstractAccording to the actual need of monitoring and control of greenhouse environment parameters in rural areas,a master-slave distributed measurement and control system is designed,in which PC is taken as the host. The system consists of PC ,soil moisture measurement and control module,temperature and humidity, and CO2 monitoring and control module. In the system,PC has large amount of data storage which is easy to make use of fuzzy control expert system,configuration software-KingView is used to develop software for PC,by which the development cycle is shorten and a friendly human-computer interaction is provided.Each monitoring and control module consists of STC12 series of microcontrollers,sensors,relays etc.Different modules are select based on the need if system to achieve control greenhouse in partition and block.I INTRODUCTIONTo modern indoor agriculture, the automatic measurement and control of environment parameters is the key to achieve crop yield and quality of greenhouse.In recent years,facilities agriculture develops vigorously in our country,matched with it,the monitoring and control instrument of greenhouse have also made certain development.After nearly 10 years of unremitting hard work,our research team of measurement and control system of agriculture environment parameters,designed an intelligent measurement and control system of distribution combined of greenhouse which can be popularized in the vast rural areas.This system is mainly control of temperature,humidity,CO2 concentration,soil moisture and illumination of greenhouse.OF SCM,as the data storage is small,display interface is single,amount of information is limited,but its capability price ratio is high,so it is used as a front unit of data acquisition and control;and of PC,it has a large amount of data storage,rich software,convenient human-computer interaction,and so on.If we use outdated andlow-priced PC,taking the PC as the upper machine,taking the different function control modules composed of multiple microcomputers as the lower machines,then a master-slave distributed and intelligent control system bases on microcomputer is made up,by which both better monitoring and control,display and data collection or management are achieved,but also lower cost of system is get according to the actual need.II SYSTEM STRUCTURE AND PRINCIPLEThe most marked feature of the distribution combined and intelligent control system greenhouse is that of incorporating with data acquisition, control and management as a whole,module combination, simple structure,convenient human-computer interaction,and using technology of intelligent expert fuzzy control,which can adapt to a variety of crop management control in greenhouse.The basic structure of the system is shown in Fig.1.The structure of the distributed system is composed of two layers:the upper and lower.In the top-price PC is taken as the host to make system management and experts fuzzy operation in intelligent,and to provide a friendly human-computer interface,and to realize the united monitoring and management of greenhouse; the lower is composed of a series of modules of different function,and in each module,a single chip of AT89C is adopted as the lower machine,RS485 is used to communicate PC with all AT89C,and then the collection,processing and control of the greenhouse parameters is achieved.Each function module is completely isolated in electrical,any failure on the nodule does not produce any effect on other modules.The system collects separately ways of environment information through each monitoring andcontrol module,and sends it to host PC through the RS485 interface.And in the PC configuration control system,the acquired parameters are compared with the values of setting,then according to a variety of expert intelligent fuzzy control system of crops at different growth stages,the fuzzy control instructions on the environment temperature,humidity,CO2 concentration,soil water content and the corresponding operation instructions or alarm are given.The system is applied in rural greenhouses in ually at 1/4 near East and West end in a greenhouse,and at the height of 1.5m from the ground in the middle in the northern half (near the wet curtain) and the southern half (near the fan ),a module of air temperature and humidity ,CO2 concentration and a module of soil moisture content are set;a module of soil moisture content will be added in the middle of the greenhouse according to the actual condition;at the height of 1.5m in the main entrance,a water tank is set,of which the solenoid of drip tube should be set based on the need and controlled by module of soil moisture content;and the PC is placed in the main entrance to the greenhouse.III HARDWARE DESIGNA.The CP and communication systemIn the distributed system of data acquisition and control,as the micro control unit is limited in data storage and slow in calculating of complex functions,so PC is used and the master-slave module is adopted in the system,that is a system of,taking PC as the host and taking the SCM systems located in the scene as slave.In this distributed system,communication is the key to it.Generally,the serial port of PC is standard RS232,of which transmission distance is shorter.But in agriculture control system.its communication distance is of tens of meters or several kilometers, so RS232/RS485 converter is used to achieve communication between the PC and SCM.To reduce investment,both considering the user convenience and friendly human-computer interaction,low-price PC of above 486 and below PIV is adopted;and considering the operation of configuration software,it is required that memory is 64M or above and hard disk is 10Gb or above.B. The control modules of temperature and humidity,illuminance and CO2 concentrationEach control unit consists of SCM,sensors,signal processing circuit,RS485 interface and output circuit.The hardware structure of module of temperature andhumidity,CO2 concentration is shown in Fig.2.CO2 concentration is measured by sensor based on NDIR technology,measurement is of 0~2×103mol.Through the sensor,control system,by software of digital filter,linear interpolation and temperature compensation,the CO2 concentration is output as digital adhered to UART protocol,and then is input directly to the SCM.The new intelligent sensor of SHT11 based on CMOSens technology is chosen in the measurement of temperature and humidity.In SHT11,the temperature and humidity sensors,signal amplification,A/D,I2C bus are all integrated in a chip;it has full-scale calibration,second-line digital output,and humidity measuring range of 0~100% RH,temperature measurement range of -40℃~+123.8℃,humidity measurement accuracy of ±3.0% RH,temperature measurement accuracy of ±0.4℃,the response time of <4s.The illuminance sensor of JY1-TBQ-6 of silicon photovoltaic detection is used Light measuring.Its measurement range is 0~200,000 Lux;spectral range is 400~700(nm) visible light;measurement error is less than 2%; output is 4~20mA or 0~20mV;output signal can be directly send to the A/D of the SCM after being amplified to 0~4V.Modules accept the instructions form the the Upper,and output via the output circuit .The output circuit consists of optical isolation,the signal driver and the output relays.C. The measurement and control modules of soil moistureWater is a polar medium, the dielectric constant of the soil containing water is mainly determined by the water,when water content is different,the wave impedanceis different.The soil moisture is measured by standing wave radio method in this system.Based on the theory of Engineering Electromagnetic Field,for lossy medium,the electromagnetic wave impedance as follows:Z0=√μ/ε(1+jλ/(ωε))Where μ is medium permeability,and μ of soil is μ≈μ0 is the vacuum permeability;ε is medium dielectric constant;λ is medium conductivity;ω is electromagnetic wave frequency.In the very low audio(<2000Hz),the loss tangent of dry soil dielectric is λ/ωε≈0.07,if you choose the frequency of the signal source at above 20MHz.then,ε≈ε∞,the imaginary part of the soil wave impedance is neglect,only the real part,which amounts to a pure resistance.Soil moisture sensor consists of 100MHz signal source,a coaxial transmission line and a 4-pin stainless probe.The electromagnetic waves of signal transmit to the probe along the lines.As the probe impedance and line impedance are different,the superimposition of incident waves and reflected waves forms a standing waves.Taking the coaxial transmission line as a lossless uniform line,wave impedance is Z0,Z l is the load impedance.Then the reflected coefficient of voltage wave at the probe is:Γ=(Z L-Z0)/(Z L+Z0)Choosing the length of transmission line is l=λ/4,the maximum and minimum of both ends of the line are U max and U min,Then the standing wave radio in the line can be expressed as:S=U max /U min =(1-|Γ|)/(1+|Γ|)In the way,the soil moisture radio can be measured by measuring the standing wave rate of transmission line.As shown in Fig.3.,soil moisture module consists of sensors and controllers,the sensors are subordinated to controllers,controllers can be omitted without the need of irrigation in greenhouse.To simplify the control,irrigation technology of node-type in partition is adopted in the control soil moisture in this system.To a certain extent,the parameters of upper and lower the ground can be decoupled by adopting this technology.IV CONTROL SYSTEM PROGRAMMINGThe software of PC is developed by KingView 6.51 of Beijing-controlled Asia.This configuration software has high reliability,shorter development cycle,perfect capability of graphical interface generation,and friendly human-computer interaction;and can create dynamic images and charts in accordance with the layout of equipment in the scene;can visually display the changes of parameters,control status,and can give an alarm when over-limited;and can achieve fuzzy control of greenhouse parameters by using the history curve of environment parameters stored in the specific database and adopting the agricultural expert system.The software of SCM of the slave is developed by Keil C51 to achieve real-time collecting,processing,uploading of the parameters and accept the fuzzy control instructions from the host computer and complete local control of the device.A.Program design of the control moduleThe software of the sub-slave machine of soil moisture module,that include the main function,subroutines of data acquisition and processing,interrupt handling andcommunicating etc,read the value of standing wave voltage through the parallel data port and obtained the value of soil moisture content by function calculating.The software of the slave machine of monitoring and control of soil moisture mainly complete data communication with the sub-slave machine,uploading measurement data and current control state to the host computer,accepting the fuzzy control instructions from the host computer and output the implementation instructions.The software of the slave machine of temperature and humidity,and CO2 mainly complete reading data of CO2 concentrations and temperature and humidity through the I2C concentration,uploading measurement data and current control state to the host computer,accepting the fuzzy control instructions from the host computer and output the implementation instructions.The structure of the main program and interrupt subroutine of temperature and humidity module are shown in Fig.4.The serial interrupt mode 3 is adopted by all slaves to communicate with the host,transmit the digital collecting and receive instructions.B. Program design of PC and fuzzy control system1)The communication settings of KingView 6.51:In order to ensure the correctness of communication,the upper and lower must follow the same communication protocol,set the communication ually in communication,master-slave mode is adopted in style and responder is adopted in the process.That is ,the master sent a command to the slave first,then et slave give an answer after receiving the command,thus once communication is completed.In KingView ,a scheduled polling method is adopted to do reading and writing between the lower machine by PC.In the project browser of KingView,first,click device →COM1;in the wizard of device configuration,select intelligent modules→SCM→current SCM of HEX→serial port,and then ser parameters for the host computer’s communication.2)The connection of KingView 6.51 and database:Database is the core of the software,that not only contains the definition of variables,real-time parameters and the historical parameters,but also is needed by parameters alarming,fuzzy calculating,reporting ,and displaying.Access2003 desktop database is used as records database of the system,and by using SQL,it is operated by KingView via ODBC.The procedure is :to create data variables in KingView to create a body of records toestablish a data source of ODBC to create query screens and make the screen connection.To connected with Microsoft Access2003,the functions of SQLConnect(),SQLSelect(),SQLLast(),SQLNext(),SQLFist(),SQLPrew(),SQLInsrt() ,and so on,should be implemented in the command language,and then real-time storage and inquiry of data are completed.3)Software design of PC :For the control system of greenhouse,data storage capacity of the PC is unlimited,so if the existing mature software modules are include into the system,it both be relaxed and can improve the system reliability.The software of software consists of control module and management module.V CONCLUSIONAccording to the economic bearing capacity of farmer in Qinhuangdao ,with the existing technology of monitoring and control of environment parameters of greenhouse,a master-slave distributed automatic control system of greenhouse environment in which PC is taken as the host computer is developed.The system has following characteristics:1)With the large amount of data storage of PC,fuzzy control expert system is easy of data storage,modification and system upgrading.2)By using KingView to develop software of PC,the system reliability is improved,and the development cycle is shorten,and a friendly human-computer interface is get.3)A distributed and modular structure is used in the system,it makes the system maintenance easier and adapts to production needs more. The monitoring and control modules of the slave are connected to the host through the RS485 bus based on needs,then the control of greenhouse in partition or block can be achieved.基于新的温室环境参数监测和控制系统根据实际在农村地区的温室环境参数的监测和控制,主从分布式测量和控制系统的设计需要,以其中一台计算机作为主机,该系统由PC、土壤水分测量和控制模块,温度、湿度、CO2监测和控制模块组成。