湖北省宜昌市七年级上学期数学12月月考试卷
- 格式:doc
- 大小:358.50 KB
- 文档页数:9
2023-2024学年上学期武汉市江汉区学区四校七年级数学考试时间:120分钟试卷总分:120分一、选择题(本大题共小10题,每小题3分,共30分)1.温度由上升了后是()A.B.C.D.2.2023年武汉“岁末冬绥跨年迎春”系列汽车促消费活动于12月12日发放1000万元“燃油+新能源”购车消费券.1000万用科学记数法表示为()A.B.C.D.3.下列各式中,运算正确的是()A.B.C.D.4.如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是( )A.B.C.D.5.已知是方程的解,则的值是()A.B.6C.4D.56.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数字知识是().已知点在线段上,,点在线段的延长线上,,若,则线段的长为(A.40B.4110.如图,为直线上一点,为直角,平分,平分,平分,下列结论:①;②;③与互为补角;④;其中正确的是(.和是同类项,则位于北偏西的方向,同时轮船在南偏东的方向,那么13.整理一批图书,由一个人做要完成这项工作.假设这些人的工作效率相同,应先安排14.有理数、、在数轴上的位置如下图所示,化简:.若、都是有理数,定义“”如下:,例如.现己知,则的值为(1)(2)(1)(2).先化简,再求值:,其中..已知点为线段的中点.点为线段上的点,点为线段的中点.,若线段,,求线段的长;如图2,若,,求线段的长..下表为某篮球比赛过程中部分球队的积分榜(篮球比赛没有平局)比赛场次胜场负场积分所示的方式折叠,、为折痕,求的度数;所示的方式折叠,、为折痕,若,求的度数;所示的方式折叠,、为折痕,若,请直接写出的度数(用含的式子表示)23.某公园门票价格规定如下表:.已知线段,点、点都是线段上的点.,若点为的中点,点为的中点,求线段的长;(2)若,点是线段的中点,点是线段的中点,请自己作图并求的长;(3)如图3,若,,点,分别从、出发向点运动,运动速度分别为每秒移动个单位,设运动时间为秒,点为的中点,点为的中点,若,求的参考答案与解析1.A解析:解:,故选:A.2.C解析:解:1000万用科学记数法表示为.故选:C.3.B解析:解:A、与不是同类项,不能合并,不合题意;B、,正确,符合题意;C、与不是同类项,不能合并,不合题意;D、,不合题意;故选:B.4.D解析:观察几何体,从左面看到的图形是故选D.5.C解析:解:把代入方程得:,解得:.故选:C.6.D解析:解:剪之前的图形周长= ED+EF+FB+AD+AC+BC,因为两点之间线段最短.剪完之后的图形周长=ED+EF+FB+AD+AB,AC+BC>AB,∴剩下部分的周长比原正方形图片的周长要小,故选:D.7.A解析:解:设该款衣服的标价为x元.根据题意可得.解得.所以衣服标价为每件450元,故①符合题意;衣服促销单价为元,故②符合题意;每件衣服的进价为元,故③符合题意.不打折时商店的每件衣服的利润为元,故④符合题意.故共有4个符合题意.故选:A.8.B解析:解:∵,∴设,∴,∵,∴,∴,∴,∴,故选:B.9.B解析:解:第1个图中黑色小正方形地砖的块数为,第2个图中黑色小正方形地砖的块数为,第3个图中黑色小正方形地砖的块数为,第4个图中黑色小正方形地砖的块数为,第5个图中黑色小正方形地砖的块数为,故选:B.10.A解析:解:∵平分,平分,∴,∴①正确;∵,∴,∴,∴,∴②正确;∵,∴,∴③正确;∵平分,平分,∴,∵平分,平分,∴,∴;∴④正确.综上所述,正确的有①②③④.故选:A.11.解析:解:因为和是同类项,所以,,解得:,.所以故答案为:.12.##141度解析:解:如图:∵A在北偏西,∴,∴,∵B在南偏东,∴,∴.故答案为:.13.3解析:解:设应先安排x人工作,根据题意得:,解得:,答:应先安排3人工作.故答案为:3.14.0解析:解:由数轴可知:b<-c<a<0<a<c<-b,∴a+c>0,c-b>0,a+b<0,∴原式=(a+c)-(c-b)-(a+b)=a+c-c+b-a-b=0,故答案为:0.15.6解析:如图:如果要爬行到顶点B,有三种情况:若蚂蚁爬行时经过面AD,可将这个正方体展开,在展开图上连接AB,与棱a(或b)交于点D1(或D2),小蚂蚁线段AD1→D1B(或AD2→D2B)爬行,路线最短;类似地,蚂蚁经过面AC和AE爬行到顶点B,也分别有两条最短路线,因此,蚂蚁爬行的最短践线有6条.故答案为:6.16.5解析:解:当时,则,解得,不符合题意;当时,则,解得,(舍去),综上,x的值为5.故答案为:5.17.(1)(2)解析:(1).(2).18.(1);(2).解析:(1)解:,去括号,得,移项,得,合并同类项,得,系数化1,得;(2)解:,去分母,得,去括号,得,移项,得,合并同类项,得,系数化1,得.19.,解析:解:,当时,原式.20.(1);(2).解析:(1)解:因为,点为线段的中点,所以.因为,所以,因为点为线段的中点,所以;(2)解:因为点为线段的中点,所以,因为,,所以,所以,,因为,点为线段的中点,所以,所以,所以.21.(1)2,1(2)E队已经进行了的11场比赛中胜2场,负9场(3)能实现;D队接下来的7场比赛中胜4场,负3场即可解析:(1)设胜一场积x分,负一场积y分,根据题意,得,解得;根据题意,得,解得,故答案为:2;1.(2)设胜了x场,负场,根据题意,得,解得,故,故E队已经进行了的11场比赛中胜2场,负9场.(3)能实现,队前场得分设后7场胜了x场,则负场,根据题意,得,解得,故D队接下来的7场比赛中胜4场,负3场即可.22.(1);(2);(3).解析:解:(1)由折叠的性质知,,∴,,∴;(2)由折叠的性质知,,∴,,∵,∴,∴;(3)由折叠的性质知,,∴,,∵,∴,则,∴.23.(1)七年级(1)班有学生48人,七年级(2)班有学生54人;(2)可省450元;(3)按照51张票购买比较省钱.解析:(1)解:设七年级(1)班有学生x人,则七年级(2)班有学生人,又由题意得:,则,根据题意列方程为,解得:,,答:七年级(1)班有学生48人,七年级(2)班有学生54人;(2)解:,答:可省450元;(3)解:,,.答:按照51张票购买比较省钱.24.(1)线段的长为30;(2)的长为25或35;(3)或.解析:(1)解:∵M为的中点,N为的中点,∴,,∴;(2)解:如图,点在点的左侧,∵点是线段的中点,点是线段的中点,∴,,∴;如图,点在点的右侧,∵点是线段的中点,点是线段的中点,∴,,∴;综上,的长为25或35;(3)解:运动t秒后,,∵E为的中点,∴,∴,∵,F为的中点,∴,又,∴,或,由得:或,解得:或.。
座号:武威第二十三中学——第一学期第2次月考试卷七年级 数学(满分120分,时间120分钟)一、选择题(每小题3分,共30分)1.据国家环保总局通报,预计北京市污水处理能力可以达到1684000吨,将1684000•吨用科学记数法表示为( )A .1.684×106吨B .1.684×105吨C .0.1684×107吨D .16.84×105吨2. 如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a3.已知一个多项式与2x 2+5x 的和等于2x 2﹣x+2,则这个多项式为( )A .4x 2+6x+2B .﹣4x+2C .﹣6x+2D .4x+24. 甲比乙大15岁,5年前甲的年龄是乙的年龄的2倍,乙现在年龄是( )A .30岁B .20岁C .15岁D .10岁5.下列说法中正确的是( )A.最小的整数是0B.有理数分为正数和负数C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等6. 如果a 2=(-3)2,那么a 等于 ( )A 、3B 、-3C 、9D 、±37. a 是最大的负整数,b 是绝对值最小的有理数,则 =+200820102009b a( ) A .-1 B .0 C .20081 D .2007 8. 单项式-3πxy²z³的系数和次数分别是( ).A .-π,5 B. -1,6 C. -3π,6 D. -3,79.数m 、n 在数轴上的位置如图所示,则化简|m+n|﹣m 的结果是( )A .2m+nB .2mC .mD .n10.某商人一次卖出两件衣服,一件赚了10%,一件亏了10%,卖价都为198元,在这次生意中商人( )A .亏了4元B .赚了6元C .不赚不亏空D .以上都不对二、填空(每小题3分,共30分)11.平方等于它的绝对值的数是12.5的相反数与-7的绝对值的和的倒数是______。
2025届湖北省宜昌市数学七年级第一学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.已知a =2b ﹣1,下列式子:①a +2=2b +1;②12a +=b ;③3a =6b ﹣1;④a ﹣2b ﹣1=0,其中一定成立的有( ) A .①②B .①②③C .①②④D .①②③④ 2.在梯形()12S a b h =+面积公式中,已知550,6,3S a b a ===,则h 的值是( ) A .425 B .254 C .10 D .253.如图,小明从A 处出发沿北偏东60︒方向行走至B 处,又沿北偏西20︒方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80︒B .左转80︒C .右转100︒D .左转100︒4.在一张日历表中,任意圈出一个竖列上相邻的三个数,它们的和不可能是( )A .60B .39C .40D .57 5.一个长方形的周长为,若它的宽为,则它的长为( ) A . B . C . D .6.下列运算正确的是( )A .235x x x +=B .236x x x ⋅=C .633x x x ÷=D .()23636x x =7.如图,点C 是线段AB 上的点,点D 是线段BC 的中点,若AB=16cm ,AC=10cm ,则线段CD 的长是( )A .1cmB .2cmC .3cmD .4cm8.如图,点A ,B ,C ,D 顺次在直线l 上,以AC 为底边向下作等腰直角三角形ACE ,AC a =.以BD 为底边向上作等腰三角形BDF ,BD b =,56FB FD b ==,记CDE ∆与ABF ∆的面积的差为S ,当BC 的长度变化时,S 始终保持不变,则a ,b 满足( )A .43a b =B .65a b =C .53a b =D .2a b =9.为了记录某个月的气温变化情况,应选择的统计图为( )A .条形统计图B .折线统计图C .扇形统计图D .前面三种都可以10.商店对某种手机的售价作了调整,按原售价的 8 折出售,此时的利润率为 14%,若此种手机的进价为 1200 元,设该手机的原售价为 x 元,则下列方程正确的是( )A .0.8x ﹣1200=1200×14%B .0.8x ﹣1200=14%xC .x ﹣0.8x =1200×14%D .0.8x ﹣1200=14%×0.8x二、填空题(本大题共有6小题,每小题3分,共18分)11.比较大小:2-3_______2-5(选填“<”“=”“>”) 12.在数轴上,到-8这个点的距离是11的点所表示的数是______.13.如图,点A 在点O 的东北方向,点B 在点O 的南偏西25︒方向,射线OC 平分AOB ∠,则AOC ∠的度数为__________度.14.计算: 1-(-2)2×(-18)=________________ . 15.用“ < ”、“ > ”或“ = ”连接:12-______13- . 16.如图,点C ,D 分别为线段AB (端点A ,B 除外)上的两个不同的动点,点D 始终在点C 右侧,图中所有线段的和等于30 cm ,且AB =3CD ,则CD =__________cm .三、解下列各题(本大题共8小题,共72分)17.(8分)如图是一个长方体纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.()1填空: a = ,b = ,c = ;()2先化简, 再求值:()22252324a b a b abc a b abc ⎡⎤---+⎣⎦.18.(8分)如图,C 为线段AD 上一点,点B 为CD 的中点,且AD=8cm,BD=1cm(1)求AC 的长(2)若点E 在直线AD 上,且EA=2cm,求BE 的长19.(8分)计算:(1) (-6)+10+2+(-1) (2) (-2)2×3+(-3)3÷920.(8分)先化简,再求值(1)22232534ab a b ab a ab ---++,其中2a =,1b =-;(2)()22222136428322x y xy x x y xy x ⎛⎫+--++ ⎪⎝⎭,其中13x =,1y =.21.(8分)已知一个圆柱的侧面展开图为如图所示的矩形,它的一个底面圆的面积是多少?(计算结果保留π)22.(10分)作图题:已知平面上点A ,B ,C ,D .按下列要求画出图形:(1)作直线AB ,射线CB ;(2)取线段AB 的中点E ,连接DE 并延长与射线CB 交于点O ;(3)连接AD并延长至点F,使得AD=DF.23.(10分)为了了解我校七年级学生的计算能力,学校随机抽取了m位同学进行了数学计算题测试,王老师将成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”、“很差”五个等级,并将收集的数据整理并绘制成下列两幅统计图:参加“计算测试”同学的成绩条形统计图参加“计算测试”同学的成绩扇形统计图(1)此次调查方式属于______ (选填“普查或抽样调查”);(2)m ______,扇形统计图中表示“较差”的圆心角为______度,补充完条形统计图;(3)若我校七年级有2400人,估算七年级得“优秀”的同学大约有多少人?24.(12分)某超市计划购进甲、乙两种型号的节能灯共700只,若购进700只灯的进货款恰好为20000元,这两种节能灯的进价、预售价如下表:型号进价(元/只)预售价(元/只)甲型20 25乙型35 40(1)求购进甲、乙两种型号的节能灯各多少只?(2)超市按预售价将购进的甲型节能灯全部售出,购进的乙型节能灯部分售出后,决定将乙型节能灯打九折销售,全部售完后,两种节能灯共获利3100元,求乙型节能灯按预售价售出的数量是多少?参考答案一、选择题(每小题3分,共30分)【分析】根据等式的基本性质对四个小题进行逐一分析即可.【详解】解:①∵a =2b ﹣1,∴a +2=2b ﹣1+2,即a +2=2b +1,故此小题正确;②∵a =2b ﹣1,∴a +1=2b ,∴12a +=b ,故此小题正确; ③∵a =2b ﹣1,∴3a =6b ﹣3,故此小题错误;④∵a =2b ﹣1,∴a ﹣2b +1=0,故此小题错误.所以①②成立.故选:A .【点睛】本题主要考查等式的基本性质,掌握等式的基本性质是解题的关键.2、B 【分析】把55063,,S a b a ===代入后解方程即可. 【详解】把55063,,S a b a ===代入S=12(a+b )h , 可得:50=156623h ,解得:h=254故选:B【点睛】 此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.3、A【分析】根据两直线平行同位角相等的性质进行计算即可.【详解】为了把方向调整到与出发时相一致,小明先转20°使其正面向北,再向北偏东转60°,即得到了与出发时一致的方向,所以,调整应是右转20°+60°=80°,故选:A .【点睛】本题考查了两直线平行同位角相等的性质,方位角的定义,掌握两直线平行同位角相等的性质是解题的关键. 4、C【详解】设相邻的三个数分为表示为1,,1x x x -+,则三个数的和为3,x 为3的倍数,只有C 项40不是3的倍数,其他三项均是3的倍数.5、A【解析】根据长方形的周长公式列出其边长的式子,再去括号,合并同类项即可.【详解】∵一个长方形的周长为6a-4b ,一边长为a-b ,∴它的另一边长为=(6a-4b)-(a-b)=3a-2b-a+b=2a-b .故选A.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.6、C【分析】分别依据同类项概念、同底数幂的乘法、幂乘方与积的乘方和同底数幂的除法法则逐一计算即可.【详解】A 选项:2x 与3x 不是同类项,不能合并,故A 错误;B 选项:232356x x x x x +⋅==≠,故B 错误;C 选项:63633x x x x -÷==,故C 正确;D 选项:()2332663996x x x x ⨯==≠,故D 错误. 故选:C .【点睛】本题主要考查幂的运算,解题的关键是掌握同类项概念、同底数幂的乘法、幂的乘方与积的乘方和同底数幂的除法法则.7、C【分析】根据题意求出BC 的长,根据线段中点的性质解答即可.【详解】解:∵AB=16cm ,AC=10cm ,∴BC=6cm ,∵点D 是线段BC 的中点,∴CD=12BC=3cm , 故选C .考点:两点间的距离.8、A【分析】过点F 作FH ⊥AD 于点H ,过点E 作EG ⊥AD 于点G ,分别利用直角三角形的性质和勾股定理求出EG ,FH ,然后设BC=x ,分别表示出CDE ∆与ABF ∆的面积,然后让两面积相减得到一个关于x 的代数式,因为x 变化时,S 不变,所以x 的系数为0即可得到a,b 的关系式.【详解】过点F 作FH ⊥AD 于点H ,过点E 作EG ⊥AD 于点G∵ACE △是等腰直角三角形,AC a = ∴1122EG AC a == ∵BD b =,FB FD =,FH ⊥AD ∴1122BH BD b == 在Rt BHF 中2222512()()623FH BF BH b b b =-=-= 设BC=x 则112()223ABF S AB FH a x b ==- 111()222CDE S CD EG b x a ==- ∴1112()()2223CDE ABF S S b x a a x b -=--- =111)3412b a x ab --( ∵当BC 的长度变化时,S 始终保持不变∴11=034b a -∴43a b = 故选A【点睛】本题主要考查代数式,掌握三角形的面积公式及直角三角形和等腰三角形的性质是解题的关键.9、B【分析】折线统计图能清楚地反映事物的变化情况,显示数据变化趋势.根据折线统计图的特征进行选择即可.【详解】解:为了记录某个月的气温变化情况,应选择的统计图是折线统计图,故选B.【点睛】本题考查了统计图的选择,掌握条形统计图、扇形统计图以及折线统计图的特征是解题的关键.10、A【分析】根据题意列出一元一次方程.【详解】设该手机的原售价为x 元,根据题意得:0.8x﹣1200=1200×14%,故答案应选A.【点睛】对一元一次方程实际应用的考察,应熟练掌握.二、填空题(本大题共有6小题,每小题3分,共18分)11、<【分析】两个负数比较大小,绝对值大的反而小,据此解题.【详解】22 > 352235∴-<-故答案为:<.【点睛】本题考查有理数的大小比较,是基础考点,难度较易,掌握相关知识是解题关键.12、3或-1【分析】两点之间的长度即为距离,数轴上与﹣8相距11的点有两个点.【详解】﹣8+11=3,﹣8-11=﹣1.故答案为: 3或-1.【点睛】本题考查距离的计算,关键在于理解距离的含义.13、1【分析】由点A在点O的东北方向得∠AOD=45°,点B在点O的南偏西25︒方向得∠BOE=25°,可求得AOB∠的度数,再根据角平分线的定义即可求解.【详解】解:∵点A 在点O 的东北方向,点B 在点O 的南偏西25︒方向,∴∠AOD=45°,∠BOE=25°,∴AOB ∠=∠AOD+∠EOD+∠BOE=45°+90°+25°=160°,∵射线OC 平分AOB ∠,∴AOC ∠=12AOB ∠=1°.故答案为:1.【点睛】本题考查方向角、角平分线,掌握方向角的定义是解题的关键.14、112【分析】根据有理数的混合运算法则和运算顺序进行计算即可. 【详解】解:1-(-2)2×(-18) =1﹣4×(-18) =1+12=112, 故答案为:112.【点睛】本题考查有理数的混合运算,熟练掌握有理数的混合运算法则和运算顺序是解答的关键. 15、<【分析】根据有理数大小比较的法则:两个负数绝对值大的反而小进行分析即可.【详解】∵113226-==,112336-==,3266>,∴1123-<-. 故答案为:<. 【点睛】本题主要考查了有理数的大小比较,关键是掌握有理数的大小比较的法则:①正数都大于0;②负数都小于0;③两个负数绝对值大的反而小.16、3【解析】由题意得:30AC AD AB CD CB DB +++++= ,()()30AC AC CD AB CD CD DB DB ⇒+++++++=,2230AC CD AB CD CD DB ⇒+++++=,()230AC DB CD AB CD CD ⇒+++++=,()230AB CD CD AB CD CD ⇒-++++=,∵3AB CD =,∴得到1030CD cm =,3CD =三、解下列各题(本大题共8小题,共72分)17、(1)a= 1,b=﹣2,c=﹣1;(2)2abc ,2【分析】(1)先根据长方体的平面展开图确定a 、b 、c 所对的面的数字,再根据相对的两个面上的数互为相反数,确定a 、b 、c 的值;(2)化简代数式后代入求值.【详解】解:(1)由长方体纸盒的平面展开图知,a 与-1、b 与2、c 与1是相对的两个面上的数字或字母, 因为相对的两个面上的数互为相反数,所以a=1,b=-2,c=-1.故答案为:1,-2,-1.(2)原式=5a 2b ﹣[2a 2b ﹣6abc+1a 2b+4abc]=5a 2b ﹣2a 2b+6abc ﹣1a 2b ﹣4abc=5a 2b ﹣2a 2b ﹣1a 2b+6abc ﹣4abc=2abc .当a=1,b=﹣2,c=﹣1时,代入,原式=2×1×(﹣2)×(﹣1)=2.【点睛】本题考查了长方体的平面展开图、相反数及整式的化简求值.解决本题的关键是根据平面展开图确定a 、b 、c 的值.18、(1)6;(2)9cm 或5cm.【分析】(1)先根据点B 为CD 的中点,BD=1cm 求出线段CD 的长,再根据AC=AD-CD 即可得出结论; (2)由于不知道E 点的位置,故应分E 在点A 的左边与E 在点A 的右边两种情况进行解答.【详解】(1)∵点B 为CD 的中点,BD=1cm ,∴CD=2BD=2cm ,∵AC=AD-BD ,AD=8cm ,∴AC=8-2=6cm ;(2)∵点B 为CD 的中点,BD=1cm ,∴BC=BD=1cm ,①如图1,点E 在线段BA 的延长线上时,BE=AE+AC+CB=2+6+1=9cm ;②如图2,点E 在线段BA 上时,BE=AB-AE=AC+CB-AE=6+1-2=5cm ,综上,BE 的长为9cm 或5cm.【点睛】本题主要考察两点间的距离,解题关键是分情况确定点E 的位置.19、(1)5;(2)1.【分析】(1)利用有理数连加运算的法则,两个正数,两个负数先相加,再把它们的和相加即可;(2)根据有理数混合运算的顺序,先算乘方,再算乘除,最后算加法便可得结果.【详解】(1)原式=(-6)+(-1)+10+2=-7+12=5(2) 232)339(()+-⨯-÷432791239()()=⨯+-÷=+-=【点睛】本题主要考查的是有理数的运算顺序,牢固掌握有理数运算顺序,准确判定每一步的符号,结合运算律简化运算是关键.20、(1)2- (2)143- 【分析】(1)合并同类项,再代入求解;(2)先去掉括号,再合并同类项,再代入求解.【详解】(1)22232534ab a b ab a ab ---++22b =-将1b =-代入原式中原式=()2212-⨯-=-(2)()22222136428322x y xy x x y xy x ⎛⎫+--++ ⎪⎝⎭ 22226436312x y xy x x y xy x =+----215xy x =- 将13x =,1y =代入原式中 原式=21114115333⨯-⨯=- 【点睛】本题考查了有理数的化简运算,掌握有理数混合运算的法则以及化简运算法则是解题的关键.21、它的一个底面圆的面积为π或4π【分析】分两种情况讨论:①底面周长为4π时;②底面周长为2π时,根据圆的面积公式分别求出两种情况下底面圆的面积即可.【详解】①底面周长为4π时,半径为422ππ÷÷=,底面圆的面积为224ππ⨯=;②底面周长为2π时,半径为221ππ÷÷=,底面圆的面积为21ππ⨯=.故它的一个底面圆的面积为π或4π.【点睛】本题考查了圆柱底面圆的面积问题,掌握圆的面积公式是解题的关键.22、见解析画图.【解析】试题分析:(1)根据直线是向两方无限延伸的,射线是向一方无限延伸的画图即可;(2)找出线段AB 的中点E ,画射线DE 与射线CB 交于点O ;(3)画线段AD ,然后从A 向D 延长使DF=AD .试题解析:如图所示:考点:直线、射线、线段.23、(1)抽样调查;(2)80,67.5,补充完条形统计图见解析;(3)450【分析】(1)根据抽样调查和普查的意义进行判断;(2)用“一般”等级的人数除以它所占的百分比得到m 的值,再利用360度乘以“较差”等级的人数所占的百分比得到扇形统计图中表示“较差”的圆心角的度数,然后计算出“良好”等级人数后补全条形统计图;(3)用2400乘以样本中“优秀”等级人数所占的百分比即可.【详解】解:(1)此次调查方式属于抽样调查;(2)m=20÷25%=80, 扇形统计图中表示“较差”的圆心角=360°×1580=67.5°; “良好”等级的人数为80-15-20-15-5=25(人),条形统计图为:故答案为:抽样调查;80,67.5;(3)2400×1580=450, 所以估算七年级得“优秀”的同学大约有450人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)甲种型号的节能灯300只,乙种型号的节能灯400只;(2)300只【分析】(1)设可以购进甲种型号的节能灯x 只,根据“购进700只灯的进货款恰好为20000元”列方程求解即可; (2)设乙型节能灯按预售价售出的数量是y 只,根据“两种节能灯共获利3100元” 列方程求解即可;【详解】解:(1)设可以购进甲种型号的节能灯x 只,则可以购进乙种型号的节能灯(700x -)只,由题意可得:2035(700)20000x x +-=,解得:300x =,700300400-=(只), 答:可以购进甲种型号的节能灯300只,可以购进乙种型号的节能灯400只;(2)设乙型节能灯按预售价售出的数量是y 只,由题意可得:300(2520)(4035)(400)(4090%35)3100y y ⨯-+⨯-+-⨯⨯-=,解得:300y =,答:乙型节能灯按预售价售出的数量是300只.【点睛】本题考查是一元一次方程的实际应用,属于销售问题,解题关键是要读懂题目的意思,根据题目给出的条件,正确表示出利润,找出合适的等量关系,列出方程,继而求解.。
湖北省孝感市八校联考2021-2022学年七年级上学期12月月考数学试题(wd无答案)一、单选题(★) 1. 如果“盈利10% ”记作+10% ,那么﹣4% 表示()A.亏损4%B.亏损6%C.盈利4%D.少赚4%(★★) 2. 下列各组数中,互为相反数的一组是()A.(﹣3)2与﹣32B.(﹣3)2与32C.(﹣)2与()2D.﹣|﹣5|2与﹣52(★) 3. 将写成省略括号和加号的形式应是()A.B.C.D.(★) 4. 2021年9月20日“天舟三号”在海南成功发射,这是中国航天工程又一重大突破,它的运行轨道距离地球393 000米,数据393 000米用科学记数法表示为()A.米B.米C.米D.米(★★) 5. 下列说法中正确的是()A.是单项式B.﹣32xy2的次数是5C.﹣4πab2的系数是﹣4D.不是单项式(★★) 6. 若单项式﹣2 x6y与5 x2m y n的和仍然是单项式,则3 m+ n3=()A.4B.10C.7D.3(★★) 7. 已知x=y,字母a为任意有理数,下列等式不一定成立的是()A.x+a=y+a B.x﹣a=y﹣a C.ax=ay D.=(★★) 8. 已知代数式x2﹣3 x﹣2 =5 ,则代数式2021+6 x﹣2 x2值是()A.2020B.2023C.2007D.2034二、填空题(★★) 9. 在﹣(﹣),﹣1,|3﹣π|,0这四个数中,最小的数是 _____ .(★★) 10. 自实施“双减”政策后,学校加强了体育训练,学校拟购买一批羽毛球拍和跳绳:已知一个球拍需a元,一根跳绳的价格是球拍的还少1元,则分别购买50个球拍和40根跳绳,共需要 _____ 元.(用含a、b的式子表示).(★★) 11. 绝对值大于2而小于5的所有负整数的积是 ___________ .(★★★) 12. 已知(a﹣3 )x|a|﹣2+5 =0 关于x的一元一次方程,则该方程的解为x=_____ .(★★) 13. 已知m、n互为相反数,p、q互为倒数,x的绝对值为2 ,则代数式+2022 pq+ x2的是 _____ .(★★) 14. 在数轴上,点P表示的数是a,点P' 表示的数是,我们称点P′是点P的“关联点”,已知数轴上A1的关联点为A2,点A2的关联点为A3,点A3的关联点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2020在数轴上表示的数是 _____ .(★★★) 15. 如图,在3×3的方阵图中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若处于每一横行、每一竖列,以及两条斜对角线上的3个数之和都相等,则这个方阵图中x的值为 ______ .(★★★) 16. 已知a、b为有理数,下列说法:①若a、b互为相反数,则“=﹣1 ;②若| a﹣b|+ a﹣b=0 ,则b>a;③若a+ b<0 ,ab>0 ,则|3 a+4 b| =﹣3 a﹣4 b;④若| a|>| b| ,则(a+ b)•(a﹣b)是正数,其中正确的序号是 _____ .三、解答题(★★) 17. 计算:(1 )﹣3 2+ (﹣2 )2×(﹣)+| ﹣2 2| ;(2 )0 ÷(﹣3 )2﹣4 ×(﹣1 )2022+15 .(★) 18. 解方程:(1 )2 x+3 (2 x﹣1 )=16 ﹣(x+1 );(2 )﹣1 =x﹣.(★★) 19. 先化简,再求值:(2 x2﹣+3 x)﹣4 (x﹣x2﹣),其中x=﹣.(★★) 20. 现定义某种新运算:对任意两个有理数a、b,有a☆b=a×| b| ,有括号的先算括号里面的.如:2 ☆3 =2 ×|3| =6 ,4 ☆(a+1 )=4 ×| a+1| .(1 )计算:☆[ (﹣3 )☆(﹣2 )] ;(2 )若x>0 ,y<0 ,试化简:x☆(﹣2 y).(★★) 21. 已知a、b、c三个数在数轴上的位置如图所示.(1 )化简| a﹣b| ﹣| a+ c|+| b﹣c| ;(2 )若| b﹣a﹣2|+ (a﹣1 )2=0 ,| c﹣1| =b+2 ,求c a+1﹣3 b的值.(★★★) 22. “囧”:是网络流行语,像一个人脸郁闷的神情,如图所示,一张边长为20 的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分)•设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1 )用含有x、y的代数式表示图中“囧”的面积;(2 )当y=,x=4 时,求此时“囧”的面积;(3 )令“囧”的面积为S,正方形的边长为a,若代数式2 S﹣ [2 S﹣8 (S+ bxy)] 的值与x、y无关,求此时b的值.(★★★) 23. 一年一度的“双十一”全球购物节完美收官,来自全国各地的包裹陆续发到本地快递公司.一快递小哥骑三轮摩托车从公司P出发,在一条东西走向的大街上来回投递包裹,现在他一天中七次连续行驶的记录如表(我们约定向东为正,向西为负,单位:千米)(1 )快递小哥最后一次投递包裹结束时他在公司P的哪个方向上?距离公司P多少千米?(2 )在第次记录时快递小哥距公司P地最远.(3 )如果每千米耗油0.08 升,每升汽油需7.2 元,那么快递小哥投递完所有包裹需要花汽油费多少元?(4 )如果快递小哥从公司P出发投递包裹时摩托车有汽油5 升,那么快递小哥在投递完最后一个包裹后能把摩托车送回到公司P吗,试计算说明.(★★) 24. 某服装店打算从某服装厂进货一款西装和领带,厂家规定:西装每套定价200元,领带每条定价40元.厂家为了促销,向客户提供了两种优惠方案:①购进一套西装送一条领带;②西装和领带都按定价的90%付款.若服装店计划从该厂家购进西装20套,领带x条(x>20).(1)若该服装店按方案①购进,需付款元(用含x的代数式表示);若该服装店按方案②购进,需付款元(用含x的代数式表示).(2)若x=40,通过计算说明此时按哪种方案购进较为合算?(3)服装店如何确定x的值,两种优惠方案所需付款相同.。
七年级数学上册第一次月考试卷为好成绩,知识渊博,创造力多,分秒必争,只为成功,祝你七年级数学月考取得好成绩,期待你的成功!小编整理了关于七年级数学上册第一次月考试卷,希望对大家有帮助!七年级数学上册第一次月考试题一、选择题(每小题3分,共36分)1、在下列各数:,,,,,中,负数有( )A.2个B.3个C.4个D.5个2、水池中的水位在某天八个不同时间测得的记录如下:(规定与前一天相比上升为正,单位:cm)+3,-6,-1,+5,-4,+2,-3,-2,那么这天水池中水位的最终变化情况是( )A.上升6cmB.下降6cmC.没升没降D.下降26cm3、下列各式中,一定成立的是( )A. B. C. D.4、下列说法正确的是( )A.有理数包括正整数、零和负分数B. 不一定是整数C.-5和+(-5)互为相反数D.两个有理数的和一定大于每一个加数5、如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,若点C表示的数为1,则点A表示的数是( )A.7B.3C.-3D.-26、下列结论正确的是( )A.若,则B.若,则C.若,则D. 一定是负数7、若是有理数,则一定是( )A.零B.非负数C.正数D.负数8、小于2014且不小于-2013的所有整数的和是( )A.0B.1C.2013D.20149、下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③ ;④(-36)÷(-9)=-4. 其中正确的个数是( )A.1个B.2个C.3个D.4个10、下列各式中的大小关系成立的是( )A. B. C. D.11、按下面的程序计算,若开始输入的值为正数,最后输出的结果为656,则满足条件的的不同值最多有( )A.2个B.3个C.4个D.5个12、在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A.1,2B.1,3C.4,2D.4,3二、填空题(每小题3分,共21分)13、的绝对值的倒数是 .14、 = .15、若是-9的相反数,则 = .16、若,则 = .17、若,则在,,,,0这五个数中,最大的数是 .18、已知,化简 = .19、绝对值比2大并且比6小的整数共有个.20、已知,,且,那么 = .21、如图是一个由六个小正方体堆积而成的几何体,每个小正方体的六个面上都分别写着-1,2,3,-4,5,-6六个数字,那么图中所有看不见的面上的数字和是 .22、从-3,-2,-1,4,5中取3个不同的数相乘,可得到的最大乘积为,最小乘积为,则 = .23、在计算机程序中,二叉树是一种表示数据结构的方法.如图,一层二叉树的结点总数为1,二层二叉树的结点的总数为3,三层二叉树的结点总数为7,四层二叉树的结点总数为15…,照此规律,七层二叉树的结点总数为 .三、解答题24、计算(每小题5分,共15分)(1) (2)25、(6分)把,,4,-3,5分别表示在数轴上,并用“<”号把它们连接起来.26、(4分)(探究题)①若数轴上点AB对应的数分别是-1、-4,则线段AB的中点C对应的数是 ;②若数轴上点AB对应的数分别是2、4,则线段AB的中点C对应的数是 ;③若数轴上点AB对应的数分别是-2、3,则线段AB的中点C对应的数是 ;④若数轴上点AB对应的数分别是a、b,则线段AB的中点C对应的数是 .27、(6分)阅读下列材料并解决有关问题.我们知道,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值).在实数范围内,零点值x=-1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)x<-1;(2)-1≤x<2;(3)x≥2.从而化简代数式|x+1|+|x-2|可分以下3种情况:(1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;(2)当-1≤x<2时,原式=x+1-(x-2)=3;(3)当x≥2时,原式=x+1+x-2=2x-1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x+3|和|x-5|的零点值;(2)化简|x+3|+|x-5|.七年级数学上册第一次月考试卷参考答案一、选择题1 2 3 4 5 6 7 8 9 10 11 12C B A BD B B A B D C A二、填空题13、14、-815、416、-2717、618、-119、620、-2或-821、-1322、23、127三、解答题24、(1)6 (2)-31 (3)25、-3< < <4<526、①-2.5 ②3 ③0.5 ④27、(1)|x+3|和|x-5|的零点值分别为-3、5.(2)当x<-3时,原式=2x+2;当-3≤x<5时,原式=8;当x≥5时,原式=2x-2.。
湖北省武汉市七年级(上)月考数学试卷(12月份)一、选择题(本大题共9小题,共30.0分)1.(3分)去年11月份我市某天最高气温是10℃,最低气温是﹣1℃,这天的温差是()A.﹣9℃B.﹣11℃C.9℃D.11℃2.(3分)若m的相反数是﹣2,那么m的值是()A.±2 B.2 C.﹣2 D.3.(3分)实数a,b在数轴上的位置如图所示,则()A.a>b B.|a|=|b| C.|a|>|b| D.b>04.(3分)下列变形不正确的是()A.若2﹣3x=2x﹣3,则2+3=2x+3x B.若﹣2x=3,则C.若ax=a,则x=1 D.若4x=4y,则x=y5.(3分)下列说法正确的是()A.x不是单项式 B.﹣15ab的系数是15C.单项式4a2b2的次数是2 D.多项式a4﹣2a2b2+b4是四次三项式6.(3分)下列平面图形经过折叠后,不能围成正方体的是()A.B.C.D.7.(3分)七年级某社团计划做一批“实验模型”,如果每人做5个,那么比计划多了10个;如果每人做4个,那么比计划少14个,设该班共有x人,根据题意可列方程()A.5x+10=4x+14 B.5x﹣10=4x+14C.5x﹣10=4x﹣14 D.5x+10=4x﹣148.(3分)“幻方”最早记载于春秋时期的《大戴礼记》中,如图1,每个三角形的三个顶点上的数组之和都与中间正方形四个顶点上的数字之和相等,若x3=﹣27,y比x大2,将x,y填入图2的幻方中,则(a﹣b)•|c﹣d|的值为()A.4 B.﹣2 C.﹣4 D.29.(3分)a是不为2的有理数,我们把称为a的“哈利数”.例如:3的“哈利数”是,﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,…,依此类推,则a2024=()A.3 B.﹣2 C.D.二、填空题(本大题共6小题,共18.0分)10.(3分)把原来弯曲的河道改直,就能缩短河道长度,能正确解释这一现象的数学知识是.11.(3分)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km.用科学记数法表示1.496亿是.12.(3分)一商店在某一时间以每件75元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,则卖出这两件衣服商店共元(填亏损或盈利多少元).13.(3分)点O为直线AB上一点,射线OC在直线AB的上方,∠AOC=70度,射线OD在平面内,射线OM平分∠AOD,射线ON平分∠COD,则∠MON=.14.(3分)如图,点C,D在线段AB上,P,Q分别是AD,BC的中点,若PC=2QD,则=.15.(3分)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,记:,(2x+n)=(2x+3)+(2x+4)+(2x+5)+(2x+6)+(2x+7)+(2x+8)=12x+33.同学们,通过以上材料的阅读,请回答下列问题:若对于任意x都存在,则代数式的值为.三、计算题(本大题共8小题,共72.0分)16.(9分)(1)5+(﹣6)+3+9+(﹣4)+(﹣7);(2)1﹣(﹣2)2×5﹣(﹣2)3÷4.17.(9分)(1)3x+5=4x+1;(2).18.(9分)先化简,再求值:5(3a2b﹣ab2)﹣4(3a2b﹣ab2),其中a=2,b=﹣3.19.(9分)用同一种材料做成了Ⅰ型、Ⅱ型两种型号的长方形窗框,形状如图所示(图中单位长度:m),这两种窗框的长都是x m,宽都是y m.若接缝忽略不计,根据图中各部分尺寸,解答下列问题:(1)做成一个Ⅰ型的窗框,需用材料多少米?(2)做成一个Ⅱ型的窗框,需用材料多少米?(3)已知图中x的长度大于图中y的长度,请求出:做一个Ⅰ型的窗框比做一个Ⅱ型的窗框多用这种材料多少米?20.(9分)如图,OD 平分∠AOB ,OE 平分∠BOC ,∠COD =20°,∠AOB =120°,求∠DOE的度数.21.(9分)某市居民使用自来水按月收费,标准如下:标准 用水量(单位m 3:每户每月)收费标准一 0~10m 3(含10m 3)a 元/m 3 二 10~20m 3(含20m 3)0﹣10m 3(含10m 3) a 元/m 3 10﹣20m 3(含20m 3) 1.5a 元/m 3 三 20m 3以上 0﹣10m 3(含10m 3)a 元/m 3 10﹣20m 3(含20m 3)1.5a 元/m 3 20m 3以上部分2a 元/m 3 (1)小明家10月份用水9m 3,小明妈妈交水费27元,则a = ;(2)小明家11月份用水x m 3,超过10m 3,但不足20m 3;12月份用水比11月份多10m 3.①11月份应交水费 元(用含x 的式子表示);②12月份应交水费 元(用含x 的式子表示);③若小明家11,12月两个月共交水费168元,求出x 的值.22.(9分)已知,C ,D 为线段AB 上两点,C 在D 的左边,AB =a ,CD =b ,且a ,b 满足(a﹣150)2+|b﹣a|=0.(1)求线段AB与CD的长度;(2)如图1,若M是线段AD的中点,N是线段BC的中点,求线段MN的长;(3)线段CD在线段AB上从端点D与点B重合的位置出发,以每秒2个单位长度的速度沿射线BA的方向运动,同时点P以相同速度从点A出发沿射线AB的方向运动,当点P 与点D相遇时,点P原路返回且速度加倍,线段CD的运动状态不变,直到点C到达点A 时线段CD和点P同时停止运动,设运动时间为t秒,在此运动过程中,当t为秒时线段PC=10.(直接写出答案)23.(9分)如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM=度;(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得边ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明你的理由;(3)若将图1中的三角板绕点O按每秒12°的速度沿逆时针方向旋转一周,在旋转过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是多少秒?(4)若将图1中的三角板绕点O按每秒11°的速度沿逆时针方向旋转,同时射线OC绕点O以每秒2°的速度沿逆时针方向旋转,旋转30秒后都停止.在旋转的过程中,若射线ON与∠AOC的平分线构成一个直角,则此时三角板绕点O旋转的时间是秒.(直接写出答案)。
湖北省宜昌市七年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分)(2020·淮安模拟) 2的相反数是()A .B . -2C .D .2. (1分) (2020七上·郑州期中) 2020年中秋加国庆8天小长假结束,由于今年上半年受到新冠疫情影响,人民的旅游热情高度堆积.据文化和旅游部信息显示,八天长假期间,全国共接待国内游客6.37亿人次,按可比口径同比恢复79.0%.实现国内旅游收入4543.3亿元,同比恢复69.9%.4543.3亿元用科学记数法表示为()元.A . 4.5433×103B . 4543.3×108C . 4.5433×1011D . 4.5433×1083. (1分) (2019七上·端州期末) |﹣2|=()A . 0B . ﹣2C . 2D . 14. (1分)在式子﹣ x2 ,,2xy,2x+y,3,6x2﹣y2+1中,整式有()A . 6个B . 5个C . 4个D . 3个5. (1分) (2017七上·罗平期末) 若长方形的周长为6m,一边长为m+n,则另一边长为()A . 3m+nB . 2m+2nC . m+3nD . 2m﹣n6. (1分) (2016七上·嘉兴期末) 下面四个等式的变形中正确的是()A . 由4x+8=0得x+2=0B . 由x+7=5-3x得4x=2C . 由 x=4得x=D . 由-4(x-1)=-2得4x=-67. (1分)方程的解是x=()A .B .C .D .8. (1分)一个蓄水池有甲、乙两个进水管,单独开甲管20小时可以注满水池,单独开乙管12小时可以注满水池,那么两管齐开注满水池,需要()A . 15小时B . 6小时C . 7.5小时D . 8小时9. (1分) (2017七上·江都期末) 如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在()A . 点 AB . 点BC . 点CD . 点D10. (1分)某商店出售剃须刀和刀片,在新年之际举行促销活动,每把剃须刀可盈利30元,但每个刀片亏本0.5元,在这次促销活动中,该商店售出的刀片数是剃须刀数的2倍,两种商品共获利5800元,设售出的剃须刀为x把,则可列得的一元一次方程为()A . 0.5×2x+30x=5800B . 0.5x+2×30x=5800C . ﹣0.5×2x+30x=5800D . 0.5×2x﹣30x=5800二、填空题 (共8题;共8分)11. (1分)在幻方中,每行、每列和每条对角线上的数字的和都相同,那么在如图所示的未完成的幻方中x=________.12. (1分) (2020七上·椒江期中) 已知多项式 + (m - 2)x -10 是二次三项式,m 为常数,则 m 的值为________.13. (1分) (2018七上·靖远月考) |3-a|+|b+2|+|c-4|=0,则2a+2b-c=________.14. (1分) (2020七上·南平期末) 计算: ________.15. (1分) (2019七上·铜仁月考) 若关于x的方程3x-7=2 x+a的解与方程4 x+3a=7a-8的解互为相反数,则a的值为________.16. (1分) (2020七上·乐平期中) 若,则 ________.17. (1分)(2016·竞秀模拟) 如图,在直线y= x的下方依次作小正方形,每个小正方形的一个顶点都在直线y= x上,若最小的正方形左边顶点的横坐际是1,则从左到右第10个小正方形的边长是________.18. (1分) (2017七下·湖州期中) 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是________元.三、简答题 (共7题;共15分)19. (2分) (2020七上·寻乌期末) 计算:(1) .(2) |﹣9|÷3+()×12+32;20. (1分) (2019七下·吉安期末) 先化简,再求值:,其中.21. (2分) (2020七上·越秀期末) 解下列方程:(1)(2)22. (2分)列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.23. (1分) (2020七上·哈尔滨月考) 某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读.如果每人分3本,则剩余20本;如果每人分4本,则还缺28本.则这个班有多少学生?(列方程解应用题)24. (3分) (2019八下·北海期末) 某经销商从市场得知如下信息:A品牌计算器B品牌计算器进价(元/台)700100售价(元/台)900160他计划一次性购进这两种品牌计算器共100台(其中A品牌计算器不能超过50台),设该经销商购进A品牌计算器x台(x为整数),这两种品牌计算器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)若要求A品牌计算器不得少于48台,求该经销商有哪几种进货方案?(3)选择哪种进货方案,该经销商可获利最大?最大利润是多少元?25. (4分) (2020七上·景县期中) 把几个数用大括号围起来,中间用逗号断开,如:{1,2,-3},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数是集合的元素时,有理数也必是这个集合的元素,这样的集合我们称为至尊集合.例如:集合{9,0}就是一个至尊集合.(1)请你判断:集合{-1,9}________至尊集合,集合{-8,1,4.5,8,17)________至尊集合(以上两个空格填“是”或“不是”);(2)请你写出所有至尊集合中,元素个数最少的集合________;请你再写出一个至少含有三个元素的至尊集合________;(3)若集合是至尊集合,则 ________;若集合是至尊集合,则________;(4)若某个至尊集合中含有个元素,求这个元素的和.参考答案一、选择题 (共10题;共10分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、简答题 (共7题;共15分)答案:19-1、答案:19-2、考点:解析:答案:20-1、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、答案:25-4、考点:解析:。
七年级上学期第三次阶段自评(B)数学(考试范围:至124页满分:120分)注意事项:1.本试卷分试题卷和答题卡两部分.试题卷共4页,两个大题,满分120分.2.试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上.答在试题卷上的答案无效.3.答题前,考生务必将本人所在学校、姓名、考场、座号、准考证号填写在答题卡第一面的指定位置上.一、选择题(每小题3分,共30分)1.有理数,在数轴上的对应的位置如图所示,则()A.B.C.D.2.下列各式中,是一元一次方程的有( )(1)x+π>3;(2)x﹣2;(3)2+3=5x;(4)x+y=5;(5)x2﹣1=0.A.1个B.2个C.3个D.4个3.下列运用等式性质进行的变形,正确的是()A.如果,那么B.如果,那么C.如果,那么D.如果,那么4.若方程的解为,则a为()A.1B.C.2D.5.下列变形正确的是()A.若,则B.若,则C.若,则.若,则.定义a*b=ab+a+b,若3*x=27,则x.4x=2是关于x的一元一次方程ax.........2010年地球停电一小时”活动的某地区烛光晚餐中,设座位有排,每排坐每排坐31人,则空个座位.则下列方程正确的是(....二、填空题(每小题.已知是关于的一元一次方程,则.在朱自清的《春》中描写春雨像牛毛、像花针、像细丝,密密麻麻地斜织着14.小红在解关于的一元一次方程时,误将看作,得方程的解为,则原方程的解为.15.有一列数,按一定的规律排列:―64,128,…,其中某三个相邻数之和为(1);(2).(3)..关于的方程与的解互为相反数.求的值;.小亮在解关于的一元一次方程时,发现正整数□被污染了,若老师告诉小亮这个方程的解是正整数,则被污染的正整数是多少?3cm,将其绕它的一边所在的直线旋转一周,得到一个立体图形.)求此几何体的体积;结果保留.用白铁皮做罐头盒,每张铁皮可制作盒身22.情境:请根据图中的信息,解答下列问题:(1)购买6根跳绳需______元,购买12根跳绳需______元;(2)小红比小明多买2根,付款时小红反而比小明少5元.你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.23.一项工程,甲队单独完成需30天,乙队单独完成需45天,现甲队先单独做20天,之后两队合作.(1)甲、乙合作多少天才能把该工程完成?(2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在40天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?答案与解析1.A2.A3.B4.D5.D6.C7.B8.D9.B10.D11.12.点动成线13.大14.15.128、-256、512.16.(1)(2)(3)(1)解:,移项得:,合并同类项得:,系数化为1得:;(2)解:,去括号得:,移项得:,合并同类项得:,系数化为1得:;(3)解:去分母得:去括号得:,移项得:,合并同类项得:,系数化为1得:.17.解:解方程得,解方程得,∵关于的方程与的解互为相反数∴,解得.18.2解:设被污染的正整数为,则有,∴,解得,∵这个方程的解是正整数,∴是正整数,且为正整数,∴或或(舍去).∴被污染的正整数是2.19.(1)圆柱,面动成体;(2)或.解:(1)这个几何体的名称为圆柱,这个现象用数学知识解释为面动成体;故答案为:圆柱,面动成体;(2)①当绕4cm的边旋转时,此时底面半径为3cm,高为4cm,∴圆柱的体积.②当绕3cm的边旋转时,此时底面半径为4cm,高为3cm,∴圆柱的体积.故这个几何体的体积是或.20.用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.解:设用张制作盒身,张制作盒底,可以正好制成整套罐头盒.根据题意,得.解得.所以.答:用84张制作盒身,60张制作盒底,可以正好制成整套罐头盒.21.(1)840千米每小时(2)2448千米(1)解:设无风时飞机的速度为,则顺风飞行时的速度,逆风飞行的速度,依题意得:,解得,答:无风时飞机的飞行速度为;(2)解:两城之间的距离.答:两城之间的距离为.22.(1)150,240(2)有这种可能,小红购买跳绳11根,理由见解析(1)6×25=150(元),12×25×0.8=240(元)(2)有这种可能设小红购买跳绳x根,根据题意得25×80%x=25(x-2)-5,解得x=11.因此小红购买跳绳11根.23.(1)甲、乙合作6天才能把该工程完成;(2)由甲、乙合作18天完成更省钱.解:(1)设甲、乙合作天才能把该工程完成.,解得.答:甲、乙合作6天才能把该工程完成.(2)当甲队独做时:万元乙队单独完成超时,所以乙队不能独做.当甲、乙两队全程合作时:设甲、乙合作天完成全工程.,解得:万元.105万元>99万元.答:由甲、乙合作18天完成更省钱.。
一、智慧选择,感知数学1.图1所示的货币符号图案中是轴对称图形的有()个。
图1A.1B.2C.3D.42.下面四幅图中,图()能说明只有四年级的学生连续5天进校戴口罩的人数小于本年级人数的一半。
A.B.C. D.3.在湖北省第十六届运动会宜昌市主城区火炬传递起点处,有一个长50米、宽20米的长方形观看场地。
火炬传递开始时,场地上挤满了观众。
最有可能的观众人数约是()。
A.400B.1000C.4000D.400004.如图2,在长方形中割去一个半圆,剩下的阴影部分的周长是()。
图2A.a +2b +πa ÷2B.(a +b )×2+πa ÷2C.ab -a 2×a 2÷2D.ab -a 2×a25.如图3,小宜在方格纸上画了一个“T ”形图案,若他将该图案的高度和宽度都增加1倍,得到的是图()。
图3A.B.C.D.6.我们学习了很多图形之间的相互关系,下列关系中表示错误的是()。
A.B .C.D .7.小伍在探究图形面积和周长之间的关系时,画了如下四幅图,其中空白部分与阴影部分的周长不相等但面积相等的是图()。
A .aa B.a aC.a aD.aa8.宜昌市规定3人及3人以内的家庭,每户每月用水量不超过20立方米时,按第一级1.37元/立方米收取水费;当用水量超过20立方米并且不超过30立方米时,超过的部分按第二级2.09元/立方米收取水费。
小刚家是三口之家,每月◇罗善彪湖北宜昌市2023年初中七年级起点学业监测数学试卷用水量在30立方米以内,能正确表示他家每月水费与用水量之间关系的示意图是()。
A. B.C. D.9.2022年卡塔尔世界杯足球赛,32支参赛球队分8个小组进行小组赛,小组内每支球队都必须和另外3支球队进行且只进行1场比赛。
计分规则是:胜1场得3分,平1场得1分,负1场得0分。
某小组比赛情况如表1所示,则甲队和丁队比赛,甲队的得分情况是()。
湖北省七年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,每小题2分,共20分) (共10题;共20分)1. (2分) (2021七上·灵山期末) 现实生活中,如果收入500元记作元,那么元表示为()A . 支出500元B . 收入500元C . 支出700元D . 收入700元2. (2分)(2019·太原模拟) 2018年我省着力提高能源供给体系质量,推动煤炭产业走“减、优、绿”的路子,全省煤炭先进产能占比达到57%,建成“两交一直”特高压输电通道,外送能力达到3830万千瓦.数据“3830万千瓦”用科学记数法表示为()A . 3830´104千瓦B . 383´105千瓦C . 0.383´108千瓦D . 3.83´107千瓦3. (2分) (2020七上·袁州月考) 已知是关于x的一元一次方程,则()A . m=2B . m =-3C . m =±3D . m =l4. (2分) (2019七上·长春期末) 下列运算结果正确的是()A . 4+5ab=9abB . 6xy﹣y=6xC . 6x3+4x7=10x10D . 8a2b﹣8ba2=05. (2分) (2016七上·乳山期末) 通过估算比较大小,下列结论不正确的是()A .B . ﹣>C .D .6. (2分) (2016七上·前锋期中) 单项式﹣2xy2z3的系数和次数是()A . 2,6B . ﹣2,6C . ﹣2,5D . ﹣2,37. (2分) (2019七下·孝南期末) 下列各数中,是无理数的是()A .B . 3.14C .D .8. (2分) (2020七上·碑林期末) 如图,B是线段AD的中点,C是线段BD上一点,则下列结论中错误的是()A . BC=AB-CDB . BC= (AD-CD)C . BC= AD-CDD . BC=AC-BD9. (2分) (2020八下·奉化期中) 我们把形如(a,b为有理数,为最简二次根式)的数叫做型无理数,如是型无理数,则是()A . 型无理数B . 型无理数C . 型无理数D . 型无理数10. (2分)大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成1,1=10﹣1;198写成20, 20=200﹣2;7683写成13,13=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算53﹣31=()A . 1990B . 2068C . 2134D . 3024二、填空题(共10小题,每题3分,共30分) (共10题;共30分)11. (3分) (2019七上·江汉期中) 用四舍五入法将1.804取近似数并精确到0. 01,得到的值是________.12. (3分) (2016七上·临沭期末) 请你写出一个解为的一元一次方程________.13. (3分)已知|x|=1,|y|=2,且xy>0,则x+y=________.14. (3分) (2019七上·兴宾期中) 若多项式不含项,则 =________.15. (3分)(2017·江北模拟) 有一玻璃密封器皿如图①,测得其底面直径为20cm,高20cm,现内装蓝色溶液若干.如图②放置时,测得液面高10cm;如图③放置时,测得液面高16cm;则该玻璃密封器皿总容量为________cm3(结果保留π)16. (3分) (2018七上·惠东期中) 定义新运算:a☆b=a2﹣b,则(0☆1)☆2017=________。
七年级上(12月)月考数学试卷(含答案)一、选择题1.﹣的相反数是()A.2 B.﹣2 C.D.﹣2.单项式﹣3xy2的系数和次数分别为()A.3,1 B.﹣3,1 C.3,3 D.﹣3,33.下列各组中的两个单项式不属于同类项的是()A.3m2n3和﹣m2n3B.﹣1和 C.a3和x3D.﹣和25xy4.下面图形中,三棱柱的平面展开图为()A.B.C.D.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦6.将方程﹣=2进行变形,结果正确的是()A.﹣=2 B.﹣=20C.﹣=20 D.5(x+4)﹣2(x﹣3)=27.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元8.由一些大小相同的小正方体搭成的几何体的主视图与左视图如图所示,搭成这个几何体的小正方体的个数不可能为()A.10 B.9 C.8 D.7二、填空题9.比较大小:.10.2016年“双十一”购物活动中,某电商平台全天总交易额达1207亿元,用科学记数法表示为元.11.已知x=2是方程11﹣2x=ax﹣1的解,则a=.12.若单项式ax2y n+1与﹣ax m y4的差仍是单项式,则m﹣2n=.13.已知整式x2﹣2x+6的值为9,则6﹣2x2+4x的值为.14.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为.15.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲总共做了多少小时?设甲共计做了x小时,可列方程为.16.已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm.则线段AC=cm.17.有一个程序机(如图),若输入4,则输出值是2,记作第一次操作;将2再次输入,则输出值是1,记作第二次操作…,则第2016次操作输出的数是.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的16个点最多可确定条直线.三、解答题(共96分)19.(8分)计算:(1)(﹣+)×45(2)﹣24﹣2×(﹣3)+|2﹣5|﹣(﹣1)2013.20.(8分)解方程:(1)x﹣(7﹣8x)=3(x﹣2)(2)﹣=﹣1.21.(8分)先化简,再求值:4ab﹣a2﹣[2(a2+ab)﹣3(a2﹣b2)],其中(a+)2+|b﹣3|=0.22.如图,A、B、C、D四点不在同一直线上,读句画图.(1)画射线DA;(2)画直线CD;(3)连结AB、BC;(4)延长BC,交射线DA的反向延长线于E.23.如图,在直线l上找一点P,使得PA+PB的和最小,并简要说明理由.(保留作图痕迹)24.(8分)如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB的长度.25.(10分)如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.26.(10分)用一元一次方程解决问题:爸爸买了一箱苹果回家,小芳想分给家里的每一个人,如果每人分3个,就剩下3个苹果分不完,如果每人分4个,则还差2个苹果才够分,问小芳家有几个人?爸爸买了多少个苹果?小刚与小明分别用两种设未知数的方法都解决了上述问题,请你将两种方法都详细的写出来.27.(10分)当m为何值时,关于x的方程3x+m=2x+7的解比关于x的方程4(x﹣2)=3(x+m)的解大9?28.(12分)我市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.估计小明家下月总用电量为200度,(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)请你帮小明计算,峰时电量为多少度时,两种方式所付的电费相等?(3)到下月付费时,小明发现那月总用电量为200度,用峰谷电价付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?29.(14分)已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.七年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题1.﹣的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.单项式﹣3xy2的系数和次数分别为()A.3,1 B.﹣3,1 C.3,3 D.﹣3,3【考点】单项式.【分析】利用单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣3xy2的系数和次数分别为:﹣3,3.故选:D.【点评】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.3.下列各组中的两个单项式不属于同类项的是()A.3m2n3和﹣m2n3B.﹣1和 C.a3和x3D.﹣和25xy【考点】同类项.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得答案.【解答】解:A 字母相同,且相同的字母的指数也相同,故A是同类项;B 常数项也是同类项,故B是同类项;C 字母不同,故C不是同类项;D 字母相同,且相同的字母的指数也相同,故D是同类项;故选:C.【点评】本题考查了同类项,注意常数项也是同类项.4.下面图形中,三棱柱的平面展开图为()A.B.C.D.【考点】几何体的展开图.【分析】根据三棱柱的展开图的特点作答.【解答】解:A、是三棱柱的平面展开图,故选项正确;B、不是三棱柱的展开图,故选项错误;C、不是三棱柱的展开图,故选项错误;D、两底在同一侧,也不符合题意.故选:A.【点评】熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.5.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦【考点】专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.将方程﹣=2进行变形,结果正确的是()A.﹣=2 B.﹣=20C.﹣=20 D.5(x+4)﹣2(x﹣3)=2【考点】解一元一次方程.【分析】方程整理后,去分母得到结果,即可做出判断.【解答】解:方程﹣=2进行变形得:﹣=2,即5(x+4)﹣2(x﹣3)=2,故选:D.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.7.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【考点】一元一次方程的应用.【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x 元, 由题意得:330×0.8﹣x=10%x ,解得:x=240,即这种商品每件的进价为240元. 故选:A .【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.8.由一些大小相同的小正方体搭成的几何体的主视图与左视图如图所示,搭成这个几何体的小正方体的个数不可能为( )A .10B .9C .8D .7【考点】由三视图判断几何体.【分析】根据三视图的知识,主视图是由5个小正方形组成,而左视图是由5个小正方形组成,故这个几何体的底层最少有4个,最多有6个小正方体,第2层有2个小正方体,第三层有1个.【解答】解:根据左视图和主视图,这个几何体的底层最少有4个小正方体,最多有6个小正方体,第二层有2个小正方体,第三层有1个,所以最多有6+2+1=9个小正方体,最少有4+2+1=7个小正方体, 故选:A .【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.二、填空题9.比较大小:>.【考点】有理数大小比较.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数反而越小即可得到它们的关系关系.【解答】解:∵|﹣|==,|﹣|==,而<,∴﹣>﹣.故答案为:>.【点评】本题考查了有理数的大小比较:正数大于零,负数小于零;负数的绝对值越大,这个数反而越小.10.2016年“双十一”购物活动中,某电商平台全天总交易额达1207亿元,用科学记数法表示为 1.27×1011元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:1207亿=1.27×1011.故答案为:1.27×1011.【点评】此题考查科学记数法的表示方法.关键要正确确定a的值以及n的值.11.已知x=2是方程11﹣2x=ax﹣1的解,则a=4.【考点】一元一次方程的解.【分析】根据一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解,故把方程的解x=2代入原方程,得到一个关于a的方程,再解出a的值即可得答案.【解答】解:∵x=2是方程11﹣2x=ax﹣1的解,∴11﹣2×2=a×2﹣1,11﹣4=2a﹣1,2a=8,a=4,故答案为:4.【点评】此题主要考查了一元一次方程的解,关键是把握准一元一次方程的解的定义.12.若单项式ax2y n+1与﹣ax m y4的差仍是单项式,则m﹣2n=﹣4.【考点】合并同类项.【分析】根据差是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的减法,可得答案.【解答】解:∵单项式与的差仍是单项式,∴单项式与是同类项,m=2,n+1=4,n=3,m﹣2n=2﹣2×3=﹣4,故答案为:﹣4.【点评】本题考查了合并同类项,先根据差是单项式,得出它们是同类项,求出m、n的值,再求出答案.13.已知整式x2﹣2x+6的值为9,则6﹣2x2+4x的值为0.【考点】代数式求值.【分析】先将x2﹣2x+6=9进行适当的变形,然后代入原式即可求出答案.【解答】解:∵x2﹣2x+6=9,∴x2﹣2x=3,∴原式=6﹣2(x2﹣2x)=6﹣6=0,故答案为:0【点评】本题考查代数式求值,涉及整体的思想.14.一个立体图形的三视图如图所示,请你根据图中给出的数据求出这个立体图形的表面积为8π.【考点】由三视图判断几何体.【分析】从三视图可以看正视图以及俯视图为矩形,而左视图为圆形,可以得出该立体图形为圆柱,再由三视图可以圆柱的半径,长和高求出体积.【解答】解:∵正视图和俯视图是矩形,左视图为圆形,∴可得这个立体图形是圆柱,∴这个立体图形的侧面积是2π×3=6π,底面积是:π•12=π,∴这个立体图形的表面积为6π+2π=8π;故答案为:8π.【点评】此题考查了由三视图判断几何体,根据三视图的特点描绘出图形是解题的关键,掌握好圆柱体积公式=底面积×高.15.甲乙两人承包铺地砖任务,若甲单独做需20小时完成,乙单独做需要12小时完成.甲乙二人合做6小时后,乙有事离开,剩下的由甲单独完成.问甲总共做了多少小时?设甲共计做了x小时,可列方程为+=1.【考点】由实际问题抽象出一元一次方程.【分析】设甲共计做了x小时,等量关系为:甲完成的工作量+乙完成的工作量=1,依此列出方程即可.【解答】解:设甲共计做了x小时,根据题意得+=1.故答案为+=1.【点评】本题考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.16.已知A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm.则线段AC=20或10cm.【考点】两点间的距离.【分析】根据题意画正确图形:分两种情况①点C在点B的左边;②点C在点B的右边.【解答】解:①由图示可知AC=AB﹣BC=15﹣5=10(cm);②由图示可知AC=AB+BC=15+5=20(cm)故答案是:10或20.【点评】本题考查了两点间的距离,属于基础题,正确的画图是解答的基础.17.有一个程序机(如图),若输入4,则输出值是2,记作第一次操作;将2再次输入,则输出值是1,记作第二次操作…,则第2016次操作输出的数是4.【考点】代数式求值.【分析】根据运算程序计算出每一次输出的结果,然后根据每3次为一个循环组依次循环,用2016除以3,根据商和余数的情况确定答案即可.【解答】解:第一次输出:×4=2,第二次输出:×2=1,第三次输出:1+3=4,第四次输出:×4=2,第五次输出:×2=1,…,每3次输出为一个循环组依次循环,∵2016÷3=672,∴第2016次操作输出的数是第672个循环组的第3次输出,结果是4.故答案为:4.【点评】本题考查了代数式求值,根据运算程序计算出每3次为一个循环组依次循环是解题的关键.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的16个点最多可确定120条直线.【考点】直线的性质:两点确定一条直线.【分析】根据每两个点之间有一条直线,可得n个点最多直线的条数:.【解答】解:若平面内的不同的16个点最多可确定=120条直线,故答案为:120.【点评】本题考查了直线、射线、线段,熟记n个点最多直线的条数:是解题关键.三、解答题(共96分)19.计算:(1)(﹣+)×45(2)﹣24﹣2×(﹣3)+|2﹣5|﹣(﹣1)2013.【考点】有理数的混合运算.【分析】(1)应用乘法分配律,求出算式的值是多少即可.(2)根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:(1)(﹣+)×45=×45﹣×45+×45=5﹣30+27=2(2)﹣24﹣2×(﹣3)+|2﹣5|﹣(﹣1)2013=﹣16+6+3﹣(﹣1)=﹣10+3+1=﹣6【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.解方程:(1)x﹣(7﹣8x)=3(x﹣2)(2)﹣=﹣1.【考点】解一元一次方程.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7+8x=3x﹣6,移项合并得:6x=1,解得:x=;(2)去分母得:9x+3﹣5x+3=﹣6,移项合并得:4x=﹣12,解得:x=﹣3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.先化简,再求值:4ab﹣a2﹣[2(a2+ab)﹣3(a2﹣b2)],其中(a+)2+|b﹣3|=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:原式=4ab﹣a2﹣2a2﹣2ab+3a2﹣3b2=2ab﹣3b2,∵(a+)2+|b﹣3|=0,∴a=﹣,b=3,则原式=﹣3﹣27=﹣30.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图,A、B、C、D四点不在同一直线上,读句画图.(1)画射线DA;(2)画直线CD;(3)连结AB、BC;(4)延长BC,交射线DA的反向延长线于E.【考点】直线、射线、线段.【分析】根据直线、线段和射线的画法按要求画出图形即可.【解答】解:如图:【点评】本题考查了直线、射线、线段的概念及表示方法:直线用一个小写字母表示,如:直线l,或用两个大些字母(直线上的)表示,如直线AB;射线是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA;线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA).23.如图,在直线l上找一点P,使得PA+PB的和最小,并简要说明理由.(保留作图痕迹)【考点】线段的性质:两点之间线段最短.【分析】根据线段的性质,可得答案.【解答】解:如图.理由:两点之间,线段最短.【点评】本题考查了线段的性质,利用线段的性质是解题关键.24.如图,点C、D是线段AB上两点,点D是AC的中点,若BC=6cm,BD=10cm,求线段AB 的长度.【考点】两点间的距离.【分析】由BC=6cm,BD=10cm,可求出DC=BD﹣BC=4cm,再由点D是AC的中点,则求得DA=DC=4cm,从而求出线段AB的长度.【解答】解:已知BC=6cm,BD=10cm,∴DC=BD﹣BC=4cm,又点D是AC的中点,∴DA=DC=4cm,所以AB=BD+DA=10+4=14(cm).答:线段AB的长度为14cm.【点评】本题考查了两点间的距离,利用线段差及中点性质是解题的关键.25.(10分)(2016秋•河西区校级期末)如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为28;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加2个小正方体.【考点】作图-三视图;几何体的表面积.【分析】(1)有顺序的计算上下面,左右面,前后面的表面积之和即可;(2)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(3)根据保持这个几何体的主视图和俯视图不变,可知添加小正方体是中间1列前面的2个,依此即可求解.【解答】解:(1)(4×2+6×2+4×2)×(1×1)=(8+12+8)×1=28×1=28故该几何体的表面积(含下底面)为28.(2)如图所示:(3)由分析可知,最多可以再添加2个小正方体.故答案为:28;2.【点评】考查了作图﹣三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.26.(10分)(2016秋•扬州月考)用一元一次方程解决问题:爸爸买了一箱苹果回家,小芳想分给家里的每一个人,如果每人分3个,就剩下3个苹果分不完,如果每人分4个,则还差2个苹果才够分,问小芳家有几个人?爸爸买了多少个苹果?小刚与小明分别用两种设未知数的方法都解决了上述问题,请你将两种方法都详细的写出来.【考点】一元一次方程的应用.【分析】设小芳家有x个人,根据苹果总数不变及“如果每人分3个,就剩下3个苹果分不完,如果每人分4个,则还差2个苹果才够分”列出方程,解方程即可.【解答】解:方法一:设小芳家有x人3x+3=4x﹣2x=53x+3=18答:小芳家有5人,爸爸买了18个苹果;方法二:设爸爸买了y个苹果y=18答:小芳家有5人,爸爸买了18个苹果.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.(10分)(2016秋•扬州月考)当m为何值时,关于x的方程3x+m=2x+7的解比关于x 的方程4(x﹣2)=3(x+m)的解大9?【考点】一元一次方程的解.【分析】分别解两个方程求得方程的解,然后根据关于x的方程3x+m=2x+7的解比关于x的方程4(x﹣2)=3(x+m)的解大9,即可列方程求得m的值.【解答】解:解方程3x+m=2x+7,得x=7﹣m,解方程4(x﹣2)=3(x+m),得x=3m+8,根据题意,得7﹣m﹣(3m+8)=9,解得m=﹣.【点评】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解,也考查了一元一次方程的解法.28.(12分)(2014秋•故城县期末)我市城市居民用电收费方式有以下两种:(甲)普通电价:全天0.53元/度;(乙)峰谷电价:峰时(早8:00~晚21:00)0.56元/度;谷时(晚21:00~早8:00)0.36元/度.估计小明家下月总用电量为200度,(1)若其中峰时电量为50度,则小明家按照哪种方式付电费比较合适?能省多少元?(2)请你帮小明计算,峰时电量为多少度时,两种方式所付的电费相等?(3)到下月付费时,小明发现那月总用电量为200度,用峰谷电价付费方式比普通电价付费方式省了14元,求那月的峰时电量为多少度?【考点】一元一次方程的应用.【分析】(1)根据两种收费标准,分别计算出每种需要的钱数,然后判断即可.(2)设峰时电量为x度时,收费一样,然后分别用含x的式子表示出两种收费情况,建立方程后求解即可.(3)设那月的峰时电量为x度,根据用峰谷电价付费方式比普通电价付费方式省了14元,建立方程后求解即可.【解答】解:(1)按普通电价付费:200×0.53=106元.按峰谷电价付费:50×0.56+(200﹣50)×0.36=82元.∴按峰谷电价付电费合算.能省106﹣82=24元()(2)0.56x+0.36 (200﹣x)=106解得x=170∴峰时电量为170度时,两种方式所付的电费相等.(3)设那月的峰时电量为x度,根据题意得:0.53×200﹣[0.56x+0.36(200﹣x)]=14解得x=100∴那月的峰时电量为100度.【点评】本题考查了一元一次方程的应用,解答本题的关键是正确表示出两种付费方式下需要付的电费,注意方程思想的运用.29.(14分)(2016秋•扬州月考)已知数轴上有A,B,C三点,分别表示数﹣24,﹣10,10.两只电子蚂蚁甲、乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒.(1)问甲、乙在数轴上的哪个点相遇?(2)问多少秒后甲到A,B,C三点的距离之和为40个单位?.(3)若甲、乙两只电子蚂蚁(用P表示甲蚂蚁、Q表示乙蚂蚁)分别从A,C两点同时相向而行,甲的速度变为原来的3倍,乙的速度不变,直接写出多少时间后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.【考点】一元一次方程的应用;数轴.【分析】利用行程问题的基本数量关系,以及数轴直观解决问题即可.【解答】解:(1)设x秒后甲与乙相遇,则4x+6x=34,解得x=3.4,4×3.4=13.6,﹣24+13.6=﹣10.4.故甲、乙在数轴上的﹣10.4相遇;(2)设y秒后甲到A,B,C三点的距离之和为40个单位,B点距A,C两点的距离为14+20=34<40,A点距B、C两点的距离为14+34=48>40,C点距A、B的距离为34+20=54>40,故甲应为于AB或BC之间.①AB之间时:4y+(14﹣4y)+(14﹣4y+20)=40解得y=2;②BC之间时:4y+(4y﹣14)+(34﹣4y)=40,解得y=5.(3)①设x秒后原点O是甲蚂蚁P与乙蚂蚁Q两点的中点,则24﹣12x=10﹣6x,解得x=(舍去);②设x秒后乙蚂蚁Q是甲蚂蚁P与原点O两点的中点,则24﹣12x=2(6x﹣10),解得x=;③设x秒后甲蚂蚁P是乙蚂蚁Q与原点O两点的中点,则2(24﹣12x)=6x﹣10,解得x=;综上所述,秒或秒后,原点O、甲蚂蚁P与乙蚂蚁Q三点中,有一点恰好是另两点所连线段的中点.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
湖北省宜昌市七年级上学期数学12月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·宁波) 在-3,-1,0,1这四个数中,最小的数是()A . -3B . -1C . 0D . 12. (2分) (2017七上·和平期中) 数轴上有A,B,C,D四个点,其中哪个点表示的数为1()A . 点AB . 点BC . 点CD . 点D3. (2分)﹣绝对值的相反数是()A .B . ﹣C . 3D . ﹣34. (2分) (2020七上·德江期末) 下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是()A . 用两颗钉子就可以把木条钉在墙上B . 植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C . 从地到地架设电线,总是尽可能沿着线段来架设D . 打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上5. (2分) M、N两点的距离是20厘米,有一点P,如果PM+PN=30厘米,那么下面结论正确的是()A . 点P必在线段MN上B . 点P必在直线MN外C . 点P必在直线MN上D . 点P可能在直线MN上,也可能在直线MN外6. (2分)已知:a﹣3b=2,则6﹣2a+6b的值为()A . 2B . -2C . 4D . -47. (2分)下列各式中,去括号正确的是()A .B .C .D .8. (2分) (2020七上·滨州期末) 在-(-8),(-1)2019 , -32 , 0,中,负数的个数有()A . 2个B . 3个C . 4个D . 5个9. (2分) (2019七上·岑溪期中) ﹣2的相反数是()A .B . 2C .D . ﹣210. (2分) (2019七上·双城期末) 数轴上到原点的距离是5个单位长度的点表示的数是()A . 5B .C . 0D .二、填空题 (共11题;共14分)11. (2分)计算:2﹣(﹣1)=________12. (1分) (2019七上·咸阳月考) 数轴上点A表示-3、B、C两点表示的数互为相反数、且点B到点A的距离是1,则点C表示的数应该是________或________13. (2分) (2018八上·江北期末) 已知中,它的三边长、、都是正整数,其中不是最长边,且满足,则符合条件的的值为________.14. (1分)已知:点A(m,2)与点B(3,n)关于y轴对称,则(m+n)2016=________.15. (1分)如果a的倒数是﹣1,那么a2016等于________16. (2分) (2016七上·驻马店期末) 在如图所示的运算流程中,若输出的数y=5,则输入的数x=________.17. (1分)(2017·青浦模拟) 若x:y=2:3,那么x:(x+y)=________.18. (1分) (2019七上·江苏期中) 已知﹣5a2mb和3a4b3﹣n是同类项,则 m﹣n的值是________.19. (1分)(2018·龙东) 人民日报2018年2月23日报道,2017年黑龙江粮食总产量达到1203.76亿斤,成功超越1200亿斤,连续七年居全国首位,将1200亿斤用科学记数法表示为________斤.20. (1分) (2018八上·沈河期末) 如图所示,已知四边形ABCD是等边长为2的正方形,AP=AC,则数轴上点P所表示的数是________.21. (1分) (2016七上·南江期末) 已知代数式x2+x+3的值是4,那么代数式9﹣x2﹣x的值是________.三、解答题 (共7题;共60分)22. (20分) (2020七上·大丰期末) 计算:(1)(2)23. (10分) (2017七下·威远期中) 解下列方程24. (5分) (2018七上·大石桥期末) 如图4,点C是线段AB的中点,点E为线段AB上一点,点D为线段AE的中点,如果AB=15,AD=2BE, 求线段CE的长。
湖北省宜昌市七年级上学期数学12月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2018七上·余杭期末) 的相反数是()
A .
B .
C .
D .
2. (2分) 2010年一季度,全国城镇新增就业人数为2890000人,用科学记数法表示2890000正确的是()
A . 2.89×107
B . 2.89×106
C . 2.89×105
D . 2.89×104
3. (2分) (2017九上·云南月考) 下列运算正确的是()
A .
B .
C .
D .
4. (2分) (2018七上·武威期末) 下列方程属于一元一次方程的是()
A . ﹣1=0
B . 3m=2
C . 6x+1=3y
D . 2y2﹣4y+1=0
5. (2分)解方程6x+1=-4,移项正确的是()
A . 6x=4-1
B . -6x=-4-1
C . 6x=1+4
D . 6x=-4-1
6. (2分)有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()
A . +2
B . -3
C . +3
D . +4
7. (2分)下列各式成立的是()
A . 2x+3y=5xy
B . a-(b+c)=a-b+c
C . 3a2b+2ab2=5a3b3
D . -2xy+xy=-xy
8. (2分)把方程﹣x=1.4整理后可得方程()
A . ﹣x=1.4
B .
C .
D . ﹣x=1.4
9. (2分)如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()
A . 10 cm2
B . 20 cm2
C . 40 cm2
D . 80 cm2
10. (2分)若(x﹣1)3=a3x3+a2x2+a1x+a0 ,那么a3+a2+a1=()
A . 1
B . 2
C . 3
D . 4
11. (2分)甲、乙、丙三人共捐款611元支援山区,甲比乙多25元,比丙少36元,则丙捐款数为()
A . 200元
B . 175元
C . 236元
D . 218元
12. (2分) (2017九上·梅江月考) 如图,将n个边长都为1cm 的正方形按如图所示的方法摆放,点 A1 ,A2 ,…, An 分别是正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积和为()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分) (2018七上·蔡甸月考) 计算:-9÷ =________.
14. (1分) (2018九上·龙岗期中) 方程2x-4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为________.
15. (1分) (2018七上·无锡期中) 已知与是同类项,则m-n=________.
16. (1分) (2019七上·确山期中) 按图中规矩摆放三角形,按照摆放规律.第(n)个图形中三角形的个数为________(用含n的代数式表示)
三、解答题 (共8题;共81分)
17. (20分) (2016七下·临泽开学考) 计算下列各题:
(1)(1﹣ + )×(﹣48)
(2)﹣14﹣(1﹣0.5)× ×[2﹣(﹣3)2].
18. (5分) (2019七上·大东期末) 解方程
(1)
(2)
19. (5分) (2018七上·延边期末) .
20. (10分) (2019七下·武汉月考) 已知有理数a、b、c在数轴上的位置,
(1) a+b________0;a+c________0;b﹣c________0(用“>,<,=”填空)
(2)试化简|a+b|﹣2|a+c|+|b﹣c|.
21. (10分) (2018八上·仙桃期末) 已知某项工程由甲、乙两队合做12天可以完成,共需工程费用27720元.乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.
(1)求甲、乙两队单独完成这项工程各需多少天?
(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.
22. (15分) (2018七上·西城期末) 为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒).该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元.经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.
(1)若这个班计划购买6盒乒乓球,则在甲商店付款________元,在乙商店付款________元;
(2)当这个班购买多少盒乒乓球时,在甲、乙两家商店付款相同?
23. (1分) (2019七下·长春月考) 如果一个角的两边与另一个角的两边分别平行,某同学为了探究这两个角的关系,画出来以下两个不同的图形,请你根据图形完成以下问题:
(1)如图1,如果AB∥CD,BE∥DF,那么∠1与∠2的关系是________;
如图2,如果AB∥CD,BE∥DF,那么∠1与∠2的关系是________;
(2)根据(1)的探究过程,我们可以得到结论:如果一个角的两边与另一个角的两边分别平行,那么这两个角的关系是________;
(3)利用结论解决问题:如果有两个角的两边分别平行,且一个角比另一个角的3倍少40°,则这两个角分别是多少度?
24. (15分) (2019七上·洪湖月考) 已知多项式,次数是b,3a与b互为相反数,在数轴上,点A表示数a,点B表示数b.
(1)数轴上A、B之间的距离记作,定义:设点C在数轴上对应的数为x,当时,直接写出x的值.
(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度按照如此规律不断地左右运动,当运动了2019次时,求点P所对应的有理数.
(3)若小蚂蚁甲从点A处以1个单位长度秒的速度向左运动,同时小蚂蚁乙从点B处以2单位长度秒的速度也向左运动,一同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3、答案:略
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10、答案:略
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16、答案:略
三、解答题 (共8题;共81分)
17-1、
17-2、18-1、
18-2、19-1、20-1、
20-2、
21-1、
21-2、22-1、
22-2、23-1、23-2、
23-3、
24-1、24-2、
24-3、。