基因组学基本知识
- 格式:ppt
- 大小:1.25 MB
- 文档页数:44
1.基因组的序列组成高度重复序列:几个碱基-数千碱基中度重复序列:短散在元件、长散在元件单一序列:原核生物基因组只含单一序列基因主要位于单一序列:DNA驱动杂交2.从分子水平来说,基因必须表现三种基本的功能(1基因可自体复制遗传物质必须贮存遗传信息,并能将其复制且一代一代精确地传递下去。
(2)基因决定性状:遗传物质必须控制生物体性状的发育和表达。
(3)基因突变:遗传物质必须发生变异,以适应外界环境的变化,没有变异就没有进化。
3.断裂基因的意义(1)有利于储存较多的遗传信息量;(2)有利于变异与进化;(3)增加重组机率;(4)内含子可能是调控装置。
通读基因:指从起始密码开始到终止密码为止,所有核苷酸都为氨基酸编码基因。
5.多基因家族两种类型(多基因家族(multigene family)是真核生物基因组的共同特征,是指由一个祖先基因经过重复和变异形成的一组来源相同、结构相似、功能相关的基因。
)由一个基因产生多次拷贝,具有几乎相同的顺序,成簇地排列在同一条染色体上,形成一个基因簇(gene cluster)。
它们同时发挥作用,合成某些蛋白质。
一个多基因家族的不同成员成簇地分布在几条染色体上,成员间序列有所不同,编码一组关系密切的蛋白质。
6.为何要绘制遗传图与物理图?1)基因组太大,必需分散测序,然后将分散的顺序按原来位置组装,需要图谱进行指导。
2)基因组存在大量重复顺序,会干扰排序,因此要高密度基因组图。
3)遗传图和物理图各有优缺点,必须相互整合校正。
7.基因标记(性状标记):存在的问题:数量有限。
虽然经过近百年的努力,目前这些标记的数量仍然不多,因此限制了这些标记的利用。
操作上比较麻烦,难以开展大规模的研究和利用。
高等生物基因组存在大量基因间隔区,纯粹的基因标记在遗传图中会留下大片的无标记区段。
部分基因无法通过实验区分。
8.DNA标记具有的优势:在数量上是巨大的;操作相对简单,适合大规模开展工作;标记比较明显,容易识别;受环境影响少,标记本身就是遗传物质。
基因组学知识点总结基因组学是研究生物体的基因组结构、功能以及其与遗传性状的关系的学科。
下面将对基因组学的相关知识进行总结,包括基因组、基因、DNA测序技术等内容。
一、基因组和基因基因组指的是一个生物体所有基因和非编码DNA序列的总和。
基因是基因组中的一个特定区域,能够编码特定的功能性产物,如RNA和蛋白质。
基因组学研究着基因组中存在的各种基因的类型、数量以及它们在生物体中的分布和功能。
二、DNA测序技术DNA测序技术是基因组学中的重要工具,通过测序技术可以获取到DNA序列的信息,从而研究基因组结构和功能。
在过去的几十年里,DNA测序技术经历了多次技术革新,从传统的Sanger测序到现代的高通量测序技术,如二代测序和三代测序技术。
三、基因组测序项目基因组测序项目是基因组学研究的重要组成部分。
其中,人类基因组计划是最为著名的基因组测序项目之一,对人类基因组进行了全面的测序和分析,为后续的基因组学研究提供了重要的基础数据。
四、功能基因组学功能基因组学研究基因组中的各种功能元件,如调控区域、非编码RNA等,以及它们在基因调控网络中的作用和相互关系。
通过功能基因组学的研究,我们可以更好地理解基因组中各个功能区域的作用机制和生物学意义。
五、比较基因组学比较基因组学研究不同物种之间基因组的异同,以及这些差异对生物体特性的影响。
通过比较基因组学的研究,我们可以了解不同物种间的进化关系、基因家族的起源和演化等重要问题。
六、基因组编辑技术基因组编辑技术是基因组学中的一项重要技术,主要用于修饰和改变生物体的基因组。
目前,CRISPR-Cas9系统是最为常用的基因组编辑技术,能够实现高效、精确的基因组编辑,对基因组学研究和生物技术应用具有重要意义。
七、应用领域基因组学在许多领域都有广泛的应用,包括生物医学研究、农业与畜牧业、环境保护等。
通过基因组学的研究,我们可以揭示疾病的遗传基础、改良作物和畜牧动物的品质特性、了解生物多样性等重要问题。
基因组学考试资料整理版第一章一、基因组1、基因组:生物所具有的携带遗传信息的遗传物质的总和,是指生物细胞中所有的DNA,包括所有的基因和基因间区域。
2、基因组学:指以分子生物学技术、计算机技术和信息网络技术为研究手段,以生物体内全部基因为研究对象,在全基因背景下和整体水平上探索生命活动的内在规律及其内外环境影响机制的科学。
基因组学包括3个不同的亚领域结构基因组学(structural genomics) :以全基因组测序为目标功能基因组学(functional genomics):以基因功能鉴定为目标比较基因组学(xxparative genomics)二、基因组序列复杂性1、C值是指一个单倍体基因组中DNA的总量,以基因组的碱基对来表示。
每个细胞中以皮克(pg,10-12g)水平表示。
C 值悖理:指基因内部被一个或更多不翻译的编码顺序即内含子所隔裂。
3、异常结构基因分类重叠基因:编码序列彼此重叠的基因,含有不同蛋白质的编码序列。
基因内基因:一个基因的内含子中包含其他基因。
反义基因: 与已知基因编码序列互补的的负链编码基因,参与基因的表达调控,可以干扰靶基因mRNA转录与翻译。
4、假基因:功能基因但已失去活性或者改变原来活性功能的DNA序列. 四、基因组特征比较真核生物基因组的特征:复杂性较高的生物基因组结构松弛,在整个基因组范围内分布大量重复顺序;含有大量数目不等的线性DNA分子,并且,每个长链DNA都与蛋白质组成染色体结构;含有细胞器基因组原核生物基因组的特征 :原核生物基因数目比真核生物少,大小在5 Mb以下; 原核生物基因组结构更紧凑;第二章一、为何要绘制遗传图与物理图?1)基因组太大,必需分散测序,然后将分散的顺序按原来位置组装,需要图谱进行指导。
2)基因组存在大量重复顺序,会干扰排序,因此要高密度基因组图。
3)遗传图和物理图各有优缺点,必须相互整合校正。
二、基因组测序方法、原理及特点:1. 克隆重叠群法:先构建遗传图,再利用几套高度覆盖的大片段基因组文库获得精细的物理图,选择合适的BAC 或PAC克隆测序,利用计算机拼装。
人类基因组基础知识人类基因组是指人类体内包含的全部基因的集合。
基因是DNA分子上的遗传信息单位,它们控制着人类身体的形态、功能和特性。
人类基因组的解读对于我们理解人类生命的本质、研究与治疗人类疾病以及推动生物科技的发展具有重要意义。
本文将介绍人类基因组的组成、功能以及相关研究进展。
一、人类基因组的组成人类基因组由一系列的DNA分子组成,这些DNA分子以染色体的形式存在于细胞核中。
每个人的细胞核内都有46条染色体,其中有23条来自父亲,23条来自母亲。
这些染色体共包含大约30亿个碱基对,也就是基因组的大小约为3GB。
人类基因组中的基因是遗传信息的单位。
根据近年来的研究,科学家估计人类基因组中约有20,000-25,000个基因。
这些基因不同于其他DNA序列,它们可以转录成RNA,再通过翻译成蛋白质,从而发挥特定的生物学功能。
二、人类基因组的功能人类基因组的功能非常多样化,涉及到生物体的发育、生长、代谢以及各种生理和生化过程。
基因控制着细胞的分裂、分化和功能的表达。
它们还负责指导身体各个器官的形成以及维持机体的正常运作。
人类基因组的功能还涉及到疾病的发生和发展。
一些基因突变可能导致遗传性疾病的发生,如先天性心脏病、血液病等。
此外,一些非遗传性疾病也与基因有关,如癌症、心血管疾病等。
通过对人类基因组的研究,科学家们可以更好地理解疾病的发生机制,并开发相应的治疗方法。
三、人类基因组的研究进展人类基因组的解读是一个庞大而复杂的项目,需要对数十亿个碱基对进行测序和分析。
2001年,国际人类基因组计划(Human Genome Project)取得了巨大的成功,完成了对人类基因组的初步解读。
这项工作使我们能够更深入地了解人类基因的构成和功能。
随着技术的不断进步,人类基因组的研究进入了一个新的阶段。
大规模测序技术的出现极大地提高了测序的速度和准确性,降低了成本。
现在,我们可以更快、更便宜地测序大量的个体样本,从而提供更多的数据来研究人类基因组的多样性和变异。
生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物具有催化活性的RNA分子称为核酶〔ribozyme〕核酶催化的生化反响有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成新基因的产生:基因与基因组加倍1〕整个基因组加倍;2〕单条或局部染色体加倍;3〕单个或成群基因加倍。
DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。
动物中由于种间隔离不易进展种间杂交,但其主要来源于真核细胞与原核细胞的内共生。
动物种间基因转移主要集中在逆转录病毒及其转座成分。
外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌基因冗余:一条染色体上出现一个基因的很多复份(复本〕当人们别离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。
许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。
这意味着,基因组中有冗余基因存在。
看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。
与个体发育调控相关的基因表达为转录因子,具有多功能域的构造。
这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。
非编码序列扩张方式:滑序复制、转座因子模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。
模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。
进化程度越高, G+C 含量和CpG 岛的比例就比拟低如果基因之间不存在重叠顺序,也无基因内基因〔gene-within-gene〕,那么ORF阅读出现过失的可能只会发生在非编码区。
细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。
细菌基因组的ORF阅读相比照拟简单,错误的机率较少。
遗传学知识:基因组学随着科技的不断发展与进步,人们对于生命的了解也越来越深入。
基因组学作为一个新兴学科,是研究生物体基因组的科学,已经受到了越来越多人的关注。
本文将从基因组的概念、基因组的组成和结构、基因组的功能和意义以及基因组在生命科学研究中的应用四个方面来阐述基因组学知识。
一、基因组的概念基因组是指生物个体细胞内全部遗传物质的总和,包括DNA和RNA。
它是生命的基础和物质基础,是维持生物体内部稳态的关键因素。
基因组的大小和结构因生物种类而异,小至数百万碱基对的细菌,大至数十亿碱基对的人类,共同构成了生物界广泛的多样性。
二、基因组的组成和结构基因组由DNA分子组成,其中DNA是遗传信息的基本单位。
DNA分子由四种碱基分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)组成的序列排列,而每个碱基对应的是一段含有三个碱基(即一段密码子)的DNA编码。
在这种编码体系内,从一个位点开始的三个碱基被称为一条肽链的氨基酸编码。
一个基因包含有一个或多个编码密码子的决定蛋白质序列的DNA 片段。
基因组中的这些基因以特定的顺序排列,组成基因组的遗传信息。
此外,基因组还包括很多非编码RNA(如rRNA、tRNA等)、DNA 区域(如非编码区域、卫星DNA等)和功能未明的DNA。
基因组的结构包括染色体、基因组褶皱和染色质。
染色体是基因组的物理载体,是通过染色体的缩合和解缩合,调控基因表达和遗传物质复制的过程。
基因组褶皱是指在非细胞分裂期间,基因组处于三维空间中未定向和持续的动态图像状态。
染色质是指除了染色体以外的剩余区域,包括翻译和非翻译RNA,遗传调节元件和起调控作用的蛋白质。
三、基因组的功能和意义基因组具有多种功能,其中最重要的是编码基因表达和遗传信息的继承和传递,它从上层次上决定了一个生物个体的表型。
基因组还参与细胞分裂,细胞凋亡和细胞分化等过程。
同时,基因组还通过其DNA序列为抗菌药物和疫苗研究提供重要的基础数据。
基因组学基础基因组学是研究生物体基因组结构、功能和演化的学科领域。
随着生物技术的迅速发展,基因组学在生物学、医学及其他领域的应用越来越广泛。
本文将简要介绍基因组学的基本概念、研究方法和应用前景。
一、基因组学概述基因组学旨在探索和理解生物体的基因组,即一个生物体包含的所有基因的总和。
基因组包括DNA序列、染色体结构和基因的位置等信息。
通过研究基因组,科学家们可以揭示基因与性状、疾病等之间的关系,加深对生物的认识。
二、基因组研究方法1. 基因测序基因测序是基因组学的核心技术之一。
通过测序,可以确定一个生物体的基因组序列。
目前,常用的测序技术包括Sanger测序、Illumina测序和第三代测序技术(如PacBio和ONT)。
这些技术不断发展,提高了测序的准确性和效率。
2. 比较基因组学比较基因组学是研究不同物种之间基因组的异同的方法。
通过比较不同物种的基因组序列和结构,可以揭示基因的进化关系、功能差异以及适应环境的演化机制等。
比较基因组学在进化生物学和系统发育学等领域具有重要意义。
3. 转录组学和蛋白质组学转录组学研究的是一个生物体在特定条件下的所有转录产物,即RNA。
通过转录组学研究,可以了解基因的表达模式以及调控机制。
而蛋白质组学则关注的是蛋白质的组成和功能。
这些研究方法有助于揭示基因与功能之间的关系。
三、基因组学的应用前景1. 遗传疾病研究基因组学可以帮助研究人类遗传疾病的发生机制。
通过对疾病相关基因的研究和测序,可以发现导致疾病的基因变异,进而提供基于个体基因组信息的精准医学解决方案。
2. 个体差异研究基因组学研究可以揭示个体之间基因组的差异,进一步解释人类的个体差异,如身高、智力等。
这对于个性化医疗和基因组编辑等方面具有潜在意义。
3. 物种保护和进化生物学研究基因组学方法可以应用于物种保护和进化生物学研究中。
通过研究濒危物种或者近亲种群的基因组,可以了解其遗传多样性和种群分化情况,为保护和管理提供科学依据。
1.1.DNA顺序复杂性:不同顺序的DNA总长称为复杂性。
复杂性代表了一个物种基因组的基本特征,可通过DNA复性动力学来表示。
1.2.基因的定义:不同的DNA片段共同组成一个完整的表达单位,有一个特定的表达产物,可以是RNA分子,也可以是多肽分子1.3.反义基因:是指与细胞内DNA或RNA序列相互补形成杂交体而阻断或减弱其转录和翻译过程的DNA或RNA片段.反义基因通常包括反义寡核苷酸(ASON)、反义RNA及核酶1.4.假基因:与有功能的基因在核苷酸顺序的组成上非常相似,却不具正常功能的基因。
假基因是相应的正常基因在染色体的不同位置上的复制品,由于突变积累的结果而丧失活性。
假基因都是在真核生物的基因组中发现的,在原核生物中未见报道2.1.DNA标记的类型:限制性片段长度多态性(RFLP);简单序列长度多态性(SSLP)(小卫星序列和微卫星序列);SNP.2.2.RFLP(限制性片段长度多态性)的特点: 限制酶识别的碱基具有位点专一性,用不同的限制酶处理同一样品时,可以产生与之对应的不同限制性片段,提供大量位点多态性信息。
2.3. 部分连锁与遗传作图:交换是随机的,两个相近的基因发生交换的概率要比两个相远发生交换的概率要大,因此通过重组率的确定可以相对确定两个基因的位置。
由此可以进行基因的遗传作图。
3.1.分子信标的结构:环含识别序列,一般15 --33个核苷酸;茎在两末端各接上5到8个核苷酸的互补序列,富含GC;荧光素及猝灭剂3.2.猝灭剂:荧光染料发射的光能,可被邻近的染料或非染料分子所吸收转成热能而不再发射荧光,也可以发射能量较低的荧光3.3.PRET(激光共振能量转移):受激发荧光素的能量转移到邻近的另一荧光素,并不发射荧光而使激发荧光素回复基态时的现象。
3.4.原位杂交:靶子为完整的染色体,由杂交信号提供作图信号,DNA变性时不破坏染色体自然形态,原位杂交是指将特定标记的已知顺序核酸为探针与细胞或组织切片中核酸进行杂交,从而对特定核酸顺序进行精确定量定位的过程。