数理统计11判别分析
- 格式:ppt
- 大小:1.75 MB
- 文档页数:64
判别分析方法及其应用效果评估判别分析方法是一种常用的统计分析方法,用于确定分类系统中哪些变量最能有效地区分不同的组别。
它基于一组预测变量(或称为自变量)的输入值,以及一组已知类别(或称为因变量)的输出值,通过构建分类模型来判断新样本属于哪个组别。
本文将介绍判别分析方法的基本原理、常见的判别分析方法及其应用效果评估。
## 一、判别分析方法的基本原理判别分析方法基于贝叶斯决策理论,旨在通过最小化错判率来实现最优分类。
假设有K个已知的类别,以及p个预测变量。
判别分析方法假设预测变量满足多元正态分布,并利用已知类别的样本数据估计每个类别的均值向量和协方差矩阵。
根据这些参数,可以建立判别函数来判断新样本的分类。
判别函数的形式根据具体的判别分析方法而定。
常见的判别分析方法有线性判别分析(LDA)、二次判别分析(QDA)和最近邻判别分析(KNN)等。
这些方法使用不同的数学模型和算法来构建判别函数,具有不同的优势和适用范围。
## 二、常见的判别分析方法及其特点### 1. 线性判别分析(LDA)线性判别分析是一种最常用的判别分析方法。
它假设各类别的协方差矩阵相等,即样本来自同一多元正态分布。
LDA通过计算类别间散布矩阵和类别内散布矩阵的比值来确定最优的判别函数。
LDA的优点是计算简单、效果稳定,并且不受样本数量和维度的限制。
然而,它对样本的分布假设要求较高,如果样本不满足多元正态分布,LDA可能会出现较大偏差。
### 2. 二次判别分析(QDA)二次判别分析是一种放宽了协方差矩阵相等假设的判别分析方法。
QDA假设每个类别的协方差矩阵各不相同,通过计算类别间散布矩阵和类别内散布矩阵的比值来确定最优的判别函数。
相比于LDA,QDA更加灵活,可以适应更加复杂的数据分布。
然而,由于需要估计更多的参数,QDA的计算复杂度较高,并且对样本数量和维度的要求较高。
### 3. 最近邻判别分析(KNN)最近邻判别分析是一种基于样本距离的判别分析方法。
判别分析的基本原理和模型一、判别分析概述 (一)什么是判别分析判别分析是多元统计中用于判别样品所属类型的一种统计分析方法,是一种在已知研究对象用某种方法已经分成若干类的情况下,确定新的样品属于哪一类的多元统计分析方法。
判别分析方法处理问题时,通常要给出用来衡量新样品与各已知组别的接近程度的指标,即判别函数,同时也指定一种判别准则,借以判定新样品的归属。
所谓判别准则是用于衡量新样品与各已知组别接近程度的理论依据和方法准则。
常用的有,距离准则、Fisher 准则、贝叶斯准则等。
判别准则可以是统计性的,如决定新样品所属类别时用到数理统计的显著性检验,也可以是确定性的,如决定样品归属时,只考虑判别函数值的大小。
判别函数是指基于一定的判别准则计算出的用于衡量新样品与各已知组别接近程度的函数式或描述指标。
(二)判别分析的种类按照判别组数划分有两组判别分析和多组判别分析;按照区分不同总体的所用数学模型来分有线性判别分析和非线性判别分析;按照处理变量的方法不同有逐步判别、序贯判别等;按照判别准则来分有距离准则、费舍准则与贝叶斯判别准则。
二、判别分析方法 (一)距离判别法1.基本思想:首先根据已知分类的数据,分别计算各类的重心,即分组(类)均值,距离判别准则是对于任给一新样品的观测值,若它与第i 类的重心距离最近,就认为它来自第i 类。
因此,距离判别法又称为最邻近方法(nearest neighbor method )。
距离判别法对各类总体的分布没有特定的要求,适用于任意分布的资料。
2.两组距离判别两组距离判别的基本原理。
设有两组总体B A G G 和,相应抽出样品个数为21,n n ,n n n =+)(21,每个样品观测p 个指标得观测数据如下,总体A G 的样本数据为:()()()()()()()()()A x A x A x A x A x A x A x A x A x p n n n p p 111212222111211ΛΛMΛΛΛΛ该总体的样本指标平均值为:()()()A x A x A x p Λ21,总体B G 的样本数据为:()()()()()()()()()B x B x B x B x B x B x B x B x B x p n n n p p 222212222111211ΛΛMΛΛΛΛ该总体的样本指标平均值为:()()()B x B x B x p Λ21,现任取一个新样品X ,实测指标数值为X =(p x x x ,,,21Λ),要求判断X 属于哪一类?首先计算样品X 与A G 、B G 两类的距离,分别记为()A G X D ,、()B G X D ,,然后按照距离最近准则判别归类,即样品距离哪一类最近就判为哪一类;如果样品距离两类的距离相同,则暂不归类。
第11,12,13课判别分析(Discriminant Analysis)讲五个问题:一、什么是判别分析;二、费歇准则下的二组判别分析;三、贝叶斯多组判别分析;四、多组逐步判别分析;五、问题讨论和实例。
一、什么是判别分析概念:判别分析是一种判别样品所属类型的统计方法。
思想:根据已知类型的样品,按其特征,构造一个判别函数,定出划分类型的界线,并对新样品所属类型进行判别(也可对已知类型的样品进行判别检验)。
类型:若判别类型是两个时,称两组判别分析。
如油层、水层;有矿、无矿等。
若判别的类型是两个以上时称多组判别分析。
如油层、气层、水层;泥岩、砂岩、灰岩等。
原则:两组判别分析是在fisher意义下求解,多组判别是在Bayes意义下求解。
原理:见如下几何图形所示:当P=2时:211221jjj y c x c x cx ==+=∑当在P 维时:11221pp p jj j y c x c x c x cx ==+++=∑y—综合指标,是i x 的线性函数,也有非线性的。
式中:j c —判别系数。
应用:◆ 判别和检验样品的所属类型;◆评价,如岩体评价,区别海相或陆相砂岩,区别含油层或含水层。
鉴别矿物、岩石类型和古生物的种属;◆地层和岩相的划分;◆解释砂体的构造背景,区别沉积条件和环境,火山构造类型等。
二、两组判别分析—Fisher 准则前提条件:A 、B 两类总体,A 组取了1n 个样品,B 组取了2n 个样品,每个样品测定了P 个指标,原始数据见教材。
1、求线性判别函数y11221pp p jj j y c x c x c x cx ==+++=∑式中:j c —待定系数 j x —指标问题的关键是如何求得j c ,使得A 、B 两组分的很清楚,即要得到y 值,使得A 、B 区分开。
原则:Fisher :类间差别要大,类内差别要小。
综合指标 A 类 (1n 个样品) 综合指标 B 类 (2n 个样品)1112121222(),(),,()(),(),,()P P x A x A x A x A x A x A 12()()y A y A 1112121222(),(),,()(),(),,()P P x B x B x B x B x B x B 12()()y B y BA 类样品用 1111()()n i i y A y A n ==∑——代表=1()()pjj j y A cx A ==∑A 类样品用 2121()()n i i y B y B n ==∑——代表=1()()pjj j y B cx B ==∑A 类内差别为:[]121()()n i i y A y A =-∑B 类内差别为:[]221()()n i i y B y B =-∑类内差别为:[][]122211()()()()n n iii i F y A y A y B y B ===-+-∑∑类间差别为:[]2()()Q y A y B =-Fisher 准则:使Q I F=达到极大,求出j c 。