分子生物学第2章生物大分子
- 格式:pptx
- 大小:4.41 MB
- 文档页数:86
现代分子生物学复习资料第一章绪论分子生物学:是研究核酸、蛋白质等所有生物大分子的形态、结构及其重要性、规律性和相互关系的科学分子生物学的主要研究内容1、DNA重组技术2、基因表达调控研究3、生物大分子的结构功能研究——结构分子生物学4、基因组、功能基因组与生物信息学研究5、DNA的复制转录和翻译第二章染色体与DNA半保留复制:DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。
这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样,因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA半保留复制DNA半不连续复制:DNA双螺旋的两条链反向平行,复制时,前导链DNA的合成以5′-3′方向,随着亲本双链体的解开而连续进行复制;后随链在合成过程中,一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向、按照5′-3′方向合成一系列的冈崎片段,然后再把它们连接成完整的后随链,这种前导链的连续复制和后随链的不连续复制称为DNA 的半不连续复制原核生物基因组结构特点:1、基因组很小,大多只有一条染色体2、结构简练3、存在转录单元,多顺反子4、有重叠基因真核生物基因组的结构特点:1、真核基因组庞大,一般都远大于原核生物的基因组2、真核基因组存在大量的重复序列3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间最主要区别4、真核基因组的转录产物为单顺反子5、真核基因是断裂基因,有内含子结构6、真核基因组存在大量的顺式作用元件,包括启动子、增强子,沉默子等7、真核基因组中存在大量的DNA多态性8、真核基因组具有端粒结构DNA转座(移位)是由可移位因子介导的遗传物质重排现象DNA转座的遗传学效应:1、转座引入插入突变2、转座产生新的基因3、转座产生的染色体畸变4、转座引起生物进化转座子分为插入序列和复合型转座子两大类环状DNA复制方式:θ型、滚环型和D-环型第三章生物信息的传递(上)从DNA到RNA转录:指拷贝出一条与DNA链序列完全相同的RNA单链的过程启动子:是一段位于结构基因5′段上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性原核生物启动子结构:存在位于-10bp处的TATA区和-35bp处的TTGACA区,其是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力终止子:是给予RNA聚合酶转录终止信号的DNA序列(促进转录终止的DNA序列)终止子的类型:不依赖于ρ因子和依赖于ρ因子增强子:能增强或促进转录起始的序列增强子的特点:1、远距离效应2、无方向性3、顺式调节4、无物种和基因的特异性5、具有组织特异性6、有相位性7、有的增强子可以对外部信号产生反应上升突变:增加Pribnow区共同序列的同一性,将Pribnow区从TATGTT变成TATATT的启动子突变,会提高启动子的效率,提高乳糖操纵子基因的转录水平下降突变:把Pribnow区从TATAAT变成AATAAT的启动子突变,会大大降低其结构基因的转录水平RNA编辑及其生物学意义:RNA的编辑是某些RNA,特别是mRNA前体的一种加工方式,如插入、删除或取代一些核苷酸残基,导致DNA所编码的遗传信息的改变生物学意义:1、校正作用2、调控翻译3、扩充遗传信息RNA的再编码:mRNA在某些情况下不是以固定的方式被翻译,而可以改变原来的编码信息,以不同的方式进行翻译,科学上把RNA编码和读码方式的改变称为RNA的再编码比较原核和真核基因转录起始位点上游区的结构:1、原核基因启动区范围较小,一般情况下,TATAAT的中心位于-10——-7,上游-70——-30区为正调控因子结合序列,-20——+1区为负调控因子结合序列;真核基因调控区较大,TATAA/TA区位于-30——-20,而-110——-40区为上游激活区-2、除Pribnow区之外,原核基因启动子上游只有TTGACA区作为RNA聚合酶的主要结合位点,参与转录调控;而真核基因除了含有可与之相对应的CAAT区之外,大多数基因还拥有GC区和增强子区第四章翻译:所谓翻译是指将mRNA链上的核苷酸从一个特定的起始位点开始,按每3个核苷酸代表一个核苷酸的原则,依次合成一条多肽链的过程。
名词解释第一章绪论1 分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。
2 DNA重组技术是将不同DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
3 功能基因组学又往往被称为后基因组学,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质得研究转向多个基因或蛋白质同时进行系统的研究。
第二章染色体与DNA1组蛋白是染色体的结构蛋白,其与DNA组成核小体。
2 C值:一种生物单倍体基因组DNA的总量。
3 DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。
4DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。
5DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。
6核小体是由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA组成的。
八聚体在中间,DNA分子盘绕在外,而H1则在核小体的外面。
每个核小体只有一个H1。
7DNA的半保留复制是DNA在复制时首先两条链之间的氢键断裂两条链分开,然后以每一条链分别做模板各自合成一条新的DNA链,这样新合成的子代DNA分子中一条链来自亲代DNA,另一条链是新合成的。
8复制时,双链DNA要解开成两股链进行,使复制起点呈叉状,被称为复制叉。
9复制子为生物体DNA的复制单位。
10错配 (mismatch):DNA分子上的碱基错配称点突变(point mutation)11缺失:一个碱基或一段核苷酸链从DNA大分子上消失。
12插入:原来没有的一个碱基或一段核苷酸链插入到DNA大分子中间。
13框移突变是指三联体密码的阅读方式改变,造成蛋白质氨基酸排列顺序发生改变。
第一章绪论1、分子生物学简史:分子生物学是研究核酸、蛋白质等所有生物大分子形态、结构特征及其重要性、规律性而相互联系的科学,是人类从分子水平上真正揭示生物世界的奥秘,由被动的适应自然界到主动的改造和重组自然界的基础科学。
2、分子生物学发展阶段第一阶段:分子生物学发展的萌芽阶段第二阶段:分子生物学的建立和发展阶段第三阶段:分子生物学的深入发展和应用阶段3、分子生物学的主要研究内容DNA重组技术;基因表达调控研究;生物大分子的结构与功能的研究;基因组、功能基因组与生物信息学的研究第二章染色体与DNA1、名词解释:不重复序列:在单倍体基因组中只有一个或几个拷贝的DNA序列。
真核生物的大多数基因在单倍体中都是单拷贝。
中度重复序列:每个基因组中10~104个拷贝。
平均长度为300 bp,一般是不编码序列,广泛散布在非重复序列之间。
可能在基因调控中起重要作用。
常有数千个类似序列,各重复数百次,构成一个序列家族。
高度重复序列:只存在于真核生物中,占基因组的10%~60%,由6~10个碱基组成。
卫星DNA(satellite DNA):又称随体DNA。
卫星DNA是一类高度重复序列DNA。
这类DNA是高度浓缩的,是异染色质的组成部分。
微卫星DNA(microsatellite DNA):又称短串联重复序列,是真核生物基因组重复序列中的主要组成部分,主要由串联重复单元组成。
重叠基因(overlapping gene,nested gene):具有部分共同核苷酸序列的基因,及同一段DNA携带了两种或两种以上不同蛋白质的编码信息。
重叠的序列可以是调控基因也可以是结构基因部分。
多顺反子(polycistronic mRNA ) :编码多个蛋白质的mRNA称为多顺反子mRNA 。
单顺反子(monocistronic mRNA) :只编码一个蛋白质的mRNA称为单顺反子mRNA。
DNA的转座:又称移位(transposition),是由可移位因子介导的遗传物质重排现象。
分子生物学名词解释二生物大分子(biomacromolecule):具有较大的分子量,由简单的小分子排列组成,具有复杂的空间结构形成精确的相互作用系统,构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统.阐明生物大分子复杂的结构及结构与功能的关系是分子生物学的主要任务.基因芯片技术:将大量探针分子(通常每平方厘米点阵密度高于 400 )固定于支持物上后与标记的样品分子进行杂交,通过检测每个探针分子杂交信号的强度,获取样品分子的数量和序列信息.基因:是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位,对于编码蛋白质的结构基因来说,基因是决定一条多肽链的DNA片段。
根据其是否具有转录和翻译功能可以把基因分为三类:第一类是编码蛋白质的基因,它具有转录和翻译功能,包括编码酶和结构蛋白的结构基因以及编码阻遏蛋白的调节基因.第二类是只有转录功能而没有翻译功能的基因,包括tRNA基因和rRNA基因.第三类是不转录的基因,它对基因表达起调节控制作用,包括启动基因和操纵基因.基因组:(genome):泛指一个有生命体、病毒或细胞器的全部遗传物质;在真核生物,基因组是指一套染色体(单倍体)DNA。
携带生物体全部遗传信息的核酸量。
基因组中不同的区域具有不同的功能:有些区域编码蛋白质的结构基因有些区域复制及转录的调控信号有些区域的功能尚不清楚真核生物基因组特点:1. 真核生物基因组DNA与蛋白质结合形成染色体,储存于细胞核内,除配子细胞外,体细胞内的基因的基因组是双份的(即双倍体,diploid),即有两份同源的基因组.2. 真核细胞基因转录产物为单顺反子。
一个结构基因经过转录生成一个mRNA分子,再翻译生成一条多肽链.3. 存在重复序列,重复次数可达百万次以上4. 基因组中不编码的区域多于编码的区域5. 大部分基因含有内含子,因此,基因是不连续的(断裂基因,split gene)6. 基因组远远大于原核生物的基因组,具有许多复制起始点,而每个复制子的长度较小.高度重复序列(high repeated sequence)高度重复序列在基因组中重复频率高,可达百万(106)以上,因此复性速度很快在基因组中所占比例随种属而异,约占10-60%,在人基因组中约占 20 %。
分子生物学复习题第一章绪论1、分子生物学概念及其主要研究内容。
①广义的分子生物学:是在分子水平上研究生命的重要物质的化学与物理结构、生理功能及其结构与功能的相关性,定量地阐明生物学规律,透过生命现象揭示复杂生命本质的一门学科。
狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因DNA的复制、转录、翻译和调控等过程,同时也涉及与这些过程相关的蛋白质和酶的结构与功能的研究基因的分子生物学。
②主要研究内容:DNA重组技术,基因表达调控,生物大分子的结构功能研究,基因组、功能基因组与生物信息学研究。
第二章遗传物质基础——核酸1、核酸是怎么发现的?肺炎双球菌转化实验,Avery的体外转化实验,T2噬菌体感染实验,烟草花叶病毒的感染实验,Conrat烟草花叶病毒的重建实验。
2、作为遗传物质必须具备的条件是什么?贮存并表达遗传信息,能把信息传递给子代,物理和化学性质稳定,具有遗传变化的能力。
3、简述DNA的二级结构及其特性?(1)生物大分子主链周期性折叠形成的规则构象称为二级结构,即DNA螺旋。
(2)特性:①为右手反平行双螺旋;②主链位于螺旋外侧,碱基位于内侧;③两条链间存在碱基互补:A与T或G与C配对形成氢键,称为碱基互补原则(A与T为两个氢键,G与C为三个氢键);④螺旋的螺距为3.4nm,直径为2nm ,每10个核苷酸形成一个螺旋。
⑤含有大沟和小沟。
4、维持DNA二级结构的化学作用力。
①氢键:弱键, 可加热解链,氢键堆积, 有序排列(线性, 方向)。
②碱基堆积力(非特异性结合力):范德华力,疏水作用力(不溶于水的非极性分子在水中相互联合, 成串结合的趋势力)。
③带负电荷的磷酸基的静电斥力。
④碱基分子内能(温度升高使碱基分子内能增加时,碱基的定向排列遭受破坏)。
5、何谓DNA变性和复性?影响DNA变性和复性的因素有哪些?(1)变性:双螺旋区氢键断裂,空间结构破坏,形成单链无规线团状,只涉及次级键的破坏。
生物大分子的生物学特性介绍和应用生物大分子是生命存在与发展的基础,包括DNA、RNA、蛋白质和多糖等。
本文将介绍生物大分子的生物学特性和应用,涉及生命科学、医学、材料科学和能源转化等多个领域。
一、 DNA的生物学特性和应用DNA是存储遗传信息的分子,具有独特的双螺旋结构和配对规律。
利用PCR技术可以扩增DNA序列并定量,而基因工程技术则可以修改和表达特定DNA序列。
在生物学中,DNA被广泛应用于基因克隆、基因编辑、基因芯片、DNA测序和核酸药物等方面。
在医学领域,DNA被用于个性化医疗、疾病诊断和治疗等方面,如新冠病毒检测、癌症筛查、基因序列匹配等。
此外,DNA also has potential applications in nanotechnology and biocomputing.二、 RNA的生物学特性和应用RNA是分子生物学研究热点之一,包括mRNA、rRNA、tRNA 等。
在细胞中,RNA具有催化反应、调控基因表达和传递信息等多种功能。
基于RNA复杂的二级和三级结构,人们开发了RNA测序、RNA干扰和RNA激酶等技术。
在医学和生命科学中,RNA被应用于疾病治疗、生物制药、基因表达分析和转录组学研究等领域。
三、蛋白质的生物学特性和应用蛋白质是生物大分子中最复杂的一类,具有高度的结构和功能多样性。
根据氨基酸序列和折叠形态的不同,蛋白质可以分为结构蛋白和功能蛋白。
在生物学中,蛋白质扮演了重要的角色,包括酶、激素、免疫球蛋白、细胞信号传导蛋白等。
在生命科学和医学领域,蛋白质被广泛应用于药物研发、免疫学、蛋白质芯片、蛋白质酶解和分析等。
四、多糖的生物学特性和应用多糖包括单糖、寡糖和多糖等,是生物大分子的重要组成部分。
多糖具有多项的生物学功能,包括能量储存、细胞表面识别、基质保持、生长因子结合和炎症介质等。
在医学和生命科学中,多糖被广泛应用于生物材料、免疫学、药物传递和组织工程等领域。
总之,生物大分子是生命科学、医学和材料科学等领域的重要基础。
分⼦⽣物学复习资料第⼀章1、分⼦⽣物学定义:从分⼦⽔平研究⽣物⼤分⼦的结构与功能从⽽阐明⽣命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。
2、Crick提出中⼼法则(P463)第⼆章1、染⾊体的结构和组成原核⽣物:●⼀般只有⼀条⼤染⾊体且⼤都带有单拷贝基因,除少数基因外(如rRNA基因)是以多拷贝形式存在。
●整个染⾊体DNA⼏乎全部由功能基因和调控序列所组成。
●⼏乎每个基因序列都与它所编码蛋⽩质序列呈线性对应关系。
真核⽣物:真核⽣物染⾊体中DNA相对分⼦质量⼀般⼤⼤超过原核⽣物,并结合有⼤量的蛋⽩质,结构⾮常复杂。
其具体组成成分为:组蛋⽩、⾮组蛋⽩、DNA。
2、组蛋⽩⼀般特性:进化上的保守性(不同种⽣物组蛋⽩的氨基酸组成是⼗分相似的。
对稳定真核⽣物的染⾊体结构起着重要的作⽤);⽆组织特异性;肽链氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上。
例如,N端的半条链上净电荷为+16,C端只有+3,⼤部分疏⽔基团都分布在C端);H5组蛋⽩的特殊性:富含赖氨酸(24%);组蛋⽩的可修饰性(包括甲基化、⼄基化、磷酸化)。
3、变性:DNA双链的氢键断裂,最后完全变成单链的过程称为变性。
增⾊效应:在变性过程中,260nm紫外线吸收值先缓慢上升,当达到某⼀温度时骤然上升,称为增⾊效应。
4、复性:热变性的DNA缓慢冷却,单链恢复成双链。
减⾊效应:随着DNA的复性, 260nm紫外线吸收值降低的现象。
5、融解温度(Tm ):变性过程紫外线吸收值增加的中点称为融解温度。
⽣理条件下为85-95℃6、C值反常现象:C值是⼀种⽣物的单倍体基因组DNA的总量,⼀般情况,真核⽣物C值是随着⽣物进化⽽增加,⾼等⽣物的C值⼀般⼤于低等⽣物,但是某些两栖类C值⼤于哺乳动物,这种现象叫C值反常现象。
7、核⼩体是由H2A、H2B、H3、H4各两个分⼦⽣成的⼋聚体和由⼤约200bpDNA组成的。