数学几何计数课件《四年级奥数》
- 格式:pptx
- 大小:10.68 MB
- 文档页数:83
四年级奥数第⼆讲图形的计数问题含答案第⼆讲图形的计数问题⼀、知识点:⼏何图形计数问题往往没有显⽽易见的顺序,⽽且要数的对象通常是重叠交错的,要准确计数就需要⼀些智慧了.实际上,图形计数问题,通常采⽤⼀种简单原始的计数⽅法-⼀枚举法.具体⽽⾔,它是指把所要计数的对象⼀⼀列举出来,以保证枚举时⽆⼀重复、.⽆⼀遗漏,然后计算其总和.正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯.⼆、典例剖析:例(1)数出右图中总共有多少个⾓分析:在∠AOB内有三条⾓分线OC1、OC2、OC3,∠AOB被这三条⾓分线分成4个基本⾓,那么∠AOB内总共有多少个⾓呢?⾸先有这4个基本⾓,其次是包含有2个基本⾓组成的⾓有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本⾓组成的⾓有2个(即∠AOC3、∠C1OB),最后是包含有4个基本⾓组成的⾓有1个(即∠AOB),所以∠AOB内总共有⾓:4+3+2+1=10(个)解:4+3+2+1=10(个)答:图中总共有10个⾓。
练⼀练:数⼀数右图中总共有多少个⾓?答案: 总共有⾓:10+9+8+…+4+3+2+1=55(个)例(2 )数⼀数共有多少条线段?共有多少个三⾓形?分析:①要数多少条线段:先看线段AB、AD、AE、AF、AC、上各有2个分点,各分成3条基本线段,再看BC、MN、GH这3条线段上各有3个分点,各分成4条基本线段.所以图中总共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条).②要数有多少个三⾓形,先看在△AGH中,在GH上有3个分点,分成基本⼩三⾓形有4个.所以在△AGH中共有三⾓形4+3+2+1=10(个).在△AMN与△ABC中,三⾓形有同样的个数,所以在△ABC中三⾓形个数总共:(4+3+2+1)×3=10×3=30(个)解::①在△ABC中共有线段是:(3+2+1)×5+(4+3+2+1)×3=30+30=60(条)②在△ABC中共有三⾓形是:(4+3+2+1)×3=10×3=30(个)答:在△ABC中共有线段60条,共有三⾓形30个。
第九讲几何计数第一部分:趣味数学解析几何的产生十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。
比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。
这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。
1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。
当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。
笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。
后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。
从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。
他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。
x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。
这就是解析几何的基本思想。
具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。
从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。
解析几何的产生并不是偶然的。
在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。
小学四年级数学奥数第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形。
要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果。
要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n。
4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段。
练习1:数出下列图中有多少条线段。
(2)【例题2】数一数下图中有多少个锐角。
练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。
练习3::数一数下面图中各有多少个三角形。
【例题4】数一数下图中共有多少个三角形。
练习4::数一数下面各图中各有多少个三角形。
【例题5】数一数下图中有多少个长方形。
练习5::数一数下面各图中分别有多少个长方形。
【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形。
【例题9】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习9:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题10】求下列图中线段长度的总和。
第17讲数数图形一、知识要点我们已经认识了线段、角、三角形、长方形等基本图形,当这些图形重重叠叠地交错在一起时就构成了复杂的几何图形.要想准确地计数这类图形中所包含的某一种基本图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方法,掌握数图形的规律,才能获得正确的结果.要准确、迅速地计数图形必须注意以下几点:1.线段上有n个端点,那么线段的条数为n+(n-1)+(n-2)+…+3+2+12.从一个顶点引n条射线,那么锐角的个数为n+(n-1)+(n-2)+…+3+2+13. 由相同的n×n个小方格组成的几行几列的正方形其中所含的正方形总数为:1×1+2×2+…+n×n.4. 如果一个长方形的长被分成m等份,宽被分成n等份(长和宽的每一份都是相等的)那么正方形的总数为:mn+(m-1)(n-1)+(m-2)(n-2)+…+(m-n+1)n.二、精讲精练【例题1】数出下面图中有多少条线段.练习1:数出下列图中有多少条线段.(2)【例题2】数一数下图中有多少个锐角.练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形.练习3::数一数下面图中各有多少个三角形.【例题4】数一数下图中共有多少个三角形.练习4::数一数下面各图中各有多少个三角形.【例题5】数一数下图中有多少个长方形.练习5::数一数下面各图中分别有多少个长方形.【例题6】数一数下图中有多少个长方形?练习6:数一数,下面各图中分别有几个长方形?【例题7】数一数,下图中有多少个正方形?(每个小方格是边长为1的正方形)练习7::数一数下列各图中分别有多少个正方形?(每个小方格为边长是1的小正方形)【例题8】数一数下图中有多少个正方形?(其中每个小方格都是边长为1个长度单位的正方形)练习8:数一数下列各图中分别有多少个正方形.【例题9】从广州到北京的某次快车中途要停靠8个大站,铁路局要为这次快车准备多少种不同车的车票?这些车票中有多少种不同的票价?练习9:1.从上海到武汉的航运线上,有9个停靠码头,航运公司要为这段航运线准备多少种不同的船票?2.从上海至青岛的某次直快列车,中途要停靠6个大站,这次列车有几种不同票价?3.从成都到南京的快车,中途要停靠9个站,有几种不同的票价?【例题10】求下列图中线段长度的总和.(单位:厘米)上式中的5是线段上的5个点,如果设线段上的点数为n,基本线段分别为a1、a2、…a(n-1).以上各线段长度的总和为L,那么L= a1×(n-1)×1+ a2×(n-2)×2+ a3×(n-3)×3+…+ a(n-1)×1×(n-1).练习10:1.一条线段上有21个点(包括两个端点),相邻两点的距离都是4厘米,所有线段长度的总和是多少?2.求下图中所有线段的总和.(单位:米)3.求下图中所有线段的总和.(单位:厘米)三、课后作业1、数一数共有多少条线段?(1)(2)2、数一数共有多少个锐角?EA B C D EDO CBA3、数出下图中有多少个长方形?4、数出下图中有多少个正方形?5、下图中有多少个长方形,其中有多少个是正方形?DC B A。
第九讲几何计数第一部分:趣味数学解析几何的产生十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。
比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。
这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。
1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。
当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。
笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。
后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。
从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。
他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。
x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。
这就是解析几何的基本思想。
具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。
从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。
7-8-1几何计数(一)教学目标1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.知识要点一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成212232)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.例题精讲模块一、简单的几何计数【例1】七个同样的圆如右图放置,它有_______条对称轴.【例2】下面的表情图片中:,没有对称轴的个数为()(A )3(B )4(C )5(D )6【巩固】中心对称图形是:绕某一点旋转180°后能和原来的图形重合的图形,轴对称图形是:沿着一条直线对折后两部分完全重合的图形,图的4个图形中,既是中心对称图形又是的轴对称图形的有个。
奥数知识点第7课・几何中的计数问题(1)笫七讲几何中的计数问题(一)几何中的计数问题包括:数线段、数角、数长方形、数正方形、数三角形、数综合图形等•通过这一讲的学习,可以帮助我们养成按照一定顺序去观察、思考问题的良好习惯,逐步学会通过观察、思考探寻事物规律的能力.一、数线段我们把直线上两点间的部分称为线段,这两个点称为线段的端点•线段是组成三角形、正方形、长方形、多边形等最基本的元素•因此,观察图形中的线段,探寻线段与线段之间、线段与其他图形之间的联系,对于了解图形、分析图形是很重要的.例1数一数下列图形中各有多少条线段.A B C A B C p A B C DE(1)(2)(3)例2数出右图中总共有多少个角•ClC2C3例3数一数右图中总共有多少个角?三、数三角形例4如右图中,各个图形内各有多少个三角形?A例5如右图中,数一数共有多少条线段?共有多少个三角形?例6如右图中,共有多少个角?习题七1 •数一数下图中,各有多少条线段?2.数一数下图中各有多少角?3•数一数下图中,各有多少条线段?4•数一数下图中,各有多少条线段,各有多少个三角形?(1) (2)课后作业:(1) (2)CB答案:第七讲几何中的计数问题(一)形、曙麟「專湃羯蟲聽辟思考问题的良好习惯, 逐歩学会通过观察、思考探寻事物规律的能力.一、数线段我们把直线上两点间的部分称为线段,这两个点称为线段的端点•线段是组成三角形、正方形、长方形、多边形等最基本的元素•因此,观察图形中的线敲犧評之间' 线段煮他图形之间的联系’对于了解图形' 分析例1数一数下列图形中各有多少条线段.B C A B C D A B C DE(1)(2)(3)分析要想使数出的每一个图形中线段的总条数,不重复、不遗漏,就需要按照一定的顺序、按照一定的规律去观察、去数•这样才不至于杂乱无章、毫无头绪•我们可以按照两种顺序或两种规律去数.第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A为左端点的线段有AB、AC两条以B为左端点的线段有BC—条,所以上图(1)中共有线段2 +1 = 3条•同样按照从左至右的顺序观察图(2)中,以A为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD两条,以C为左端点曲线段有CD—条・E斤以上页图〔2)中共有殳腰为3 +2 +1 = 6条.第二种:按照基本线段多少的顺序去数•所谓基本线段是指一条大线段中若有n个分点,则这条大线段就被这n个分点分成n+1条小线段,这每条小线段称为基本线段•如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD 分成AB、BC^ CD三条基本线巖,那么线段AD总箕有参少条线段?首宪有三条基本线段,其次是包含有二条基本线段的是:AC、BD二条,然后是包含有三条基本线段的是AD这样一条•所以线段AD上总共有线段3+2 + 1 = 6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:首先有4条基本线段,其次是包含有二条基本线段的有3条,然后是包含有三条基本线段的有2条,最后是包含有4条基本线段的有一条,所以线段AE 上总共有线段是4 + 3 + 2 + 1 = 10条.解:①2 + 1 = 3 (条)・②3 + 2+1 = 6 (条)・第一种:按照线段的端点顺序去数,如上图(1)中,线段最左边的端点是A,即以A 为左端点的线段有AB、AC两条以B为左端点的线段有BC—条,所以上图(1)中共有线段2 +1 = 3条•同样按照从左至右的顺序观察图(2)中,以A为左端点的线段有AB、AC、AD三条,以B为左端点的线段有BC、BD两条,以C为左端点商线段有CD—条•所以上页图⑵ 申共有妄腰为3 +2 +1 = 6条.第二种:按照基本线段多少的顺序去数•所谓基本线段是指一条大线段中若有门个分点,则这条大线段就被这n个分点分成门+1条小线段,这每条小线段称为基本线段•如上页图(2)中,线段AD上有两个分点B、C,这时分点B、C把AD 分成AB、BC、CD三条基本线農,邮么线段AD总唉有参少条线段?音晁有三条基本殘段,其次是包备有二条基本殁段的是:AC、BD二条,然后是包含有三条基未线段0勺是AD这样一秦•所以线腰AD丄总共有线段3 + 2 + 1 = 6条,又如上页图(3)中线段AE上有三个分点B、C、D,这样分点B、C、D把线段AE分为AB、BC、CD、DE四条基本线段,那么线段AE上总共有多少条线段?按照基本线段多少的顺序是:音先有4素量本线段,箕次是包•备有二累盘未殳陵馬有3氯然后是包鸟有三条基车塚凌6勺有2条,最后是窃含有4条基未线段的有一条,紡以冬段AE 上总共有线段是4丄3 + 2丄1 = 10条.解:①2 + 1 = 3 (条)・②3 + 2 + 1 = 6〔条)・③ 4+3+2+1=10(条)・小结:上述三例说明:要想不重复、不遗漏地数出所有线段,必须按照一定顺序有规律的去数,这个规律就是:线段的总条数等于从1开始的连续几个自然数的和,这个连续自然数的和的最大的加数是线段分点数加1或者是线段所有点数(包括线段的两个端点)减1 •也就是基本线段的条数•例如右图中线段AF上麻有点数(包岳两个端点A、F)共有6个,所以从1开始的连续自然数的和申最大的加数是6-1 = 5,或者线段AF上的分点有4个(B、C、D、E)•所以从1开始的连续自然数的和中最大的加数是4 + 1 = 5.也就是线段AF上基本线段(AB、BC、CD、DE、EF)的条数是5•所以线段AF上总共有线段的条数是5+4 +3 +2 + 1 =15 (条)・二数角例2数出右图中总共有多少个角.分析在ZAOB内有三条角分线OC1、OC2、OC3, ZAOB被这三条角分线分成4 个基本角,那么ZAOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个〔即ZAOC2. ZC1OC3、ZC2OB),然后是包含有3 个基本角组成的角有2个(即ZAOC3、ZC1OB),最后是包含有4个基本角组成的角有1个(即ZAOB),所以ZAOB内总共有角:4+3+2+1=10(个)・解:4+3+2+1=10(个)・小结:数角的方法可以采用例1数线段的方法来数,就是角的总数等于从1 开始的几个连续自然数的和,这个和里面的最大的加数是角分线的条数加1,也就是基本角的个数.例3数一数右图中总共有多少个角?W:因为ZAOB内角分线0C1、OC2-OC9共有9条,即9+1二10个基本角.所以总共有角:10+9+8+…+4+3+2+1=55 (个).三.数三角形例4如右图中,各个图形内各有多少个三角形?分析可以采用类似例1数线段的两种方法来数,如图(2):第一种方法:先数以AB为一条边的三角形共有:△ABD、ZXABE、Z\ABF、ZXABC四个三角形.再数以AD为一条边的三角形共有:△ADE、ZXADF、ZXADC三个三角形.以AE为一条边的三角形共有:△AEF、ZXAEC二个三角形.最后以AF为一条边的三角形共有AAFC—个三角形.所以三角形的个数总共有4+3+2+1=10.第二种方法:先数图中小三角形共有:△ABD、ZXADE、Z\AEF、ZXAFC四个三角形.再数由两个小三角形组合在一起的三角形共有:△ABE、AADF. ZXAEC三个三角形,以三个小三角形组合在一起的三角形共有: △ABF 、ZXADC 二个三角形,最后数以四个小三角形组合在一起的只有AABC —个. 所以图中三角形的个数总共有:4+3+2+1=10 (个)・ 解:①3+2+1 二6 (个) ② 4+3+2+1=10 (个)・答:图(1)及图(2)中各有三角形分别是6个和10个.小结:计算三角形的总数也等于从1开始的几个连续自然数的和,其中最大例5如右图中,数一数共有多少条线段?共有多少个三角形?分析在数的过程中应充分利用上几例总结的规律,明确数什么?怎么数?这样两个问题•数:就是要数出图中基本线段(基本三角形)的条 数,算:就是以基本线段(基本三角形)条数为最大加数的从1开始的连续几个 自然数的和.①要数多少条线段:先看线段AB 、AD 、AE 、AF 、AC 、上各有2个分点,各分 成3条基本线段,再看BC 、MN 、GH 这3条线段上各有3个分点,各分成4条基本线 最・0T 以鹵中总共有第段是:(3+2+1) X5+(4+3+2+1) X 3二30+30=60 (条).②要数有多少个三角形,先看在AAGH 中,在GH 上有3个分点,分成基本小 三的加数就是三角形一边上的分点数加1,也就是三角形这边上分成的基本线段的 条数.角形有4个•所以在ZXAGH中共有三角形4+3+2+1=10 (个)•在ZXAMN与ZXABC 中,三角形有同样的个数,所以在ZXABC中三角形个数总共:〔4+3+2+1) X 3=10X3=30 (个)・解:①在△ ABC中共有线段是:〔3+2+1) X5+(4+3+2+1) X 3二30+30二60〔条)②在△ABC中共有三角形是:(4+3+2+1) X 3=10X3=30〔个)・例6如右图中,共有多少个角?分析本题虽然与上几例有区别,但仍可以采用上几例所总结的规律去解决.Zl、Z2、Z3、Z4我们可视为4个基本角,由2个基本角组成的有:Z1与Z2、Z2与Z3、Z3与Z4、Z4与Z1,共4个角•由3个基本角组成的角有:Z 1、上2与Z3; Z2. Z3与上4; Z3、上4与Z1;上4、Z1与上2,共4个角,由4个基本角组成的角只有一个.所以图中总共有角是:4X3+1二13 (个)・解:所以图中共有角是:4X3+1二13 (个)・小结:由本题可以推出一般情况:若周角中含有n个基本角,那么它上面角的总薮是n (n-1) +1.课后作业答案:习题七解答1 •①在AB线段上有4个分点,所以它上面线段的总条数为:5+4+3+2+1二15 (条)・②在线段AB上有3个分点,所以它上面线段的总条数为:4+3+2+1=10 (条)・在线段CD上有4个分点:所以它上面线段的总条数为:5+4+3+2+1=15 (条)・・・・整个图(2)共有线段10+15二25 (条)・③在线段AB上有3个分点,它上面线段的条数为:44-34-2+1=10 (条)・在线段CD上有2个分点,它上面线段的条数为:占。
四(下)奥数第1讲~几何计数
【知识精讲】
本讲主要内容是几何计数,简单的来说就是数图形,本讲主要介绍了两种数图形的方法:1.按分类数图形。
2.利用乘法原理数图形。
小热身
1:数数下图一共有多少条不同的线段?
2:数数下图一共有多少个不同的长方形?
3:数数下面一共有多少个不同的三角形?
第一部分:按分类数图形
例1:下列图形中各有多少个三角形?
练1: 下图中各有多少个三角形?
例2:下列图形中,分别有多少个正方形?
练2:下列图形中,分别有多少个正方形?
第二部分:乘法原理数图形
例3:下列图形中,分别有多少个长方形(包括正方形)?
练3:下列图形中,分别有多少个长方形(包括正方形)?
例4:数一数下图中包含星星的长方形(包括正方形)有多少个?
练4:数一数下图中包含星星的长方形(包括正方形)有多少个?
自我挑战:
1:下图中各有多少个三角形?
2:下列图形中,分别有多少个正方形?
3:下列图形中,分别有多少个长方形(包括正方形)?
4:数一数下图中包含星星的长方形(包括正方形)有多少个?
温故而知新!
1:右图中共有__________个三角形。
2:右图是由25个小正方形组成,数一数图中一共有__________个正方形。
3:右图是由12个小正方形组成,数一数图中一共有__________个正方形。
4:右图是由15个小正方形组成,数一数图中一共有__________个长方形(长方形包括正方形)。
5:数一数下图中包含星星的长方形(包括正方形)有__________个。
6:数一数下图中包含两颗星星的长方形(包括正方形)有多少个?。