贪心算法遗传算法流程图遗传算法实质是通过种群搜索技术
- 格式:ppt
- 大小:3.48 MB
- 文档页数:48
简单遗传算法的基本流程图下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 初始化种群:确定种群大小(个体数量)。
随机生成初始个体的基因编码。
贪心算法流程图贪心算法是一种在每一步选择中都采取当前状态下最优决策的算法,以期望能够获得全局最优解。
在实际应用中,贪心算法通常用来解决最优化问题,比如最小生成树、哈夫曼编码等。
贪心算法的流程图可以帮助我们更直观地理解其工作原理和实现过程。
首先,我们来看一下贪心算法的流程图。
在图中,首先我们需要确定问题的解空间,然后根据问题的特点选择合适的贪心策略。
接着,我们需要确定每一步的最优选择,并且不断更新当前状态,直到达到最优解或者无法继续优化为止。
在实际应用中,贪心算法的流程图可以根据具体问题的特点进行调整和优化。
下面我们以一个简单的例子来说明贪心算法的流程图。
假设现在有一组活动,每个活动都有一个开始时间和结束时间,我们希望安排尽可能多的活动,使得它们之间不会相互冲突。
这个问题可以用贪心算法来解决。
首先,我们需要对活动按照结束时间进行排序,然后从第一个活动开始,依次检查每个活动的开始时间是否晚于上一个活动的结束时间。
如果是,则将该活动加入最优解集合中,并更新当前状态。
如果不是,则将该活动舍弃。
通过这样的贪心策略,我们可以得到安排最多活动的最优解。
整个流程可以用一个简单的流程图来表示,从而更直观地理解贪心算法的工作原理。
贪心算法的流程图不仅可以帮助我们理解算法的实现过程,还可以指导我们在实际应用中进行调整和优化。
通过对问题解空间的划分和贪心策略的选择,我们可以更快地找到最优解,提高算法的效率和性能。
总之,贪心算法的流程图是我们理解和应用贪心算法的重要工具,它可以帮助我们更直观地理解算法的工作原理,指导我们进行问题求解和算法优化。
希望通过本文的介绍,读者能对贪心算法有一个更深入的理解,并在实际应用中取得更好的效果。
遗传算法流程图遗传算法(Genetic Algorithm,GA)是一种模拟自然进化过程的优化算法,通过模拟生物遗传的过程来寻找最优解。
下面是遗传算法的流程图:1. 初始化群体:设定问题的适应度函数,定义染色体编码方式,并随机生成初始种群。
2. 评估适应度:根据设定的适应度函数,对每个个体进行评估,并计算适应度值。
3. 选择操作:根据适应度值,使用选择算子选择一定数量的个体作为父代。
4. 交叉操作:对选择出的父代,使用交叉算子进行交叉操作,生成新的子代。
5. 变异操作:对交叉产生的子代,使用变异算子进行变异操作,生成新的子代。
6. 更新种群:根据选择、交叉和变异的结果,更新种群中的个体。
7. 判断终止条件:判断是否满足终止条件,如达到指定的迭代次数或找到最优解。
8. 返回最优解:如果满足终止条件,则返回找到的最优解;否则,返回第3步。
遗传算法的核心思想是通过模拟自然选择、遗传和变异的过程,从大量的可能解空间中寻找到最优解。
下面详细介绍遗传算法的流程:首先,需要定义问题的适应度函数,即问题的目标函数。
适应度函数用于评估染色体的好坏程度,从而进行选择操作。
适应度函数越好的个体,被选中的概率越高。
然后,通过染色体编码方式,将问题的解表示为染色体。
染色体可以是二进制编码、整数编码或实数编码,具体根据问题的特点进行选择。
接下来,初始化种群,即随机生成一定数量的初始个体。
种群中的每个个体都表示一个可能解。
然后,对每个个体计算适应度值,并根据适应度值进行选择操作。
选择操作根据设定的选择算子,选择一定数量的个体作为父代。
通常使用轮盘赌选择或锦标赛选择来进行选择操作。
对选择出的父代,进行交叉操作。
交叉操作通过交换染色体的部分基因片段,生成新的子代。
交叉操作有单点交叉、多点交叉、均匀交叉等形式。
接着,对交叉产生的子代进行变异操作。
变异操作通过改变个体染色体中的一些基因值,引入一定的随机性。
再次,根据选择、交叉和变异的结果,更新种群中的个体。
遗传算法流程图引言遗传算法是一种基于生物进化规律的搜索和优化算法。
其模拟了自然界中的生物进化过程,通过不断地迭代和改良个体来逐渐逼近最优解。
遗传算法已经在许多领域取得了优秀的应用效果,例如优化问题、机器学习和人工智能等。
本文将介绍遗传算法的基本流程,并结合流程图详细说明了每个步骤的含义和操作过程。
遗传算法的基本流程遗传算法的基本流程包括初始化种群、选择操作、交叉操作、变异操作和替换操作。
下面将一一介绍这些步骤。
1. 初始化种群遗传算法的第一步是初始化一个种群,也就是一组初始的个体。
种群中的每个个体都代表了可能的解决方案。
通常,初始个体是随机生成的,但也可以根据特定问题的特点进行精心选择。
种群的规模一般较大,以增加搜索空间的广度和多样性。
2. 选择操作选择操作是根据个体的适应度(或称为适应值)选择出一部分优秀的个体。
适应度表示个体在当前环境中的适应程度。
适应度较高的个体在下一代中有更高的概率被选择到。
常用的选择方法有轮盘赌选择、锦标赛选择和排名选择等。
3. 交叉操作交叉操作是将选择出的个体进行基因交换,以产生新的个体。
通过交叉操作,个体之间的信息可以进行互相传递和组合,从而产生更多样化和更优秀的个体。
交叉操作的方式有很多种,例如单点交叉、多点交叉和均匀交叉等。
4. 变异操作变异操作是对个体进行基因的突变,以增加搜索空间的多样性。
变异操作可以避免陷入局部最优解,并在搜索过程中引入新的可能解。
变异操作通常是以一定概率随机发生的,对个体的某些基因进行随机改变。
5. 替换操作替换操作是将交叉和变异后的新个体替换掉原始种群中的一部分个体。
通常,优秀的个体会被保留下来,而较差的个体会被替换掉。
替换操作可以确保种群中的个体在逐代中不断进化和改良。
6. 终止条件遗传算法的终止条件是在达到一定的迭代次数或找到足够优秀的解时终止算法的执行。
终止时,算法会输出找到的最优解或近似最优解。
遗传算法流程图下面是遗传算法的流程图:graph TBA[初始化种群] --> B[选择操作]B --> C[交叉操作]C --> D[变异操作]D --> E[替换操作]E --> F[是否满足终止条件]F -- 是 --> G[输出最优解]F -- 否 --> B总结遗传算法是一种非常强大的搜索和优化算法,可以解决各种复杂的问题。
一需求分析1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。
3.测试数据输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值二概要设计1.程序流程图2.类型定义int popsize; //种群大小int maxgeneration; //最大世代数double pc; //交叉率double pm; //变异率struct individual{char chrom[chromlength+1];double value;double fitness; //适应度};int generation; //世代数int best_index;int worst_index;struct individual bestindividual; //最佳个体struct individual worstindividual; //最差个体struct individual currentbest;struct individual population[POPSIZE];3.函数声明void generateinitialpopulation();void generatenextpopulation();void evaluatepopulation();long decodechromosome(char *,int,int);void calculateobjectvalue();void calculatefitnessvalue();void findbestandworstindividual();void performevolution();void selectoperator();void crossoveroperator();void mutationoperator();void input();void outputtextreport();4.程序的各函数的简单算法说明如下:(1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。
遗传算法总结遗传算法是借鉴生物的自然选择和遗传进化机制而开发出的一种全局自适应概率搜索算法。
一、遗传算法流程图算法开始原问题参数集染色体编码,产生初始种群计算种群中个体的适应值终止条件判断N选择交叉Y变异新种群输出结果算法结束图1 遗传算法流程图二、遗传算法的原理和方法1)染色体编码把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法就称为编码。
De Jong 曾提出了两条操作性较强的实用编码原则:编码原则一:应使用能易于产生与所求问题相关的且具有低阶、短定义长度模式的编码方案;编码原则二:应使用能使问题得到自然表示或描述的具有最小编码字符集的编码方案。
编码方法主要有以下几种:二进制编码方法、格雷码编码方法、浮点数编码方法、符号编码方法、参数级联编码方法、多参数交叉编码方法。
2) 适应值计算由解空间中某一点的目标函数值()f x 到搜索空间中对应个体的适应度函数值(())Fit f x 的转换方法基本上有一下三种: a . 直接以待解的目标函数值()f x 转化为适应度函数值(())Fit f x ,令() (())=() f x Fit f x f x ⎧⎨-⎩目标函数为最大化函数目标函数为最小化函数b . 对于最小值的问题,做下列转化max max () () (())0 C f x f x C Fit f x -<⎧=⎨⎩其他,其中max C 是()f x 的最大输入值。
c . 若目标函数为最小值问题,1(()), 0, ()01()Fit f x c c f x c f x =≥+≥++ 若目标函数为最大值问题,1(()), 0, ()01()Fit f x c c f x c f x =≥-≥+- 3) 选择、交叉、变异遗传算法使用选择算子来对群体中的个体进行优胜劣汰操作:根据每个个体的适应度值大小选择。
适应度较高的个体被遗传到下一代群体中的概率较大;适应度较低的个体的被遗传到下一代群体中的概率较小。
遗传算法(GeneticAlgorithms)遗传算法前引:1、TSP问题1.1 TSP问题定义旅⾏商问题(Traveling Salesman Problem,TSP)称之为货担郎问题,TSP问题是⼀个经典组合优化的NP完全问题,组合优化问题是对存在组合排序或者搭配优化问题的⼀个概括,也是现实诸多领域相似问题的简化形式。
1.2 TSP问题解法传统精确算法:穷举法,动态规划近似处理算法:贪⼼算法,改良圈算法,双⽣成树算法智能算法:模拟退⽕,粒⼦群算法,蚁群算法,遗传算法等遗传算法:性质:全局优化的⾃适应概率算法2.1 遗传算法简介遗传算法的实质是通过群体搜索技术,根据适者⽣存的原则逐代进化,最终得到最优解或准最优解。
它必须做以下操作:初始群体的产⽣、求每⼀个体的适应度、根据适者⽣存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染⾊体的基因并随机变异某些染⾊体的基因⽣成下⼀代群体,按此⽅法使群体逐代进化,直到满⾜进化终⽌条件。
2.2 实现⽅法根据具体问题确定可⾏解域,确定⼀种编码⽅法,能⽤数值串或字符串表⽰可⾏解域的每⼀解。
对每⼀解应有⼀个度量好坏的依据,它⽤⼀函数表⽰,叫做适应度函数,⼀般由⽬标函数构成。
确定进化参数群体规模、交叉概率、变异概率、进化终⽌条件。
案例实操我⽅有⼀个基地,经度和纬度为(70,40)。
假设我⽅飞机的速度为1000km/h。
我⽅派⼀架飞机从基地出发,侦察完所有⽬标,再返回原来的基地。
在每⼀⽬标点的侦察时间不计,求该架飞机所花费的时间(假设我⽅飞机巡航时间可以充分长)。
已知100个⽬标的经度、纬度如下表所列:3.2 模型及算法求解的遗传算法的参数设定如下:种群⼤⼩M=50;最⼤代数G=100;交叉率pc=1,交叉概率为1能保证种群的充分进化;变异概率pm=0.1,⼀般⽽⾔,变异发⽣的可能性较⼩。
编码策略:初始种群:⽬标函数:交叉操作:变异操作:选择:算法图:代码实现:clc,clear, close allsj0=load('data12_1.txt');x=sj0(:,1:2:8); x=x(:);y=sj0(:,2:2:8); y=y(:);sj=[x y]; d1=[70,40];xy=[d1;sj;d1]; sj=xy*pi/180; %单位化成弧度d=zeros(102); %距离矩阵d的初始值for i=1:101for j=i+1:102d(i,j)=6370*acos(cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*...cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2)));endendd=d+d'; w=50; g=100; %w为种群的个数,g为进化的代数for k=1:w %通过改良圈算法选取初始种群c=randperm(100); %产⽣1,...,100的⼀个全排列c1=[1,c+1,102]; %⽣成初始解for t=1:102 %该层循环是修改圈flag=0; %修改圈退出标志for m=1:100for n=m+2:101if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<...d(c1(m),c1(m+1))+d(c1(n),c1(n+1))c1(m+1:n)=c1(n:-1:m+1); flag=1; %修改圈endendendif flag==0J(k,c1)=1:102; break %记录下较好的解并退出当前层循环endendendJ(:,1)=0; J=J/102; %把整数序列转换成[0,1]区间上实数即染⾊体编码for k=1:g %该层循环进⾏遗传算法的操作for k=1:g %该层循环进⾏遗传算法的操作A=J; %交配产⽣⼦代A的初始染⾊体c=randperm(w); %产⽣下⾯交叉操作的染⾊体对for i=1:2:wF=2+floor(100*rand(1)); %产⽣交叉操作的地址temp=A(c(i),[F:102]); %中间变量的保存值A(c(i),[F:102])=A(c(i+1),[F:102]); %交叉操作A(c(i+1),F:102)=temp;endby=[]; %为了防⽌下⾯产⽣空地址,这⾥先初始化while ~length(by)by=find(rand(1,w)<0.1); %产⽣变异操作的地址endB=A(by,:); %产⽣变异操作的初始染⾊体for j=1:length(by)bw=sort(2+floor(100*rand(1,3))); %产⽣变异操作的3个地址%交换位置B(j,:)=B(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]);endG=[J;A;B]; %⽗代和⼦代种群合在⼀起[SG,ind1]=sort(G,2); %把染⾊体翻译成1,...,102的序列ind1num=size(G,1); long=zeros(1,num); %路径长度的初始值for j=1:numfor i=1:101long(j)=long(j)+d(ind1(j,i),ind1(j,i+1)); %计算每条路径长度endend[slong,ind2]=sort(long); %对路径长度按照从⼩到⼤排序J=G(ind2(1:w),:); %精选前w个较短的路径对应的染⾊体endpath=ind1(ind2(1),:), flong=slong(1) %解的路径及路径长度xx=xy(path,1);yy=xy(path,2);plot(xx,yy,'-o') %画出路径以上整个代码中没有调⽤GA⼯具箱。
优化算法之手推遗传算法(GeneticAlgorithm)详细步骤图解遗传算法可以做什么?遗传算法是元启发式算法之一。
它有与达尔文理论(1859 年发表)的自然演化相似的机制。
如果你问我什么是元启发式算法,我们最好谈谈启发式算法的区别。
启发式和元启发式都是优化的主要子领域,它们都是用迭代方法寻找一组解的过程。
启发式算法是一种局部搜索方法,它只能处理特定的问题,不能用于广义问题。
而元启发式是一个全局搜索解决方案,该方法可以用于一般性问题,但是遗传算法在许多问题中还是被视为黑盒。
那么,遗传算法能做什么呢?和其他优化算法一样,它会根据目标函数、约束条件和初始解给我们一组解。
最优局部解与最优全局解遗传算法是如何工作的?遗传算法有5个主要任务,直到找到最终的解决方案。
它们如下。
•初始化•适应度函数计算•选择•交叉•突变定以我们的问题我们将使用以下等式作为遗传算法的示例。
它有 5 个变量和约束,其中 X1、X2、X3、X4 和 X5 是非负整数且小于 10(0、1、2、4、5、6、7、8、9)。
使用遗传算法,我们将尝试找到X1、X2、X3、X4 和 X5 的最优解。
将上面的方程转化为目标函数。
遗传算法将尝试最小化以下函数以获得 X1、X2、X3、X4 和 X5 的解决方案。
由于目标函数中有 5 个变量,因此染色体将由 5 个基因组成,如下所示。
初始化在初始化时,确定每一代的染色体数。
在这种情况下,染色体的数量是 5。
因此,每个染色体有 5 个基因,在整个种群中总共有 25 个基因。
使用 0 到 9 之间的随机数生成基因。
在算法中:一条染色体由几个基因组成。
一组染色体称为种群下图是第一代的染色体。
适应度函数计算它也被称为评估。
在这一步中,评估先前初始化中的染色体。
对于上面示例,使用以下的计算方式。
这是第一代种群中的第一个染色体。
将 X1、X2、X3、X4 和 X5 代入目标函数,得到 53。
适应度函数是 1 除以误差,其中误差为 (1 + f(x))。