伺服驱动器接线原理图
- 格式:doc
- 大小:262.50 KB
- 文档页数:11
伺服电机常识收藏此信息打印该信息添加:未知来源:未知交流伺服电动机原理?伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度(线数)。
伺服电动机在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。
又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降,作用:伺服电机,可使控制速度,位置精度非常准确。
直流伺服电机分为有刷和无刷电机。
有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。
因此它可以用于对成本敏感的普通工业和民用场合。
无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。
控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。
电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。
交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。
大惯量,最高转动速度低,且随着功率增大而快速降低。
因而适合做低速平稳运行的应用。
伺服电动机基本知识讲解伺服电动机伺服电动机又叫执行电动机,或叫控制电动机。
在自动控制系统中,伺服电动机是一个执行元件,它的作用是把信号(控制电压或相位)变换成机械位移,也就是把接收到的电信号变为电机的一定转速或角位移。
其容量一般在0.1-100W,常用的是30W以下。
伺服电动机有直流和交流之分。
一、交流伺服电动机交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似,如图1所示。
前言:笔者在做项目过程中,接触到台达B2系列伺服驱动器,将伺服的使用总结一下,控制部分为单片机,非PLC。
因为是第一次使用,个人能力有限,仅供参考,希望和大家一起交流,一起进步。
实验设备:台达伺服电机驱动器ASDA-B2-0721-B,伺服电机ECMA-C20802ES,单片机控制板。
实验目的:单片机电路板发出脉冲控制伺服电机驱动器(位置模式),使用伺服电机正反转,驱动器反馈脉冲给单片机控制电路,使其能精确控制机械位置。
ASDA-B2-0721-B驱动器位置模式(PT)特点:1、外部输入脉冲的频率确定转动速度的大小。
2、脉冲数来确定转动的角度。
实验内容:1、按ASDA-B2系列实用手册分别连接,控制回路电源L1c、L2c,主控制回路电源R、S,伺服电机输出U、V、W,地线,CN2电机编码器反馈接口。
注意:因为笔者使用的750W,主控制回路电源200~230VAC,驱动器上留有三相电接线,但个人感觉三相电线电压为380V,有可能损坏驱动器,所以建议直接两线,即220VAC 电源,笔者使用此方式,驱动正常。
2、按ASDA-B2系列实用手册调试电机JOG模式,确认驱动器和电机正常,具体参考手册,操作比较简单。
3、单片机控制板与驱动器ASDA-B2的CN1端口连接原理图,仅供参考。
图中MCU_I/O1控制方向引脚,MCU_PWM脉冲引脚,MCU_I/O2B2告警输出引脚,MCU_CAP反馈引脚,B2的DI1(9端子)配置为伺服电机使能引脚,因为上电直接使能,所以没有使用单片机控制,直接接低电平。
注意:此图使用是B2驱动器使用内部24V电源接线图,因为单片机控制板电压值较低,控制的输入输出均使用隔离,同时此接线方式是低速控制,B2驱动器速度脉冲最大200KHz,所以隔离开关通断频率要大于200KHz,同时反馈线的脉冲数要大于速度脉冲,隔离开关通断频率应更高。
图1控制板与伺服驱动器接线这里单单介绍的是I/O口的接线,具体电源接线,编码器,电机配线需要查阅相关的手册,这里不做过多介绍。
伺服系统包含哪些(基本组成_工作原理_应用)
伺服系统的结构组成机电一体化的伺服控制系统的结构、类型繁多,但从自动控制理论的角度来分析,伺服控制系统一般包括控制器、被控对象、执行环节、检测环节、比较环节等五部分。
下图给出了伺服系统组成原理框图。
图伺服系统组成原理框图
1.比较环节
比较环节是将输入的指令信号与系统的反馈信号进行比较,以获得输出与输入间的偏差信
2.控制器
控制器通常是计算机或PID控制电路,其主要任务是对比较元件输出的偏差信号进行变换处理,以控制执行元件按要求动作。
3.执行环节
执行环节的作用是按控制信号的要求,将输入的各种形式的能量转化成机械能,驱动被控对象工作。
机电一体化系统中的执行元件一般指各种电机或液压、气动伺服机构等。
4.被控对象
5.检测环节
检测环节是指能够对输出进行测量并转换成比较环节所需要的量纲的装置,一般包括传感器和转换电路。
伺服系统工作原理伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标的任意变化而变化的自动控制系统,即伺服系统是具有反馈的闭环自动控制系统。
它由计算机数字控制系统、伺服驱动器、伺服电动机、速度和位置传感器等组成。
计算机数字控制系统用来存储零件加工程序,根据编码器反馈回来的信息进行各种插补运算和软件实时控制,向各坐标轴的伺服驱动系统发出各种控制命令。
伺服驱动器和伺服电动机接收到计算机数字控制系统的控制命令后,对功率进行放大、变换与调控等处理,能够快速平滑调。
创作编号:BG7531400019813488897SX创作者:别如克*伺服电机内部结构伺服电机工作原理伺服电机原理一、交流伺服电动机交流伺服电动机定子的构造基本上与电容分相式单相异步电动机相似.其定子上装有两个位置互差90°的绕组,一个是励磁绕组Rf,它始终接在交流电压Uf上;另一个是控制绕组L,联接控制信号电压Uc。
所以交流伺服电动机又称两个伺服电动机。
交流伺服电动机的转子通常做成鼠笼式,但为了使伺服电动机具有较宽的调速范围、线性的机械特性,无“自转”现象和快速响应的性能,它与普通电动机相比,应具有转子电阻大和转动惯量小这两个特点。
目前应用较多的转子结构有两种形式:一种是采用高电阻率的导电材料做成的高电阻率导条的鼠笼转子,为了减小转子的转动惯量,转子做得细长;另一种是采用铝合金制成的空心杯形转子,杯壁很薄,仅0.2-0.3mm,为了减小磁路的磁阻,要在空心杯形转子内放置固定的内定子.空心杯形转子的转动惯量很小,反应迅速,而且运转平稳,因此被广泛采用。
交流伺服电动机在没有控制电压时,定子内只有励磁绕组产生的脉动磁场,转子静止不动。
当有控制电压时,定子内便产生一个旋转磁场,转子沿旋转磁场的方向旋转,在负载恒定的情况下,电动机的转速随控制电压的大小而变化,当控制电压的相位相反时,伺服电动机将反转。
交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。
它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。
因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。
2、运行范围较广3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。
第三章 接线第三章 接 线【注 意】l 进行接线或检修作业时,必须先断开电源,因伺服驱动器内部有大容量电 解电容,所以即使切断了电源,内部部分电路仍有高压。
在电源切断后, 最少等待 10 分钟以上,等到充电指示灯熄灭后,才能接线或检修驱动器和 电机,否则可能触电l 驱动器输出端子 U、V、W 和电机 U、V、W 必须正确对应。
注意不能用调 换三相端子的方法来使电机反转,这一点与异步电机完全不同,更不要使 端子短路。
若相序出错,就会出现电机不能启动、运转异常等不可意料的 情况l 电机轴上的编码器与驱动器之间的接线绝对不能接错。
为避免感应干扰, 编码器信号线应和动力线分开走线,最好给信号线加上屏蔽3.1 伺服驱动器与外围设备的连接及构成图 3-1 伺服驱动器 EPS-TA0003123-0000 与外围设备的连接图 23第三章 接线3.2 标准接线 1. 配线(1)电源端子 TB 线径:R、S、T、U、V、W、PE 端子线径≥1.5mm² (AWG14-16),L1、L2 端子线径≥1.0mm² (AWG16-18)。
驱动器功率越大需要 TB 端子线径越粗。
接地:接地线(PE)应尽可能粗,驱动器接地线与伺服电机接地线一点接 地,接地电阻<100Ω。
端子连接必须连接牢固。
建议电源采用三相隔离变压器供电,提高电源质量和抗干扰能力。
请安装非熔断性(NFB)断路器,以便驱动器出现故障时能及时切断电源。
建议安装噪声滤波器(NF)、磁力接触器(MC)、电抗器(L),防止外部杂 波进入电源,减轻伺服电机产生的杂波对外界的干扰。
(2)通讯信号 CN1、控制信号 CN2、编码器信号 CN3 线 径 : 建 议 采用 屏 蔽 电 缆( 最 好 采用 双 绞 屏蔽 电 缆),线 径 ≥0.12mm² (AWG24-26)。
线长:电缆长度尽可能短,控制信号线 CN2 电缆不超过 5 米,编码器信号 电缆长度不超过 15 米,编码器电源和地线应分别采用 4 组以上芯线并联。
直流电机伺服驱动器使用说明一.概况ED系列直流电动机伺服驱动器是针对本公司生产的空心杯系列直流电动机、无刷电动机开发设计的控制器,可对电动机的各种运动功能进行精确的控制,电路采用MOTOROLA公司生产的直流电动机伺服控制芯片,IR公司的MOSFET管做功率驱动组成H桥驱动级,集成度高,体积小,功率密度大,工作稳定可靠,功能齐全,是电机驱动器的最佳选择。
可与E-Drive系列的直流电机、无刷电机等产品配套使用,能为您提供电机运动灵活控制方面完整的解决方案。
二.功能特点简介1. 方便灵活的转速调整及开环闭环的转速控制2. 灵活的转向控制与设定3. 方便的使能控制4. 瞬间的刹车制动控制5. 设有LED工作状态指示6. 能实现多种控制功能的用户控制接口7. 设有编码器信号接口,用户利用外部微处理器能对电机的运动状态及运动位置等进行灵活控制8. 体积小,功率密度大9. 设有多重保护电路使工作稳定可靠10.电路能在瞬间吸收电机因制动及换向造成的冲击电流和反冲电压三.产品电气参数型号:ED-Y1030A1输入电源电压:18V-30V 直流纹波≤5%最高输出电压:28V 脉动最大负载电流:8A 连续过载保护电流:≥10A 最大吸收反冲电流:40A 最大驱动功率:200W 连续外部调速控制输入电压:0—5V控制接口电平:高电平≥4.5V,低电平≤0.8V 最大效率:90%环境温度:-20℃~+40℃,最大温升30℃四、转速控制电压与输出量关系图:五、外形结构尺寸长宽高=76*53*28(mm)安装脚尺寸=76*73(mm)安装孔:63*68(mm)外形结构图:六、控制接口端1.控制接口采用TTL逻辑电平控制,用户可通过外部数字电路或单片微处理器的逻辑电平对电机的各种运动功能进行控制,可利用DA数模转换电路并配合8、9脚的转速信号对电机转速进行闭环控制. 控制逻辑时序如下:2.编码器输出信号的控制:*电路采用光电增量式编码器,用户可通过8、9、10、脚提供的编码器信号对电机的运动进行灵活控制,其中8、9脚为编码器的转动脉冲信号8为A相、9为B相,10脚为编码器零位信号。