一个经典输出短路保护电路
- 格式:doc
- 大小:104.50 KB
- 文档页数:2
& 一个经典输出短路保护电路上电:C2两端电压不能突变,Q2基极电压由VCC 开始下降,下 降到Q2可以导通(BE 结压降取0.7V ),这个时间大概是0.12mS 但 是同时Q1也在起到阻止Q2导通的作用,Q1导通的时间大概是:5.87mS 也就是说Q2在5.87mS 后才会导通,但是同时 C3在阻止Q3的导通, 阻止时间是0.17mSQ3在上电0。
17MS 后导通,负载得电,Q3C 极电压达到13.3左 右,迫使Q2截至,由此可见Q1可以去掉。
短路时,Q3C 极被拉低,Q2导通,形成自锁,迫使 Q3截止,Q3 截至后面负载没有电压,这时有没有负载已经没有关系了,所以即使 拿掉负载也不会有输出。
要想拿掉负载后恢复输出,可以在Q3得 C E 结上接一个电阻,取1K 左右。
VCC 13.2V-« --------------------- -------------L C2 厂 lOOnFJ Q 2--------------- 2H3&D6------ WvlOkcHimC110GnF MAAAr22kQhm瞰路功誉描远:当特出短齬后・输出立即关闭;就时,印悽将短路矗销■转出保持为0 ■懸须重新加电后才有特出. 而月・搐输出管Q3撇成IRL 触02 [他0£管)却无法实現上面所说的功誉.±L £3 ■■ 一 3.3 uF 01 R17 1N414S lUkDhm D21IU001 R6 lOkohm自动恢复短路保护自锁短路保护秀一下本人曾经设计的最简短路保护电路,本电路由一个光电耦合器和一个按钮组成。
启动时需要按一下BW按钮使光电耦合器接通并自锁,按钮弹开,负载通过光电耦合器岀口进行通电。
若输岀端发生短路,则光耦失电,岀口打开,输岀则自动断开。
失电。
其缺点显而易见,我就不多说了!!呵呵,我只用它来保护过一个5VLED灯指示回路可通过短路测试!!。
mos管短路保护电路
MOS管短路保护电路,是一种电路保护装置,用于防止MOS
管由于短路而受到损坏。
MOS管是一种半导体器件,用于控
制电路的电流和电压。
它被广泛应用于电子设备中,例如电源,电动机控制器等。
MOS管短路保护电路的基本原理是通过检测MOS管的输出电流来判断其是否处于短路状态。
一旦发现短路,电路会立即切断电源,从而保证MOS管不会被损坏。
该电路通常由两部分组成:检测电路和保护电路。
检测电路用来监测MOS管的输出电流。
保护电路则负责切断电源以保护MOS管。
下面我们将详细介绍这两个部分的工作原理。
检测电路的工作原理:检测电路通常由一个电阻和一个电流测量器组成。
当MOS管处于正常工作状态时,其输出电流会通
过电阻,并被电流测量器测量。
一旦MOS管出现短路情况,
输出电流会变得异常大,超过了电阻的承载能力,并导致电流测量器显示超过额定值。
这样就可以检测到短路情况。
保护电路的工作原理:保护电路通常包括开关和电源。
当检测到MOS管处于短路状态时,保护电路会立刻打开开关,切断
电源,从而保护MOS管不受到进一步的伤害。
此时,电源被
切断,电路处于停止状态。
用户需要手动重置电路,以便重新开始工作。
总之,MOS管短路保护电路可以帮助保护设备免受MOS管短
路的损害。
通过检测电路监测MOS管的输出电流,一旦发现短路情况,保护电路会立即切断电源。
这样就可以防止设备受到进一步的损坏。
锂电池过充电、过放电、短路保护电路详解时间:2012-04-23 12:27:18来源:作者:该电路主要由锂电池保护专用集成电路DW01,充、放电控制MOSFET1(内含两只N 沟道MOSFET)等部分组成,单体锂电池接在B+和B-之间,电池组从P+和P-输出电压。
充电时,充电器输出电压接在P+和P-之间,电流从P+到单体电池的B+和B-,再经过充电控制MOSFET到P-。
在充电过程中,当单体电池的电压超过4.35V时,专用集成电路DW01的OC脚输出信号使充电控制MOSFET关断,锂电池立即停止充电,从而防止锂电池因过充电而损坏。
放电过程中,当单体电池的电压降到2.30V时,DW01的OD脚输出信号使放电控制MOSFET关断,锂电池立即停止放电,从而防止锂电池因过放电而损坏,DW01的CS脚为电流检测脚,输出短路时,充放电控制MOSFET的导通压降剧增,CS脚电压迅速升高,DW01输出信号使充放电控制MOSFET迅速关断,从而实现过电流或短路保护。
二次锂电池的优势是什么?1. 高的能量密度2. 高的工作电压3. 无记忆效应4. 循环寿命长5. 无污染6. 重量轻7. 自放电小锂聚合物电池具有哪些优点?1. 无电池漏液问题,其电池内部不含液态电解液,使用胶态的固体。
2. 可制成薄型电池:以3.6V400mAh的容量,其厚度可薄至0.5mm。
3. 电池可设计成多种形状4. 电池可弯曲变形:高分子电池最大可弯曲900左右5. 可制成单颗高电压:液态电解质的电池仅能以数颗电池串联得到高电压,高分子电池由于本身无液体,可在单颗内做成多层组合来达到高电压。
7. 容量将比同样大小的锂离子电池高出一倍IEC规定锂电池标准循环寿命测试为:电池以0.2C放至3.0V/支后1. 1C恒流恒压充电到4.2V截止电流20mA搁置1小时再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准).电池在25摄氏度条件下以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20+_5下储存28天后,再以0.2C放电至2.75V计算放电容量什么是二次电池的自放电不同类型电池的自放电率是多少?自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。
有短路保护的电感式接近开关集成电路简介LDA505(替代TCA505)是针对电感式接近开关应用而开发的具有短路保护功能的专用集成电路,可广泛应用于各种接近传感器或接近控制系统中,也可用来制作多种感应式检测仪表,如感应式转速表等。
LDA505由振荡器、开关电路和放大输出电路组成,其基本工作原理是利用外接的电感电容构成LC高频谐振电路,并在谐振环路中产生一个交变磁场。
当被检测的金属目标接近这一磁场并达到感应距离时,在被检测的金属目标内产生涡流并吸取振荡器的能量,使得振荡器振幅衰减或停振。
振荡器振荡及停振的变化被后级放大电路处理并转换成开关信号,触发驱动控制器件,从而实现了非接触式检测的目的。
LDA505具有集成度高、工作电压宽、输出电流大、控制距离可调、外围电路少、应用方便、工作稳定可靠等特点。
和一般分立元器件组成的电感式接近开关方案相比,LDA505集成芯片方案的一致性、稳定性更好,因此特别适用于高要求高可靠性的场合。
LDA505采用SOP-16L(SOIC-16)封装形式。
特点系列信息Array●宽的工作电压范围:4.0~40V●较低的静态工作电流:小于0.7mA●内部集成的输出级驱动电流达到70mA●高的抗干扰性能●开关频率可达5KHz●可用于二线制交流接近开关●具有温度补偿功能●具有短路保护和过载保护功能●工作温度范围-40~+125℃典型应用●电感式接近开关●无触点开关●位置控制●隔离检测●转速测量丹东华奥电子有限公司丹东华奥电子有限公司引脚定义序号符号功能说明1LC 振荡器LC 和GND 之间外接电感和电容,用于构成谐振电路。
2R Di 距离设置电阻R Di 外接电阻,用于设定振荡器中的电流和检测距离。
3N.C.悬空不用4C I 积分电容C I 和GND 之间通常外接1nF 电容,可以起到减少干扰的作用。
5R Hy 回差设置R Hy 和GND 之间外接电阻,用于设置检测的窗口回差。
6SC 短路检测电路输出级的短路采样(可以对V CC ,也可以对GND )。
放大器电压输出短路保护引言:放大器是电子设备中常见的一种电路,用于将输入信号放大到所需的幅度。
然而,当放大器输出被短路时,可能会导致电路受损甚至发生故障。
为了解决这个问题,工程师们设计了各种方法来保护放大器免受短路的影响。
本文将介绍放大器电压输出短路保护的原理和常见的实现方法。
一、放大器的工作原理放大器是一种能够增加信号幅度的电子设备。
它通常由输入端、输出端和一个放大电路组成。
输入信号经过放大电路后,输出信号的幅度会增加。
然而,当输出端短路时,放大器可能无法正常工作,甚至会受到损坏。
二、电压输出短路保护的原理为了保护放大器免受输出短路的影响,工程师们引入了电压输出短路保护机制。
该机制能够在输出短路时,及时切断输出电流,以保护放大器不受损坏。
电压输出短路保护一般通过以下原理来实现:1. 过流保护:当输出电流超过一定阈值时,保护电路会自动切断输出电流,以防止过大的电流损坏放大器。
2. 温度保护:当放大器温度超过一定阈值时,保护电路会自动切断输出电流,以防止温度过高引起的损坏。
3. 短路检测:通过检测输出端的电压,判断是否存在短路情况,一旦检测到短路,保护电路会立即切断输出电流。
三、常见的电压输出短路保护实现方法1. 电流检测保护:在输出电路中加入电流检测电阻,通过检测电阻两端的电压来获得输出电流信息。
当输出电流超过设定的阈值时,保护电路会切断输出电流,以保护放大器。
2. 温度检测保护:在放大器芯片上安装温度传感器,当温度超过设定的阈值时,保护电路会切断输出电流。
同时,还可以通过控制风扇的转速来降低芯片温度。
3. 短路检测保护:在输出端加入短路检测电路,通过检测输出端的电压来判断是否存在短路。
一旦检测到短路,保护电路会立即切断输出电流。
四、电压输出短路保护的应用电压输出短路保护在各种电子设备中都得到了广泛应用。
例如,音频放大器、功放等设备都需要采用电压输出短路保护机制,以防止输出端短路引起的设备损坏。
经典的扬声器保护电路原理扬声器保护电路是经典的电子电路之一,用于保护扬声器不受过载、短路、过热等情况影响。
它主要由功率放大电路、比较电路、触发电路和保护电路等部分组成。
下面将详细介绍扬声器保护电路的原理。
扬声器保护电路的基本原理是在输入与输出之间建立一个反馈回路,通过该回路对扬声器进行保护。
具体来说,当输入信号经过功率放大电路放大后,进入比较电路。
比较电路会将输入信号与参考电压进行比较,一旦输入信号过大或其它异常情况发生,比较电路会产生一个错误信号,将其送至触发电路。
触发电路接收到错误信号后,会根据错误信号的类型,产生相应的控制信号。
这些控制信号经过保护电路进行处理,最终通过功率放大电路回路控制输出信号,从而实现对扬声器的保护。
在具体的实现过程中,扬声器保护电路采用了多种技术手段,下面将介绍常用的几种。
第一种是过载保护,也称为功率限制保护。
当输入信号过大,超出扬声器的额定功率范围时,保护电路会自动将电流限制在一个安全范围内,避免扬声器因功率过大而受损。
第二种是短路保护。
当扬声器发生短路情况时,保护电路会自动切断电流,防止扬声器因过大的电流而受损。
第三种是过热保护。
当扬声器工作时间过长或环境温度过高时,保护电路会通过温度传感器检测到扬声器温度的变化,并产生相应的控制信号,将扬声器的输出功率降低或关闭扬声器,以防止扬声器因过热而受损。
此外,扬声器保护电路还可以增加直流偏置保护和电源过压保护等功能。
直流偏置保护主要是避免由于电流直流偏置过大而导致扬声器变形,同时也有助于减少功耗。
电源过压保护则是在电源电压异常高的情况下,切断电源以保护扬声器。
总的来说,扬声器保护电路通过建立反馈回路,对扬声器的输入信号进行检测和比较,并根据检测结果产生相应的控制信号,从而实现对扬声器的保护。
它能有效避免扬声器因过载、短路、过热等异常情况而损坏,提升了扬声器的可靠性和使用寿命。
最简单的短路保护电路图汇总(六款模拟电路设计原理图详解)最简单的短路保护电路图(一)简易交流电源短路保护电路交流电源电压正常时,继电器吸合,接通负载(Rfz)回路。
当负载发生短路故障时,KA两端电压迅速下降,KA释放,切断负载回路。
同时,发光二极管VL点亮,指示电路发生短路。
最简单的短路保护电路图(二)这是一个自锁的保护电路,短路时:Q3极被拉低,Q2导通,形成自锁,迫使Q3截止,Q3截至后面负载没有电压,这时有没有负载已经没有关系了,所以即使拿掉负载也不会有输出。
要想拿掉负载后恢复输出,可以在Q3得CE结上接一个电阻,取1K左右。
C2和C3很重要,在自锁后,重启电路就靠这两个电容,否则启动失败。
原理是上电时,电容两端电压不能突变,C2使得Q2基极在上电瞬间保持高电平,使得Q2不导通。
C3则使得上电瞬间Q3基极保持低电平,使得Q3导通Vout有电压。
这样R5位高电平,锁住导通。
最简单的短路保护电路图(三)缺相保护电路由于电网自身原因或电源输入接线不可靠,开关电源有时会出现缺相运行的情况,且掉相运行不易被及时发现。
当电源处于缺相运行时,整流桥某一臂无电流,而其它臂会严重过流造成损坏,同时使逆变器工作出现异常,因此必须对缺相进行保护。
检测电网缺相通常采用电流互感器或电子缺相检测电路。
由于电流互感器检测成本高、体积大,故开关电源中一般采用电子缺相保护电路。
图5是一个简单的电子缺相保护电路。
三相平衡时,R1~R3结点H电位很低,光耦合输出近似为零电平。
当缺相时,H点电位抬高,光耦输出高电平,经比较器进行比较,输出低电平,封锁驱动信号。
比较器的基准可调,以便调节缺相动作阈值。
该缺相保护适用于三相四线制,而不适用于三相三线制。
电路稍加变动,亦可用高电平封锁PWM信号。
图5 三相四线制的缺相保护电路图6是一种用于三相三线制电源缺相保护电路,A、B、C缺任何一相,光耦器输出电平低于比较器的反相输入端的基准电压,比较器输出低电平,封锁PWM驱动信号,关闭电源。
开关电源短路保护电路
1、在输出端短路的状况下,PWM掌握电路能够把输出电流限制在一个平安范围内,它可以用多种方法来实现限流电路,当功率限流在短路时不起作用时,只有另增设一部分电路。
2、短路爱护电路通常有两种,下图是小功率短路爱护电路,其原理简述如下:
当输出电路短路,输出电压消逝,光耦OT1不导通,UC3842①脚电压上升至5V左右,R1与R2的分压超过TL431基准,使之导通,UC3842⑦脚VCC电位被拉低,IC停止工作。
UC3842停止工作后①脚电位消逝,TL431不导通UC3842⑦脚电位上升,UC3842重新启动,周而复始。
当短路现象消逝后,电路可以自动恢复成正常工作状态。
3、下图是中功率短路爱护电路,其原理简述如下:
当输出短路,UC3842①脚电压上升,U1 ③脚电位高于②脚时,比较器翻转①脚输出高电位,给C1充电,当C1两端电压超过⑤脚基准电压时U1⑦脚输出低电位,UC3842①脚低于1V,UCC3842 停止工作,输出电压为0V,周而复始,当短路消逝后电路正常工作。
R2、C1是充放电时间常数,阻值不对时短路爱护不起作用。
4、下图是常见的限流、短路爱护电路。
其工作原理简述如下:
当输出电路短路或过流,变压器原边电流增大,R3 两端电压降增大,
③脚电压上升,UC3842⑥脚输出占空比渐渐增大,③脚电压超过1V时,UC3842关闭无输出。
5、下图是用电流互感器取样电流的爱护电路,
有着功耗小,但成本高和电路较为简单,其工作原理简述如下:输出电路短路或电流过大,TR1次级线圈感应的电压就越高,当UC3842③脚超过1伏,UC3842 停止工作,周而复始,当短路或过载消逝,电路自行恢复。
电源电路设计分析实例(经典分析)众所皆知,电源电路设计,乃是在整体电路设计中最基础的必备功夫,因此,在接下来的文章中,将会针对实体电源电路设计的案例做基本的探讨。
电源device电路※输出电压可变的基准电源电路(特征:使用专用IC基准电源电路)图1是分流基准(shunt regulator)IC构成的基准电源电路,本电路可以利用外置电阻Vr1与R3的设定,使输出电压在+2.5V-5V范围内变化,输出电压Vout可利用下式求得:----------------------(1)Vref:内部的基准电压。
图中的TL431是TI的编号,NEC的编号是μPC1093,新日本无线电的编号是NJM2380,日立的编号是HA17431,东芝的编号是TA76431。
※输出电压可变的高精度基准电源电路(特征:高精度、电压可变)类似REF-02C属于高精度、输出电压不可变的基准电源IC,因此设计上必需追加图2的OP增幅IC,利用该IC的gain使输出电压变成可变,它的电压变化范围为+5-+10V。
※利用单电源制作正负电压同时站立的电源电路(特征:正负电压同时站立)虽然电池device的电源单元,通常是由电池构成单电源电路,不过某些情况要求电源电路具备负电源电压。
图3的电源电路可输出由单电源送出的稳定化正、负电源,一般这类型的电源电路是以正电压当作基准再产生负电压,因此负电压的站立较缓慢,不过图3的电源电路正、负电压却可以同时站立,图4中的TPS60403 IC可使输入的电压极性反转。
※40V最大输出电压的Serial Regulator(特征:可以输出三端子Regulator IC无法提供的高电压)虽然三端子Regulator IC的输出电压大约是24V,不过若超过该电压时电路设计上必需与IC以disk lead等组件整合。
图5的Serial Regulator最大可以输出+40V 的电压,图中D2 Zener二极管的输出电压被设定成一半左右,再用R7 VR1 R8 将输出电压分压,使该电压能与VZ2 的电压一致藉此才能决定定数。
电路短路保护设计如何保护电路免受短路故障的损害电路短路是指电流在电路中遇到低阻抗路径,导致电流绕过设计预期的路径流动而形成的电路故障。
短路不仅会导致电路失效,还有可能引发严重的安全问题,如过载、电气火灾等。
因此,保护电路免受短路故障的损害是设计电路时必须考虑的重要因素。
本文将介绍一些常见的电路短路保护设计方法,包括保险丝、熔断器、热敏电阻和差动保护装置。
保险丝是一种常见的电路短路保护装置,它能够在电流超过一定阈值时熔断,切断电路,从而保护电路的安全运行。
保险丝通常由导电材料制成,当电流超过其额定电流时,保险丝就会发热,最终熔断。
保险丝的选择应根据电路的额定电流和工作环境来确定,以确保在短路发生时能够及时切断电路。
熔断器是一种类似于保险丝的电路短路保护装置,但它比保险丝更可靠、更灵活。
熔断器通常由两个金属片和一个细丝电阻器组成,当电流超过其额定电流时,细丝电阻器会发热融化,使两个金属片间断开,切断电路。
熔断器通常具有重置功能,即在短路解除后,可以通过重置熔断器来恢复电路的正常运行。
热敏电阻也是一种常见的电路短路保护元件,它的电阻值会随温度的变化而变化。
当电路发生短路时,由于大量的电流通过,电阻上会产生过多的热量,导致热敏电阻的电阻值急剧上升,从而限制了电流的流动。
热敏电阻通常被设计成温度-电阻特性曲线良好的材料,能够在短时间内快速响应短路故障,并切断电路。
差动保护装置是一种应用于大型电气系统中的电路短路保护装置,它能够检测电流在电路中的分布情况。
差动保护装置使用多个电流互感器来监测电流的输入和输出,当输入电流与输出电流不平衡时,差动保护装置会立即切断电路,从而保护电路免受短路故障的损害。
差动保护装置通常用于供电系统、变电站等电力系统中,能够提供可靠的短路保护。
除了上述提到的常见电路短路保护设计方法外,还有其他一些更复杂的保护装置,如过流保护装置、接地保护装置等。
这些保护装置可以根据电路的需求和特点进行定制设计,以确保电路在发生短路故障时能够迅速切断电路并保护设备的安全运行。
放大器电压输出短路保护电压输出短路保护是指在放大器输出端出现短路情况时,保护电路能够迅速切断放大器与负载之间的连接,以保护放大器和负载不受损害。
下面将对放大器电压输出短路保护进行详细说明。
放大器的基本工作原理是将输入信号经过放大电路放大后,输出到负载上。
在正常工作情况下,如果输出负载发生短路,即输出电压为0,这时电流将变得非常大,可能会对放大器和负载造成损害。
因此,为了保护放大器和负载,需要设计一种短路保护电路。
短路保护电路的设计目标是在负载出现短路时能够迅速切断放大器与负载之间的连接,以避免电流过大而烧坏放大器。
短路保护电路通常分为两个主要部分:检测电路和保护电路。
检测电路是用于检测负载是否发生短路的部分。
它通常采用电流检测方式,通过检测输出电流的大小来确定负载是否发生短路。
常用的检测电路有差分放大电路、电流采样电路等。
差分放大电路通过对输出电流进行放大并与预设的阈值进行比较,来判断负载是否发生短路。
电流采样电路直接采样输出电流并进行对比判断。
当检测到负载短路时,检测电路将发出一个信号,使保护电路动作。
保护电路是用于切断放大器与负载之间连接的部分。
一旦检测到负载短路,保护电路将迅速切断放大器与负载之间的连接,从而避免大电流流过放大器和负载。
常用的保护电路有瞬态过电流保护电路、电压切断保护电路等。
瞬态过电流保护电路通过快速切断输出电路上的二极管,切断输出电流的通路,以防止电流过大。
电压切断保护电路则通过将输出电流转接到物理接地电阻上,以降低电流值,保护放大器和负载。
此外,短路保护电路还可以具备断路恢复功能。
当负载短路解除时,保护电路能够自动恢复,使放大器可以正常工作。
这种断路恢复功能可以提高系统的可靠性和稳定性。
总结起来,放大器电压输出短路保护是一种保护电路设计,用于监测和切断负载短路情况,以保护放大器和负载不受损害。
它包括检测电路和保护电路,通过检测输出电流并切断输出电路来实现对放大器和负载的保护。
基于431的低成本短路保护电路一.概述开关电源的负载发生短路时候,一般开关电源都有一个保护电路,即保护开关电源自身不会因为负输出功率过大而损坏,当输出短路故障消除后,开关电源自己自动恢复工作。
二.原理以3844为例,PWM形式工作的开关电源输出短路保护电路有很多。
而我们需要的是最简单、可靠、实用、经济的!例如利用3844本身的电流采样电路,如下图:当发生短路时候,误差放大器输出一个较高电压,经分压被1V稳压管嵌位到1V,此时输出最大占空比,电感电流近似线性慢慢上升,采样电阻R3上的电压线性慢慢上升,当3844的3脚电压到达1V时候,触发锁存器“复位”,3844的6脚输出变为低,输出中止。
这种保护实质上是限功率保护,当变压器T1的初级电感量,采样电阻R3的值,输入电压值一定的时候,输出最大功率也就确定了。
当设计合适时候,开关电源一最大功率输出,不会损坏开关电源,输出短路故障去除后,开关电源恢复正常工作。
这种方法最经济直接,但对负载大小,输入电压范围都要求比较严格。
如果设计的变压器T1的初级电感量太大,或者采样电阻太小都可能导致3844的3脚电压不能到达1V关闭驱动输出,结果会损坏开关电源。
这种保护方法一般都只适用较短时间(几秒)内的短路。
另外一中比较常用的利用变压器自供电的打嗝式保护,是当前最流行和最实用的短路保护方式,如下图:利用变压器的辅助绕组给3844供电,但输出发生短路时候,变压器全部能量被加在短路的那组输出,使辅助的自供电绕组没有输出,3844的7脚迅速降到阈值10V以下,使输出驱动关闭,进入打嗝形式工作,此时输出功率小,当短路故障去除后,开关电源恢复正常工作。
这种保护方法的成功与否主要取决于辅助绕偶合的好坏。
当变压器偶合的不好的时候,或者因为驱动功率比较大而必须选取比较小的启动电阻的时候,或者需要考虑比较短的启动时间和较宽的输入电压的时候,当输入电压高输出发生短路后3844的7脚不能迅速降低到阈值10V 以下,开关电源就会工作在限功率模式下,即驱动一直是最大占空比。
一个经典输出短路保护电路
上电:C2 两端电压不能突变,Q2基极电压由VCC开始下降,下降到Q2可以导通(BE结压降取0.7V),这个时间大概是0.12mS。
但是同时Q1也在起到阻止Q2导通的作用,Q1导通的时间大概是:5.87mS 也就是说 Q2在5.87mS后才会导通,但是同时C3在阻止Q3的导通,阻止时间是0.17mS。
Q3在上电0。
17MS后导通,负载得电,Q3 C极电压达到13.3左右,迫使Q2截至,由此可见Q1可以去掉。
短路时,Q3 C极被拉低,Q2导通,形成自锁,迫使Q3截止,Q3截至后面负载没有电压,这时有没有负载已经没有关系了,所以即使拿掉负载也不会有输出。
要想拿掉负载后恢复输出,可以在Q3得 C E 结上接一个电阻,取1K左右。