浅谈管壳式换热器的制造工艺(精)
- 格式:doc
- 大小:17.00 KB
- 文档页数:4
管壳式换热器制造过程一、换热器换热器:使传热过程得以实现的设备称之为换热设备。
二、工艺流程筒体制造壳体制造材料准备管板管束制造整体装配管箱制造运输包装外表面处理耐压试验三、材料准备ß根据设计图纸要求准备材料,并进行实物确认和标记。
ß为降低生产成本,提高生产效率,封头由其他厂家配合生产,厂外购买。
常用材料及性能ß碳钢:强度较低,塑性和可焊性较好,价格低廉,常用于常压或中低压容器制造。
压力容器专用碳素钢代表材料Q235R、10、20钢、20G。
ß低合金钢:低合金钢是在碳素钢基础上加入少量合金元素的合金钢。
具有优良的韧性、焊接性能、成形性能和耐腐蚀性能。
代表材料:15CrMoR 、16MnDR 。
ß高合金钢:具有较好的耐腐蚀耐高温及耐低温性能。
主要有:铬钢、铬镍钢、铬镍钼钢、0Cr13、0Cr18Ni9。
材料基本要求及检验ß压力容器对材料应用的基本要求:强度、塑性、硬度、冲击韧性、断裂韧性、焊接性。
ß这些性能可以通过常规的力学性能试验的到检验。
金相检验ß金相:是指金属或合金的内部结构,即金属或合金的化学成分以及各种成分在合金内部的物理状态和化学状态。
ß金相实验的目的:金属材料的物理性能和机械性能与其内部之组织有相关连,因此,可以借着金相试验的宏观组织及微观组织的观察判断其的各项性能。
金相检验过程1.制样:可能用到的设备:金相试样切割机,预磨机,抛光机,镶嵌机2.制好的样品进行腐蚀,采用硫酸腐蚀。
3.放到金相显微镜上观察。
用到的设备:金相显微镜金相检验操作四、筒体制造过程ß定料:确定换热器所需材料及尺寸ß划线:确定尺寸后对材料划线、排版。
ß切割:根据划线尺寸对原材料进行切割。
刨边(开坡口)ß焊接坡口:为了保证全熔透和焊接质量,减少焊接变形,施焊前,一般需要将焊件连接处预先加工成各种形状。
1 胀管工艺规程编制审核2管子与管板“焊、胀”连接工艺一、原理及适用条件本工艺的实施步骤是焊-胀。
它巧妙地运用胀接过程的超压过载技术通过对管与管板的环形焊缝进行复胀造成应变递增而应力不增加即让该区域处于屈服状态在焊缝的拉伸残余应力场中留下一个压缩残余应力体系。
两种残余应力相互叠加的结果使其拉伸残余应力的峰值大减二次应变又引起应力的重新分布结果起到调整和均化应力场的效果最终将残余应力的峰值削弱到预定限度以下。
本工艺适用于管子与管板的胀、焊并用连接型列管式换热器的工厂或现场加工。
管板厚度范围为16100mm材质为碳钢者就符合GB150-98第二章2.2条的规定若采用16Mn时就分别符合GB3247—88和GBI51—99中的有关规定换热管束应符合GB8163、GB9948-88、GB6479-86、GB5310-85的规定。
二、焊、胀工艺一准备工作1、对换热管和管板的质量检查1管子内外表面不允许有重皮、裂纹、砂眼及凹痕。
管端头处不得有纵向沟纹横向沟纹深度不允许大于壁厚的1/10。
管子端面应与管子轴线垂直其不垂直度不大于外径的2。
2换热管的允许偏差应符合表1-1要求。
3管孔表面粗糙度Ra不大于12.5μm表面不允许纵向或螺旋状刻痕。
管孔壁面不得有毛刺、铁屑、油污。
4管孔的直径允许偏差应符合表1-2规定。
3 换热管的允许偏差表1-1 Ⅰ级换热器Ⅱ级换热器材料标准外径×厚度mm 外径偏差mm ?诤衿 頼m 外径偏差mm 壁厚偏差mm19×2 25×2 25×2.5 ±0.2 ±0.4 32×3 38×3 45×3 ±0.3 12 10 ±0.45 15 10 碳钢GB8163-87 57×3.5 ±0.8 ±10 ±1 12 10 抽查区域应不小于管板中心角60。
管壳式换热器制造过程
管壳式换热器制造过程
一、换热器
换热器:使传热过程得以实现的设备称之为换热设备。
二、工艺流程
筒体制造壳体制造材料准备管板管束制造
整体装配
管箱制造
运输包装外表面处理耐压试验
三、材料准备
根据设计图纸要求准备材料,并进行实物确认和标记。
为降低生产成本,提高生产效率,封头由其他厂家配合生产,厂外购买。
常用材料及性能
碳钢:强度较低,塑性和可焊性较好,价格低廉,常用于常压或中低压容器制造。
压力容器专用碳素钢代表材料Q235R、10、20钢、20G。
低合金钢:低合金钢是在碳素钢基础上加入少量合金元素的合金钢。
具有优良的韧性、焊接性能、成形性能和耐腐蚀性能。
代表材料:15CrMoR 、16MnDR 。
高合金钢:具有较好的耐腐蚀耐高温及耐低温性能。
主要有:铬钢、铬镍钢、铬镍钼钢、0Cr13、0Cr18Ni9。
管壳式换热器制造工艺规程1. 主题内容与适用范围本规程规定了管壳式换热器的壳体、管箱、折流板、支持板和管束的制造,以及换热器的组装、耐压试验及油漆包装等内容。
适用于换热器制造。
2.引用标准GB150-1998《钢制压力容器》GB151-1999《管壳式换热器》《压力容器安全技术监察规程》3. 壳体制造3.1 壳体的制造除符合本规程外,还应符合《压力容器壳体制造工艺规程》和GB151-1999《管壳式换热器》中的规定。
3.2 圆筒内直径允许偏差3.2.1 用板材卷制时,内直径允许偏差可通过外圆周长加工以控制,其外圆周长允许上偏差为10mm,下偏差为0。
3.2.2用钢管作圆筒时,其尺寸允许偏差应符合GB/T8163和GB/T14976的规定。
在遵循GB1514.4.2规定时,GB151附录 C的奥氏体不锈钢焊接钢管也可用作圆筒。
3.2.3 圆筒同一断面上最大最小直径之差e≤0.5%DN且当:(1)D N≤1200mm时,其值不大于5mm;(2)D N>1200mm时,其值不大于7mm;3.2.4 圆筒直线度允许偏差为L/1000(L为圆筒总长)。
且当:(1)L≤6000mm时,其值不大于4.5mm;(2) L>6000mm时,其值不大于8mm;直线度检查应通过中心线的水平和垂直面,即沿圆周0°、90°、180°、270°四个部位测量。
3.3 壳体内壁凡有碍管束顺利装入或抽出的焊缝均应修磨至与母材表面齐平。
3.4 壳体长度公差按GB/T1804-2000中m级规定。
3.5 接管、补强圈与壳体装配,须待壳体与法兰的两道环缝焊接完毕后,再划线开孔。
装配接管法兰及补强圈,先从壳体内部将接管焊到壳体上,并对正接管以千斤顶或支撑胎具在壳体内部顶住,然后在外面焊接接管及补强圈。
4. 管箱制造4.1 管箱短节与管箱法兰组对时,应以法兰背面为基准。
法兰的螺栓孔在施工图样无规定时均应跨中,如施工图样有规定时,按图样要求加工。
管撬式换热器制作工艺流程
一、管撬式换热器结构特点
管撬式换热器是一种常见的换热设备,它由管束和翅片组成。
管束内流经热媒,翅片连接在管束外侧。
当介质从管束内流过时,翅片吸收热量,并与外界空气进行换热。
这种结构使得管撬式换热器具有换热面积大、传热效率高的特点。
二、管撬式换热器制作工艺流程
1. 管材加工
将无缝钢管进行切割、弯曲、拼焊,制成U型管或螺旋管,组成管束。
控制管径、壁厚及拼接缝焊接质量。
2. 翅片制作
将铝合金薄板冲压成翅片形状,控制翅片厚度、间距及尺寸精度。
3. 构件预装配
在装配台上,根据设计要求进行管束和翅片的预装配。
控制管束和翅片的相对位置。
4. 构件拼焊
使用焊条或点焊的方式,将翅片固定连接在管束外侧。
保证焊缝质量。
5. 漏试
在管束内充入压缩空气,用肥皂水检查所有焊缝,确保无泄漏点。
6. 防腐处理
对外露面进行喷油、喷漆等防腐处理。
7. 组装入壳
将换热组件装入壳体内,进行管路接装,完成产品组装。
8. 检验
进行通水试验、压力试验等,检查密封性能、强度是否符合要求。
三、管撬式换热器制作过程中的关键控制点
1. 管材、翅片材料选择及加工质量控制
2. 管束与翅片的装配精度控制
3. 焊接工艺参数控制
4. 漏试及防腐处理质量控制
5. 产品组装及检验控制。
浅谈管壳式换热器的制造工艺方法(精)浅谈管壳式换热器的制造工艺方法在换热器的制造中,筒体、封头等零件的制造工艺与一般容器制造无异,只是要求不同,其中重点把握材料的检验,管板、折流板管孔的配钻,筒体的焊接,法兰的加工等。
纵观其制造工艺,大部分用的是传统工艺,其中焊接占的比例较高,因而必须严格按照焊接工艺施焊,并且对焊缝探伤。
1 检验材料换热器用的材料中,钢材(钢板、钢管、型材、锻件)的质量及规格应符合下列现行国家标准、行业标准或有关技术条件,钢材应符合GB GB713-2008的要求,钢材的选用应接受国家质量技术监督局颁发《压力容器安全技术监察规程》的监察。
其中,受压元件以及直接与受压元件焊接的非受压元件用钢材,必须附有钢厂的钢材质量证明书(或复制件,复制件上应加盖供应部门的印章)。
常见的有碳素钢和低合金钢(如Q235-B、Q235-C、Q245R、Q345R等)。
根据设备的使用条件,需注意材料的供货状态,如正火状态;必要时复验材料的化学成分和检验其机械性能;进行超声波检验等。
标准规定,压力容器用碳素钢和低合金钢,当壳体厚度大于30mm的Q245R和Q345R,其他受压元件(法兰、管板、平盖等)厚度大于50mm的Q245R和Q345R,以及厚度大于16mm的15MnVR,应在正火状态下使用;调质状态下和用于多层包扎容器内筒的碳素钢和低合金钢要逐张进行拉力试验和夏比(V型)常温或低温冲击试验。
凡符合下列条件之一的,应逐张进行超声波检测:①盛装介质毒性程度为极度、高度危害的压力容器②盛装介质为液化石油气且硫化氢含量大于100mg/l的压力容器③最高工作压力大于等于10MPa的压力容器④GB150第二章和附录C、GB151《管壳式换热器》、GB2337《钢制球形储罐》及其他国家标准和行业标准中规定应逐张进行超声波检测的钢板(详见各标准)⑤移动式压力容器。
选材时,经常要对材料焊接试板进行力学性能检验,主要有拉伸试验,弯曲试验和冲击试验。
管壳式换热器制造工艺规程1、主题内容与适用范围:本规程规定了本公司管壳式换热器组装制造中的具体工艺要求外,还应执行JB3343《高压加热器技术条件》,JB8184《汽轮机低压加热汽技术条件》,JB7838《热网加热器》等标准中的规定。
2、引用标准:《固定式压力容器安全技术监察规程》——TSG《管壳式换热器》——GB151-2011《固定式压力容器》——GB150-20143、基本要求管壳式换热器主要受压部分的焊接接头分为A、B、C、D、E五类,按下图所示。
a) 壳体圆筒部分的纵向接头、球形接头与圆筒连接的环向接头、各类凸形封头中的所有拼焊接头以及嵌入式接管与壳体对接连接的接头,均属A类焊接接头。
b) 壳体部分的环向接头、锥形封头小端与接管连接的接头、长颈法兰与接管连接的接头,均属B类焊接接头,但已规定为A类的焊接接头除外。
c) 平盖、管板与圆筒非对接连接的接头,法兰与壳体、接管连接的接头,内封头与圆筒的搭接接头,均属C类焊接接头。
d) 接管、人孔、凸缘、补强圈等与壳体连接的接头,均属D类焊接接头,但已规定为A、B类的焊接接头除外。
e)非受压元件吊耳、支座垫板与压力容器连接的焊缝,均属E类焊接接头。
3.1 对不同板厚对接的规定:a) 下列不同板厚必须削薄厚板:当2≤10mm,且1-2>3mm及2>10mm且1-2≥0.3n 或>5mm时,必须削薄厚板:削薄形式分单面削薄和双向削薄。
见图2。
b) 下列不同板厚对接无须削薄:当≤10mm且1-2≤3mm及2>10mm且1-2≤0.32或≤5mm时,无须削薄板厚,且对口错边量b以较薄板厚度为基准确定。
在测量对口错边量时,不应计入两板厚度的差值。
3.2 筒节长度应不小于300mm。
组装时不应采用十字焊缝,相邻圆筒的A类焊缝的距离(或封头A类焊缝,焊缝的端点与相邻圆筒A类焊缝的距离)应大于名义厚度n 的三倍,且不小于100mm,(当板厚不同时,n按较厚板计算)。
管壳式换热器的胀接工艺管板和换热管都是换热器的主要受压元件,两者之间的连接处是换热器的关键部位。
胀接是实现换热管与管板连接的一种方法,胀接质量的好坏对换热器的正常运行起着关键的作用。
因此,换热管与管板之间的胀接工艺技术就显得非常重要。
1胀接形式及胀接方法胀接形式按胀紧度可分为贴胀和强度胀。
贴胀是为消除换热管与管板孔之间缝隙的轻度胀接,其作用是可以消除缝隙腐蚀和提高焊缝的抗疲劳性能。
强度胀是为保证换热管与管板连接的密封性能及抗拉脱强度的胀接。
贴胀后胀接接头的抗拉脱力应达到1MPa以上,强度胀后胀接接头的抗拉脱力应达到4MPa以上。
胀接方法按胀接工艺的不同可分为机械胀、爆炸胀、液压胀和脉冲胀等。
机械胀是用滚珠进行胀管的,具有操作简单方便、制造成本低等优点,因而得到了广泛应用。
2胀管器的选用胀管器的种类,有三槽直筒式、五槽直筒式、轴承式、调节式、翻边式。
它的选用主要根据换热管的内径、管板厚度、胀接长度及胀接特点而确定。
3换热管与管板硬度的测定换热管与管板材料应有适当的硬度差,管板硬度应当大于换热管的硬度,其差值最好达到HB30以上,否则胀接后管子的回弹量接近或大于管板的回弹量而造成胀接接头不紧。
胀接的原理是胀接时硬度较低的管子产生塑性变形,而硬度较高的管板产生弹性变形,胀接后塑性变形的管子受到弹性回复的管板孔壁的挤压而使管子和管板紧密地结合在一起。
因此在胀管之前应首先测定管子与管板的硬度差是否匹配。
如果两者硬度值相差很小时应对管子端部进行退火热处理。
管子端部退火热处理长度一般为管板厚度加100mm。
4试胀正式胀接之前应进行试胀。
试胀的目的是验证胀管器质量的好坏,验证预定的管子与管板孔的结构是否合理,检验胀接部位的外观质量及接头的紧密性能,测试胀接接头的抗拉脱力,寻找合适的胀管率,以便制定出合理的产品胀接工艺。
试胀应在试胀工艺试板上进行。
试板应与产品管板的材料、厚度、管孔大小一致,试板上孔的数量应不少于5个,其管孔的排列形式见图1所示。
浅谈管壳式换热器制造工艺管壳式换热器是一种比较传统的标准热交换装置,由于其具有较多的优点,因此在石化行业中得到了广泛的应用。
随着工业化进程的不断发展,对管壳式换热器的制造质量有了更加严格的要求。
该文对管壳式换热器的制造工艺进行分析,希望在制造质量方面能够得到进一步的改善。
标签:管壳式换热器;制造工艺;材料检验管壳式换热器又称列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。
与其他类型的换热器相比,管壳式换热器的承压能力较强,结构较为紧固,用材比较广泛,维修拆卸比较方便,生产成本低,能够适应高温高压的生产环境,因此在石油化工领域中应用较为广泛。
1 管壳式换热器的制造工艺1.1 材料管理与检验虽然管壳式换热器的用材比较广泛,但是对材料的质量有较高的要求,材料的质量直接关系到换热器的制造质量,因此要做好材料的管理和检验。
在材料管理方面,应该严格区分有害成分与无害成分的材料,避免二者混放。
对于达到使用寿命周期的产品,分情况对其进行回收利用或者采用适宜的工艺方法进行处理,避免对环境造成污染。
在选择制造材料时,应该对材料的焊接试板进行拉伸、弯曲以及冲击的力学性能试验,每个试验都要严格遵守试验标准,为后期的制造工艺提供质量保障。
在材料检验方面,钢材作为主要材料,其质量和规格应该符合国家和行业规定的技术标准,其中的受压元件以及直接与受压元件焊接的非受压元件用的钢材,一定要有质量证明书。
针对设备的使用条件,应该严格监控材料的供货状态,在必要的情况下,可对材料进行化学成分、机械性能以及超声波检验。
对于盛装高度危害毒性介质、液化石油气、压力大于10 MPa的压力容器,应该进行超声波检测,以确保质量符合材料要求的标准。
1.2 焊接方式焊接是管壳式换热器制造工艺中最为重要的环节,由于各个元件是通过焊接组合在一起的,因此焊接质量对整个制造工艺而言非常关键。
比较常用的焊接方式有手工电弧焊、埋弧自動焊、气体保护焊等,在制造过程中,根据所使用的材料不同,应该选择适宜的焊接方式。
管壳式换热器工艺设计摘要:管壳式换热器是广泛应用于各个领域的工业设备,在国民经济中具有非常重要的作用,管壳式换热器的效率问题是设计工作的核心。
本文利用优化设计原理,建立了以管壳式换热器优化设计模型。
分析了影响年总费用的因素,编制了管壳式换热器优化设计计算机程序。
最后给出了一个计算实例说明优化设计程序的使用。
关键词:换热器;管壳式换热器;优化;优化设计热交换器是进行热交换操作的通用工艺设备,被广泛应用于各个工业部门,尤其在石油、化工生产中应用更为广泛。
换热器分类方式多样,按照其工作原理可分为:直接接触式换热器、蓄能式换热器和间壁式换热器三大类,其中间壁式换热器用量最大,据统计,这类换热器占总用量的99%。
间壁式换热器又可分为管壳式和板壳式换热器两类,其中管壳式换热器以其高度的可靠性和广泛的适应性,在长期的操作过程中积累了丰富的经验,其设计资料比较齐全,在许多国家都有了系列化标准。
近年来尽管管壳式换热器也受到了新型换热器的挑战,但由于管壳式热交换器具有结构简单、牢固、操作弹性大、应用材料广等优点,管壳式换热器目前仍是化工、石油和石化行业中使用的主要类型换热器,尤其在高温、高压和大型换热设备中仍占有绝对优势。
对于完成某一任务的换热器,往往有多个选择,如何确定最佳的换热器,是换热器优化的问题,即采用优化方法使设计的换热器满足最优的目标函数和约束条件。
在换热器设计中,最优目标函数是指包括设备费用和操作费用在内的总费用最小。
本文主要针对管壳式水冷却器冷却水出口温度的优化问题,利用一般优化设计的原理和方法,以操作费用最小为优化目标,给出相应的目标函数,并用MATLAB语言编写了计算程序,最后给出了一个计算实例。
1目标函数对于以水为冷却介质的管壳式冷却器,进口水温一定时,由传热学的基本原理分析可知,冷却水的出口费用将影响传热温差,从而影响换热器的传热面积和投资费用。
若冷却水出口温度较低,所需的传热面积可以较小,即换热器的投资费用减少;但此时的冷却水的用量则较大,所需的操作费用增加,所以存在使设备费用和操作费用之和为最小的最优冷却水出口温度。
浅谈管壳式热交换器制造工艺关键控制点作者:殷琦来源:《西部论丛》2019年第30期摘要:现如今,随着社会的进步,工业的发展也十分迅速随着工业化社会的进程不断加快,管壳式换热器的制造工艺也在不断的优化。
管壳式换热器是一类传统的换热设备,其在日常生活中的应用场景涉及到石油、化工、能源等多个领域,新形势下人们对换热器的质量、稳定、性能的要求也越来越高。
所以本文将在简要的介绍管壳式热交换器之后,重点探究管壳式热交换器制造工艺关键控制点,并提出了几点意见和建议,以期能为同行产生几点启发。
关键词:管壳式热交换器;制造工艺;控制引言管壳式热交换器换热管与管板的连接接头(以下简称管接头)承受压力和温度引起的载荷并形成可靠的密封。
换热管与管板的连接设计是管壳式热交换器继管板与筒体的连接之后又一个比较重要的结构设计。
热交换器的失效绝大多数原因集中在管接头上。
一、管壳式热交换器概述(一)管壳式换热器概念管壳式换热器的另一种说法叫做列管式换热器。
其内部结构的排列决定了其传热的机制。
一个个排列在封闭壳体中的管道,热量就是从管道的壁面进行交换的。
我们目前的工业生产中所使用的换热器大部分就是上述构造。
因为这种构造方法较简单,且施工与维护的成本低,又利于正常状态下的工作运行。
(二)管壳式换热器的工作原理管壳式换热器的工作原理需要从其自身的结构讨论得出结果,管壳式换热器整体的结构组成主要包括5大部分:壳体、传热管束、管板、折流板(挡板)和管箱以及其附属构件构成。
对于管壳式换热器的壳体而言,其形状多为圆筒形,在壳体的背部,安装着一根根的换热管。
管板是固定管束两端的区域。
管路内流动的液体有一类,我们称之为管程流体。
那么在管外流动的另一部分流体我们可以称之为壳程流体。
但是我们知道传统的管壳式换热器不仅占地面积大,而且也没有很好的导热系数。
那么应该如何提高换热器单位时间内的工作效率,可以从增加管外流体传热系数上入手解决。
首先我们将若干块挡板置于壳体内部中,由于挡板阻碍内部结构的改变,管道外的流体速度明显的上升。
管壳式换热器管壳式换热机组设备工艺原理近年来,管壳式换热器作为一种高效的换热设备广泛应用于各个行业,特别是化工、石油、电力等高温高压领域。
管壳式换热器具有结构简单、换热效率高、维护方便等优点。
本文将介绍管壳式换热器管壳式换热机组设备工艺原理。
一、管壳式换热器基本结构管壳式换热器由圆筒形的壳体、管束与管板组成。
壳体内还装有泄压阀、止回阀、取样阀、排放阀等附件。
管束由管管、支撑板和管板组成。
管管分为长管和短管。
长管一般为一整根管,短管则需要用管箍粘接在一起。
管板的作用是固定管管,使其不易塌落。
管板分为固定管板和浮动管板,固定管板一般在壳体的两端,而浮动管板则在壳体内部,通过弹簧或弹性体与管管保持一定的接触面积。
二、管壳式换热器工艺原理管壳式换热器工艺原理就是通过将不同介质流在管内和管外,利用管壳之间的热传导,达到换热的目的。
常见的介质有水、各种化工原料等。
管壳式换热器的工艺原理其实是把两种介质分别流经管内和管外,实现热量的传递。
下面是管壳式换热器的具体工艺原理:1. 单相流换热单相流指流体在整个管道中的状态是相同的,存在的热传递方式有传导和对流。
当单相流在管内流动时,介质的温度将随着时间和位置而变化。
利用管内的传导传递热量极为缓慢,所以主要的热量传递方式是对流换热。
不同流速的介质,其传热效果显然也不同。
2. 多相流换热多相流换热指在换热过程中,介质不仅存在于管内,在管外也存在。
这种热传递方式可以理解为单相流换热和相变换热的共同作用,其中相变换热仅适用于液体与汽体或固体相变的情况。
多相流换热会使壳表面形成一层厚厚的膜状物体,增加了传热阻力。
三、管壳式换热器的应用管壳式换热器广泛应用于各个行业中,其中最常见的有以下几个:1. 石油、化工领域管壳式换热器在石油和化学工业中的应用非常广泛。
由于在这些行业中经常出现的气体和液体,因此需要换热器来控制温度和压力。
2. 电力领域管壳式换热器还被广泛应用于电力行业中。
大型管壳式换热器的设计与制造摘要:管壳式换热器属于大型生产设备,它在材料应用、结构设计、应力分析、换热管接头焊—胀等诸多关键技术应用方面表现出色。
本文中分析了大型管壳式换热器的基本产品结构与关键技术设计难点,并对它的制造技术进行了全面剖析。
关键词:大型管壳式换热器;产品结构;设计难点;制造技术;焊接技术大型管壳式换热器在石化企业中应用广泛,主要是用于乙烯生产项目中的重要设备。
伴随当前我国石化行业的快速发展,管壳式换热器的发展也逐渐呈现出大型化发展趋势,例如目前某些企业就已经研制出了EO、EG循环气冷却器,其中包括了多种具有特殊结构的换热器。
1.大型管壳式换热器的基本结构大型管壳式换热器中配备有循环气冷却器,其总重量约为380t,换热面积达到13000㎡,设备壳程长度20000mm,其筒体内径在4000mm,管束长度约为20000mm,设备总长度达到44000mm[1]。
整体看来属于大型列管式固定管板换热器。
结合换热器结构形式将换热器划分为4段,分别为:上部锥段焊件、下部锥段焊件、管束以及裙座。
要针对这4点进行无损检测,最终进行总体组装焊接[2]。
1.大型管壳式换热器设计技术难点在设计大型管壳式换热器过程中,需要围绕其结构设计提出技术要求,并分析管束振动、管板锻造、管板堆焊变形控制、装配等等技术难点内容进行分析,下文重点来谈:1.大型管壳式换热器的结构设计技术难点大型管壳式换热器在结构设计方面存在技术难点,因为其结构尺寸超出了标准适用范围,在设计参数方面要求较为严苛。
就管壳程温差而言最高可以达到23℃左右,同时要求采用无膨胀节结构。
就筒体结构直径设计内容看来,大型管壳式换热器中标准尺寸范围为≤2600mm,超标准结构参数对比为4000mm[3]。
1.大型管壳式换热器的管束振动设计技术难点在分析大型管式换热器的管束振动介质过程中,需要了解其介质为循环气体,同时壳程介质为冷却水。
一般来说,壳程体积流量一般相对较大,其设备直径大约为4000mm左右,体积庞大且壳程流路相对复杂。
管壳式换热器工艺流程
《管壳式换热器工艺流程》
管壳式换热器是一种常见的换热设备,通常用于工业生产中的热交换过程。
它通过管壁将热量从一种流体传递到另一种流体,实现能量的转移和利用。
下面将介绍管壳式换热器的工艺流程。
1. 设计和选型
首先,根据使用场合的需要和工艺要求,对管壳式换热器进行设计和选型。
需要考虑的因素包括换热面积、流体流速、温度和压力范围等。
选择合适的材料和类型的管壳式换热器,以满足工艺需求。
2. 安装和连接
在确认好选型和设计后,进行管壳式换热器的安装和连接工作。
这包括确定换热器的位置、固定方式、管道连接和密封。
确保安装的牢固和连接的可靠,以避免漏气或渗漏。
3. 启动和调试
安装完成后,对管壳式换热器进行启动和调试。
包括通水测试、检查管道和阀门的开闭情况、调整流体流量和温度等。
确保换热器的正常运行和性能稳定。
4. 运行和监测
一旦启动和调试完成,管壳式换热器即可投入正常运行。
在运行过程中需要不断监测换热器的工况和性能,包括流体温度、压力、流量等数据。
及时发现并处理异常情况,确保换热效果
和生产安全。
5. 维护和维修
管壳式换热器作为关键设备,在使用过程中需要进行定期的维护和维修。
包括清洗管道和换热器表面、更换损坏的零部件、检查密封性能和进行性能测试等工作。
通过以上工艺流程,管壳式换热器可以正常运行并发挥换热效果,为工业生产提供稳定的热交换服务。
同时,也需要注意定期进行设备的维护和检修,确保长时间稳定的运行。
管壳式换热器工艺设计说明书1.设计方案简介1.1工艺流程概述由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,甲苯走壳程。
如图1,苯经泵抽上来,经管道从接管A进入换热器壳程;冷却水则由泵抽上来经管道从接管C进入换热器管程。
两物质在换热器中进行交换,苯从80℃被冷却至55℃之后,由接管B流出;循环冷却水则从30℃升至50℃,由接管D流出。
图1 工艺流程草图1.2选择列管式换热器的类型列管式换热器,又称管壳式换热器,是目前化工生产中应用最广泛的传热设备。
其主要优点是:单位体积所具有的传热面积大以及窜热效果较好;此外,结构简单,制造的材料范围广,操作弹性也较大等。
因此在高温、高压和大型装置上多采用列壳式换热器。
如下图所示。
1.2.1列管式换热器的分类根据列管式换热器结构特点的不同,主要分为以下几种:⑴固定管板式换热器固定管板式换热器,结构比较简单,造价较低。
两管板由管子互相支承,因而在各种列管式换热器中,其管板最薄。
其缺点是管外清洗困难,管壳间有温差应力存在,当两种介质温差较大时,必须设置膨胀节。
固定管板式换热器适用于壳程介质清洁,不易结垢,管程需清洗及温差不大或温差虽大但壳程压力不高的场合。
固定板式换热器⑵浮头式换热器浮头式换热器,一端管板式固定的,另一端管板可在壳体内移动,因而管、壳间不产生温差应力。
管束可以抽出,便于清洗。
但这类换热器结构较复杂,金属耗量较大;浮头处发生内漏时不便检查;管束与壳体间隙较大,影响传热。
浮头式换热器适用于管、壳温差较大及介质易结垢的场合。
⑶填料函式换热器填料函式换热器,管束一端可以自由膨胀,造价也比浮头式换热器低,检修、清洗容易,填函处泄漏能及时发现。
但壳程内介质有外漏的可能,壳程中不宜处理易挥发、易燃、易爆、有毒的介质。
⑷U形管式换热器U形管式换热器,只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。
其缺点是管内不便清洗,管板上布管少,结垢不紧凑,管外介质易短路,影响传热效果,内层管子损坏后不易更换。
浅谈管壳式换热器的制造工艺
在换热器的制造中,筒体、封头等零件的制造工艺与一般容器制造无异,只是要求不同,其中重点把握材料的检验,管板、折流板管孔的配钻,筒体的焊接,法兰的加工等。
纵观其制造工艺,大部分用的是传统工艺,其中焊接占的比例较高,因而必须严格按照焊接工艺施焊,并且对焊缝探伤。
1 检验材料
换热器用的材料中,钢材(钢板、钢管、型材、锻件)的质量及规格应符合下列现行国家标准、行业标准或有关技术条件,钢材应符合GB GB713-2008的要求,钢材的选用应接受国家质量技术监视局颁发《压力容器安全技术监察规程》的监察。
其中,受压元件以及直接与受压元件焊接的非受压元件用钢材,必须附有钢厂的钢材质量证实书(或复制件,复制件上应加盖供给部分的印章)。
常见的有碳素钢和低合金钢(如Q235-B、Q235-C、Q245R、Q345R等)。
根据设备的使用条件,需留意材料的供货状态,如正火状态;必要时复验材料的化学成分和检验其机械性能;进行超声波检验等。
标准规定,压力容器用碳素钢和低合金钢,当壳体厚度大于30mm的Q245R和Q345R,其他受压元件(法兰、管板、平盖等)厚度大于50mm的Q245R和
Q345R,以及厚度大于16mm的15MnVR,应在正火状态下使用;调质状态下和用于多层包扎容器内筒的碳素钢和低合金钢要逐张进行拉力试验和夏比(V型)常温或低温冲击试验。
凡符合下列条件之一的,应逐张进行超声波检测:①艳服介质毒性程度为极度、高度危害的压力容器②艳服介质为液化石油气且硫化氢含量大于100mg/l的压力容器③最高工作压力大于即是10MPa的压力容器④GB150第二章和附录C、
GB151《管壳式换热器》、GB2337《钢制球形储罐》及其他国家标准和行业标准中规定应逐张进行超声波检测的钢板(详见各标准)⑤移动式压力容器。
选材时,经常要对材料焊接试板进行力学性能检验,主要有拉伸试验,弯曲试验和冲击试验。
其中弯曲试样按规定要求冷弯到规定角度后,受拉面上不得有沿任何方向单条长度大于3mm的裂纹或缺陷。
常温冲击试验的合格指标:常温冲击功规定按图样或有关技术文件的规定,当不得小于27J(三个标准试样冲击功)。
低温冲击功规定值按附录(标准的附录)的有关规定;试验温度下三个试样冲击功均匀值不得低于上述规定值,其中一个试验的冲击功可小于规定值,但不得小于规定值的70%。
2 焊接方式
制造过程中,常用的焊接方法有手工电弧焊、埋弧自动焊、气体保护焊(氩弧焊、CO2保护焊)等。
根据不同的材料,不同的厚度,开不同的坡口,采用不同的焊接工艺。
手工电弧焊是应用最广泛的焊接方法,其操纵灵活,设备简单,可
进行全位置的焊接,但焊接质量很大程度上取决于焊工的技术水平;埋弧自动焊电弧热量利用率高,焊接速度较快,生产率高,可节约金属和改善劳动条件,但受其限制,一般只用来焊接直焊缝和大圆周环焊缝。
例如:筒体(δ≥18mm时)的纵缝、环缝焊接可以先用手工电弧焊打底,经试验检验合格后,再用埋弧自动焊焊牢;由于换热管比较薄,所以管板与换热管的焊接采用氩弧焊,之后再用胀管器胀接。
焊接过程中产生变形和应力是不可避免的,因而必须想办法降低其危害,采用好的焊接材料,更公道的焊接工艺,公道的工件结构和坡口等,退火消除应力。
焊完后,不能保证焊缝中没有缺陷,完全合格,所以
根据不同的焊缝(AB类、CD类),采用不同的探伤方式,并且达到一定的等级合格。
GB150-1998标准规定符合以下情况的压力容器的A类和B类焊缝应进行100%的射线或超声波检测:
①钢材厚度δs>30mm的碳素钢、Q345R;
②钢材厚度δs>25mm的15MnVR、15MnV、15MnNbR、20MnMo和奥氏体不锈钢
③进行气压试验的压力容器
④图样注明艳仰药性为极度危险或高度危害介质的容器
⑤多层包扎压力容器内筒的A类焊接接头等等
同时标准规定,凡符合下列条件之一的焊接接头,需按图样规定的方法,对其表面进行磁粉或渗透检测:
①凡属标准规定的容器上的C类和D类焊接接头;
②堆焊表面;
③复合钢板的复合层焊接接头;
④层板材料标准抗拉强度下限值δb>540MPa的多层包扎压力容器的层板C类焊接接头等等
焊缝的射线检测按JB4730-94进行,其检查结果对100%检测的A类、B类焊缝,Ⅱ级为合格;对局部检测的A类和B类焊缝,Ⅲ级为合格。
焊缝的超声波检测按JB4730-94进行,其检查结果对100%检测的A类、B类焊缝,Ⅰ级为合格;对局部检测的A类和B类焊缝,Ⅱ级为合格。
经过射线或超声波检测分歧格的焊缝,用碳弧气刨清根处理,重新施焊,并用原来的探伤方式进行探伤,直至检验合格。
3 几个重要的工艺
①管板、折流板的制造是制造过程中突出题目。
管板由机械加工完成,其孔径和孔间距根据不同的管束有公差要求。
钻孔可用划线钻孔、钻模钻孔,先进一点可以采用数控机床。
但采用划线钻孔时,由于精度较差,在钻折流板管孔时,必须
将管板和折流板重叠起来配钻,钻后再把折流板依次编号和方位图,便于装配。
折流板应按整块圆板钻孔,钻完孔后再划线切割成所需外形。
②管子与管板的连接,常见的有以下几种:a、强度胀b、强度焊c、强度胀加密封焊d、强度焊家贴胀。
目前广泛采用的是胀焊并用,这种方法可进步连接处的抗疲惫性能,消除应力腐蚀和间隙腐蚀。
对于焊接管接头的检测,目前普遍采用表面渗透或磁粉检测方法控制接头质量,对于焊接接头内部缺陷并没有任何检测要求。
③容器大部分采用焊接工艺,必须对焊缝进行消氢处理和焊后热处理。
焊接过程中,来自焊条、焊剂和空气中的氢气,在高温下分解成原子状态溶于液态金属中,焊缝冷却时,氢在钢中的溶解度急剧下降,由于焊缝冷却很快,氢来不及逸出,留在焊缝金属中,过一段时间形成延迟裂纹。
焊后对焊缝加热至200℃,16小时,进行消氢处理。
焊后热处理有将焊件整体或局部加热到A线(相变点)以下某一温度进行保温,然后炉冷或空冷。
其只要目的是消除和降低焊接过程中产生的应力,避免焊接结构产生裂纹(氢裂纹),恢复冷作而损失的力学性能等。
需留意的是,管箱设备法兰,为了保证其密封,往往要求整体热处理后,再加工其密封面。
4 总装工艺
换热器的装配工艺,也没有一个标准,只要讲究公道,轻易装配,就是好工艺。
根据不用公司的设备情况,先焊接接管或是管法兰,没有一个定论。
以下是固定管板式换热器的制造和装配,其顺序如下:
(1)将一块管板垂竖立稳作为基准零件;
(2)将拉杆拧紧在管板上;
(3)按图将定距管和折流板;
(4)穿进全部换热管;
(5)套进筒体
(6)装上另一块管板,并将全部管子的右端引进此管板内,校正后将管板与筒体点焊好;
(7)在辊轮架上焊接管板与筒体联接环缝;
(8)管子与管板的胀接或焊接,若采用焊接,则先点焊再将换热器竖直,使管板处于水平位置,以便于施焊;
(9)装接管、支座。
接管可根据具体操纵情况在筒体套进前定位开孔,甚至装焊在筒体上;
(10)壳层水压试验,目的在于检查胀管质量,管子的质量,筒体与管板连接的焊缝质量,筒体的纵、环焊缝质量等;
(11)装上两头管箱;
(12)管程水压试验,主要检查管板与封头联结处的密封面,封头上的接管焊缝质量;
(13)清理、油漆
装配是一个烦琐的过程,但仍需留意对焊缝的探伤,和壳层、管程的试压试验,以及保护法兰密封面,最后留意装配工时,按时交货给客户。
综上所述是管壳式换热器的主要制作工艺及其留意点,设计与制造按照标准进行。
尽管工艺已经成熟,但是没有相应的工艺设备条件及其技术也是难做成,材料、工艺,设备相辅相成。
(end)。