单纯形法的计算步骤
- 格式:ppt
- 大小:816.50 KB
- 文档页数:16
单纯形法求解过程单纯形法是一种经典的线性规划求解方法,它是由乔治·达竞士等人在1947年提出的。
该方法的基本思想是,通过在单纯形空间内不断移动顶点的位置来寻找最优解。
单纯形法是目前广泛应用的线性规划求解方法之一,它求解线性规划问题可大大地简化计算过程。
单纯形法的求解过程包括以下几个步骤:1. 将线性规划问题转化为标准形式线性规划问题的标准形式为:$ \max_{x} \ \ c^T x $$s.t. \ Ax=b$$x\geq 0$其中,$x$是要求解的向量;$b$是一个常数向量;$A$是一个$m\times n$的矩阵;$c$是一个常数向量。
2. 初始化单纯形表因为单纯形法是通过移动顶点来寻找最优解的方法,因此需要初始化单纯形表。
单纯形表是将原始的约束条件表示为不等式形式时形成的。
例如,对于一个带有3个变量的线性规划问题,其单纯形表的形式如下:CB | X1 | X2 | X3 | X4 | RHS----|-----|-----|-----|-----|----0 | a11| a12| a13| 0 | b10 | a21| a22| a23| 0 | b20 | a31| a32| a33| 0 | b31 | z1 | z2 | z3 | 0 | 0其中,CB代表成本系数,X1、X2、X3、X4分别代表变量。
a11、a12、a13等代表矩阵A中的元素,b1、b2、b3代表矩阵b中的元素。
3. 选择进入变量和离开变量在单纯形表中,规定最后一列为等式右边的常数(RHS),即b。
在单纯形法的求解过程中,首先需要选择一个“进入变量”,即在单纯形表的第一行中,寻找一个系数为正的变量,使得将其加入目标函数后,目标函数值可以上升。
这里以X1为例,X1为进入变量。
接着,需要选择一个“离开变量”,即在单纯形表中,寻找一个使得添加X1变量后,约束条件不改变且取得约束条件中系数最小的一个变量离开。
单纯形法计算步骤引言单纯形法是一种常用的数学优化方法,主要用于求解线性规划问题。
它的基本思想是通过不断地在可行解集合内移动,逐步靠近最优解,直到找到最优解。
本文将介绍单纯形法的基本步骤,以帮助读者了解如何使用该方法解决线性规划问题。
步骤一:建立线性规划模型在使用单纯形法之前,首先需要建立线性规划模型。
线性规划模型由决策变量、目标函数和约束条件组成。
决策变量是需要在问题中决策的变量,目标函数是需要最大化或最小化的目标,约束条件是限制决策变量取值范围的条件。
步骤二:将线性规划模型转化为标准形式单纯形法只适用于标准形式的线性规划模型。
标准形式要求目标函数为最大化,并且所有的约束条件都是等式形式。
如果初始线性规划模型不符合标准形式,我们可以通过适当的代数操作将其转化为标准形式。
步骤三:构造初始单纯形表初始单纯形表是单纯形法求解线性规划问题的起点。
它由决策变量、松弛变量、人工变量、目标函数系数和约束条件组成。
初始单纯形表的构造方法如下: 1. 将决策变量的系数及其对应的松弛变量、人工变量放在单纯形表的第一行。
2. 将目标函数的系数放在单纯形表的第一列。
3. 将约束条件的系数及其对应的松弛变量、人工变量放在单纯形表的其他行。
步骤四:确定基变量和非基变量基变量是单纯形表中拥有非零系数的变量,非基变量是单纯形表中拥有零系数的变量。
基变量和非基变量的确定方法如下: 1. 将目标函数的系数列中不为零的变量作为基变量。
2. 将约束条件中非零系数列中对应的变量作为基变量。
3. 剩余的变量作为非基变量。
步骤五:计算单纯形表中的系数根据基变量和非基变量的定义,我们可以计算单纯形表中的系数。
计算方法如下: 1. 将基变量的系数列除以对应的基变量系数。
2. 将非基变量的系数列减去对应的基变量系数列乘以非基变量所在行和基变量所在行之间的系数。
步骤六:检查是否达到最优解在每次迭代过程中,都需要检查是否达到最优解。
如果单纯形表中目标函数系数列的所有值都是非负的,表示已经达到最优解;否则,需要进行下一次迭代。
单纯形法求解过程单纯形法是一种用于求解线性规划问题的迭代算法。
它是由美国数学家George Dantzig在1947年提出的。
单纯形法的目标是通过不断地沿着一些方向逼近最优解,最终找到使目标函数取得最大(或最小)值的最优解。
单纯形法的求解过程可以分为以下几个步骤:1.标准化问题:将线性规划问题转化为标准化形式。
标准化的目的是将原问题转化为一个等价问题,使得约束条件全部为等式,且目标函数的系数都为非负数。
2.设置初始解:选择一个初始可行解作为起始点。
起始点可以通过代入法求解出来,或者通过其他启发式算法得到。
初始可行解需要满足所有约束条件,即满足等式以及非负性约束。
3.检验最优性:计算当前解的目标函数值,并检验这个值是否是最优解。
如果当前解是最优解,算法终止;否则,进入下一步。
4.选择进入变量:从目标函数的系数中选择一个可以增大(最大化问题)或减小(最小化问题)目标函数值的变量作为进入变量。
选择进入变量的策略可以有多种,例如最大增益法或者随机选择法。
5.计算离基变量:选择一个出基变量并将其移出基变量集合。
离基变量的选择通常采用最小比率法,即选择使得约束条件最紧张的变量。
6.更新解:通过求解一个新的线性方程组来计算新的解,更新基变量集合和非基变量集合。
由于每次只有一个变量进基,一个变量出基,将保持可行解的性质。
7.转到步骤3:重复步骤3-6,直到找到最优解。
单纯形法的关键在于选择进入变量和离基变量,以及求解线性方程组。
进入变量的选择决定了算法在解空间中的方向,而离基变量的选择决定了算法沿着哪个方向逼近最优解。
在实际应用中,单纯形法往往需要进行大量的迭代计算,因此效率可能不是很高。
为了提高效率,可以采用一些改进的单纯形法,例如双线性法、内点法等。
总结起来,单纯形法是一种基于迭代的算法,通过每次选择一个进入变量和一个离基变量来逐步逼近最优解。
虽然它的计算复杂度较高,但是在实践中仍然是一种很受欢迎的求解线性规划问题的方法。
运筹学单纯形法例题求解过程摘要:一、运筹学单纯形法概述二、单纯形法求解步骤1.确定基变量和初始基本可行解2.编制初始单纯形表3.判断基本可行解是否为最优解4.迭代求解最优解三、例题求解过程1.题目描述2.化为标准型3.建立初始单纯形表4.迭代计算四、总结正文:一、运筹学单纯形法概述运筹学单纯形法是一种求解线性规划问题的方法,它的主要思想是通过不断迭代,逐步优化基变量的值,从而求得问题的最优解。
单纯形法可以有效地解决具有如下特点的问题:目标函数线性,约束条件线性,变量非负。
二、单纯形法求解步骤1.确定基变量和初始基本可行解在求解线性规划问题时,首先需要确定基变量,即在约束条件方程组中,选择一部分变量作为基变量,用于表示其他变量。
通过寻找或构造单位矩阵的方法,可以确定基变量,从而求出初始基本可行解。
2.编制初始单纯形表基于初始基本可行解和线性规划模型提供的信息,可以编制初始单纯形表。
单纯形表包含了基变量、非基变量、目标函数系数、约束条件系数和检验数等信息,用于描述问题的基本情况。
3.判断基本可行解是否为最优解通过检验数cj-zj 来判断基本可行解是否为最优解。
如果所有非基变量的检验数cj-zj<0,说明已经达到最优解,计算停止。
如果存在cj-zj>0,但所有cj-zj>0 所在列对应的所有aij<0,说明无最优解,计算停止。
如果至少存在一个cj-zj>0,并且所对应的所有j 列中至少有一个aij>0,说明没有达到最优解,需要继续迭代求解。
4.迭代求解最优解在迭代过程中,首先需要确定换入变量,即选择最大检验数对应的非基变量。
然后,利用特定公式计算出换出变量,即在基变量中选择一个与换入变量对应的变量进行替换。
接着,生成新的单纯形表,将换入变量和换出变量进行置换后,调整新基变量对应的矩阵为单位矩阵。
最后,重新计算检验数和目标函数值,返回第二步,直至找到最优解。
三、例题求解过程假设有一个线性规划问题,目标函数为MINfx1x2Mx4Mx6,约束条件为:3x1 + 4x2 ≤ 122x1 + 3x2 ≤ 10x1, x2 ≥ 0首先,将约束条件化为标准型:3x1 + 4x2 + s1 = 122x1 + 3x2 + s2 = 10x1, x2 ≥ 0然后,建立初始单纯形表:| 基变量| 非基变量| 目标函数系数| 约束条件系数| 检验数| ---------------------------------------------------------------------行1 | x1 | s1 | -3 | -4 | -12 |行2 | x2 | s2 | -4 | -3 | -10 |行3 | x1 | x2 | 0 | 0 | 0 | 行4 | s1 | x2 | 0 | 3 | 0 | 行5 | s2 | x1 | 0 | 2 | 0 | 根据初始单纯形表,可以得到初始基本可行解为:x1 = 0, x2 = 0接下来,判断基本可行解是否为最优解:c1 = -12, c2 = -10, c3 = 0, c4 = 0, c5 = 0由于c3、c4 和c5 都小于等于0,所以基本可行解不是最优解,需要继续迭代求解。
㈡、单纯形法的计算步骤三、单纯形法的解题步骤第一步:作单纯形表.)(1)把原线性规划问题化为标准形式;)(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵;)(3)目标函数非基化;)(4)作初始单纯形表.第二步:最优解的判定.(1) 若所有检验数都是非正数,即,则此时线性规划问题已取得最优解.(2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划问题无最优解.如果以上两条都不满足,则进行下一步.第三步:换基迭代.,并确定所在列的非基变量为进基变量.(1)找到最大正检验数,设为(2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号.主元是最大正检验数所在列,用常数项与进基变量所对应的列向量中正分量的比值最小者;(3)换基:用进基变量替换出基变量,从而得到新的基变量.也就是主元所在(4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表;(5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止.(3)单纯形法的计算算列例 1:用单纯形法求线性规划问题的解2312323423min 2.-22-3120,1,2,3,4,5j z x x st x x x x x x x x x x j =-++=+=-+=?5解 这里B ()145,,A A A =是一个单位矩阵,且()2,1,20Tb =>,故基B 是可行基, 1x ,4x ,5x为基变量, 2x ,3x 为非基变量,基B 对应的基本可行解为()2,0,0,1,2Tx =,其目标函数值00Z =。
方程组Ax b =已是典式,得到第一张单纯形表如下表。
注意,第0行的元素应该是将目标函数232z x x =-+化成等价的方程2320z x x +-=后的相应元素。
检验数210x =>,故当前解不是最优解,2A 列中有22a ,32a 两个元素均为正数,32223212min ,min ,111b b a a 禳禳镲镲==睚睚镲镲铪铪故转轴元为22a ,2x 进基变量,4x 为出基变量。
3.2 单纯形法的计算步骤由于单纯形)12.2(的目标函数和约束函数中含有基变量和非基变量,为了设计出方便,有效的计算方法,我们将简化单纯形的表达形式,称其为单纯形表格。
比如,下述单纯形:2136x x --=η114x s -= 21223x x s --=的简化单纯形表格如下(参见表3.2)。
这种格式使得我们非常容易识别基变量,我们只要将仅表:简单单纯形表有1个"1"的列(1s 和2s )为基变量。
1.3.2 标准最大化线性规划的单纯型法为了设计标准最大化线性规划问题)15.1(的初始单纯形表,我们首先将它的等价问题)11.2(改写为:max ∑∑=+=⨯+=mi i n nj j jx x c110η..t s ⎪⎩⎪⎨⎧++=≥==++=∑m n n n j x m i b xx a j i i n nj j ij ,...,1,,...,2,1,0,...,2,1,1 )16.2(那么标准最大化线性规划问题)15.1(的初始单纯形表被表示为(参见表4.2): 表:标准最大化线性规划的初始单纯形表其中:j c ,n j ,...,2,1=为原问题目标函数的系数,},...,2,1{m n n n B +++=为基变量下标集合,},...,2,1{n N =为非基变量下标集合,B x 为基变量,B c 为基变量在原问题目标函数系数,B b 为基变量的解,那么初始基可行解为),...,,0,...,0(10m b b x =,η为对应初始目标函数值。
我们将解释表6.2中j sac 和j imp 行的计算方法和经济涵义。
由于标准最大化线性规划问题可被看成是利用m 种资源生产n 种产品,决策变量j x 在线性规划约束条件中的系数ij a 可以被理解为,为了生产一件产品j ),...,2,1(n j =需要消耗原材料i ),...,2,1(m i =的数量;决策变量j x 在目标函数中的系数j c 是一件产品j 的利润;松弛变量i n x +则表示第i 种原材料的剩余量。
简述单纯形法步骤单纯形法是一种用于求解线性规划问题的常用方法,它通过不断迭代来逐步逼近最优解。
下面将以简述单纯形法步骤为标题,详细介绍单纯形法的具体步骤。
1. 构建初始单纯形表单纯形法的第一步是构建初始单纯形表。
将线性规划问题的约束条件和目标函数转化为矩阵形式,并引入松弛变量,得到初始单纯形表。
初始单纯形表由约束系数矩阵、决策变量系数矩阵、右侧常数向量以及目标函数系数矩阵组成。
2. 检验是否达到最优解在初始单纯形表中,通过计算每个基变量的单位贡献值来检验是否达到最优解。
单位贡献值等于目标函数系数与对应基变量列的乘积之和减去目标函数系数。
如果所有单位贡献值均小于等于0,则达到最优解,算法结束。
否则,进入下一步。
3. 确定入基变量和出基变量在初始单纯形表中,选择单位贡献值最小且小于0的列所对应的非基变量作为入基变量。
然后,通过计算各行的比值,选择使得比值最小的行所对应的基变量作为出基变量。
4. 更新单纯形表在确定了入基变量和出基变量后,需要对单纯形表进行更新。
首先,将出基变量所在列归一化为1,然后通过高斯消元法将其他列元素消为0,得到新的单纯形表。
5. 转至步骤2经过更新后的单纯形表还不能达到最优解,需要再次进行检验。
重复步骤2至步骤4,直到所有单位贡献值均小于等于0,达到最优解为止。
6. 解读单纯形表当单纯形法得到最优解时,可以通过解读单纯形表来获得最优解的数值。
在单纯形表的最后一行,可以得到最优解的目标函数值。
而在单纯形表的非基变量列中,可以得到各个决策变量的取值。
单纯形法是一种高效的线性规划求解算法,通过不断迭代来逐步逼近最优解。
它的基本思想是通过选择合适的入基变量和出基变量,来更新单纯形表,使得目标函数值不断减小,最终达到最优解。
在实际应用中,单纯形法被广泛应用于生产计划、资源分配、运输问题等领域。
总结一下单纯形法的步骤:首先,构建初始单纯形表;然后,检验是否达到最优解;接着,确定入基变量和出基变量;然后,更新单纯形表;最后,转至步骤2,直到达到最优解。
线性规划单纯形法线性规划是一种优化问题求解方法,它通过建立数学模型,来寻找使目标函数达到最优的决策变量取值。
线性规划的主要特点是目标函数和约束条件都是线性的。
单纯形法是线性规划中最常用的求解方法之一,它是由美国数学家Dantzig在1947年提出的。
单纯形法通过迭代计算的方式,逐步优化目标函数的值,直到找到最优解为止。
单纯形法的步骤如下:1. 建立线性规划模型:确定决策变量、目标函数和约束条件,并确定它们的线性关系。
2. 初始可行解:选择一个初始可行解,使得所有的约束条件都得到满足。
一般来说,可以通过将约束条件全部转化为等式约束,从而求解出一个初始可行解。
3. 判断最优解:计算当前可行解对应的目标函数值,判断是否是最优解。
如果是最优解,则终止算法;如果不是最优解,则进入下一步。
4. 寻找进入变量:选择一个进入变量,即目标函数可以通过增加该变量的值而增大。
5. 寻找离开变量:选择一个离开变量,即通过增加进入变量来保持其他约束条件满足的同时,尽可能减小目标函数的值。
6. 更新可行解:根据进入变量和离开变量的取值更新可行解,并转化为下一个迭代的初始可行解。
7. 重复以上步骤,直到找到最优解为止。
单纯形法的优势在于它可以在有限的迭代次数内找到最优解。
然而,单纯形法的缺点也是显著的,它在处理大规模问题时计算复杂度很高,可能需要大量的计算时间。
总结来说,线性规划单纯形法是一种求解线性规划问题的有效方法。
通过迭代计算,单纯形法不断改进可行解,最终找到使目标函数达到最优的决策变量取值。
虽然单纯形法在处理大规模问题时存在一定的局限性,但在许多实际问题中仍然得到广泛应用。