14单纯形法的计算步骤(精)
- 格式:ppt
- 大小:1.80 MB
- 文档页数:27
第4章 单纯形法的计算方法单纯形法求解线性规划的思路: 一般线性规划问题具有线性方程组的变量数大于方程个数, 这时有不定的解。
但可以从线性方程组中找出一个个的单纯形, 每一个单纯形可以求得一组解, 然后再判断该解使目标函数值是增大还是变小, 决定下一步选择的单纯形。
这就是迭代,直到目标函数实现最大值或最小值为止。
4.1 初始基可行解的确定为了确定初始基可行解, 要首先找出初始可行基, 其方法如下。
(1)第一种情况:若线性规划问题max z =从Pj ( j = 1 , 2 , ⋯ , n)中一般能直接观察到存在一个初始可行基(2)第二种情况:对所有约束条件是“ ≤”形式的不等式, 可以利用化为标准型的方法, 在每个约束条件的左端加上一个松弛变量。
经过整理, 重新对 及 ( i = 1 , 2 , ⋯ , m; j = 1 , 2 , ⋯ , n)进行编号, 则可得下列方程组显然得到一个m×m单位矩阵以B 作为可行基。
将上面方程组的每个等式移项得令由上式得又因 ≥0, 所以得到一个初始基可行解(3)第三种情况:对所有约束条件是“ ≥”形式的不等式及等式约束情况, 若不存在单位矩阵时, 就采用人造基方法。
即对不等式约束减去一个非负的剩余变量后, 再加上一个非负的人工变量; 对于等式约束再加上一个非负的人工变量, 总能得到一个单位矩阵。
4.2 最优性检验和解的判别对线性规划问题的求解结果可能出现唯一最优解、无穷多最优解、无界解和无可行解四种情况, 为此需要建立对解的判别准则。
一般情况下, 经过迭代后可以得到:将上代入目标函数,整理后得令于是再令则(1) 最优解的判别定理若为对应于基B的一个基可行解,且对于一切 且有则 为最优解。
称为检验数。
(2) 无穷多最优解的判别定理若为一个基可行解, 且对于一切 且有 又存在某个非基变量的检验数,则线性规划问题有无穷多最优解。
(3) 无界解判别定理若为一个基可行解,有一个> 0 ,并且对i = 1 , 2 , ⋯, m,有≤0 , 那么该线性规划问题具有无界解(或称无最优解)。
三、单纯形法的解题步骤第一步:作单纯形表.)(1)把原线性规划问题化为标准形式;)(2)找出初始可行基,通常取约束方程组系数矩阵中的单位矩阵;)(3)目标函数非基化;)(4)作初始单纯形表.第二步:最优解的判定.(1) 若所有检验数都是非正数,即,则此时线性规划问题已取得最优解.(2) 若存在某个检验数是正数,即,而所对应的列向量无正分量,则线性规划问题无最优解.如果以上两条都不满足,则进行下一步.第三步:换基迭代.,并确定所在列的非基变量为进基变量.(1)找到最大正检验数,设为(2)对最大正检验数所在列实施最小比值法,确定出主元,并把主元加上小括号.主元是最大正检验数所在列,用常数项与进基变量所对应的列向量中正分量的比值最小者;替换出基变量,从而得到新的基变量.也就是主元所在(3)换基:用进基变量(4)利用矩阵的行初等变换,将主元变为1,其所在列其他元素都变为零,从此得到新的单纯形表;(5)回到第二步,继续判定最优解是否存在,然后进行新一轮换基迭代,直到问题得到解决为止.例3 求.解(1)化标准型:令,引进松弛变量,其标准型为求(2)作单纯形表:在约束方程组系数矩阵中的系数构成单位矩阵,故取为基变量,目标函数已非基化了,作初始单纯形表并“换基迭代”(见表6.8).表 6.8(3)最终结果:此时检验数均为非正数,线性规划问题取得最优解,最优解为标函数取得最优值.目性规划问题的最优解为:.原线目标函数的最优值为14,即.例4 用单纯形方法解线性规划问题.求.解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵(1、2行,3、4列构成),取为基变量,而目标函数没有非基化.从约束方程找出,,代入目标函数, 经整理后,目标函数非基化了.作单纯形表,并进行换基迭代(见表6.9).最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变换,基变量出基,非基变量进基.表 6.9目前最大检验数,其所在列没有正分量,所以该线性规划问题没有最优解.例5用单纯形方法解线性规划问题.求解此数学模型已是标准型了,其中约束方程含有一个二阶单位矩阵,取为基变量,而目标函数没有非基化.从约束方程找出,,代入目标函数,经整理得,目标函数已非基化.作单纯形表,并进行换基迭代(见表6.10).最大检验数,由最小比值法知:为主元,对主元所在列施以行初等变换,基变量出基,非基变量x2进基,先将主元化为1,然后再将主元所在列的其他元素化为零.表 6.10至此,检验数均为非正数,故得基础可行解.原问题的最优解为:.最优值为6,即.如果我们再迭代一次,将基变量出基,非基变量进基(见表6.11).表 6.11可得到另一个基础可行解,原问题的最优解为:,最优值仍为6,说明该线性规划问题有无穷多最优解,其最优解均为6.如何知道线性规划问题有无穷多最优解呢?这主要反映在单纯形表中.如果非基变量所对应的检验数为0,我们可对此列继续进行换基迭代,就可以得到另一个基础可行解.以此作下去,可得到许多基础可行解,即相对应的最优解有无穷多个.(4) 011 0。
第4章 单纯形法的计算方法单纯形法求解线性规划的思路: 一般线性规划问题具有线性方程组的变量数大于方程个数, 这时有不定的解。
但可以从线性方程组中找出一个个的单纯形, 每一个单纯形可以求得一组解, 然后再判断该解使目标函数值是增大还是变小, 决定下一步选择的单纯形。
这就是迭代, 直到目标函数实现最大值或最小值为止。
4.1 初始基可行解的确定为了确定初始基可行解, 要首先找出初始可行基, 其方法如下。
(1)第一种情况:若线性规划问题 max z =nj j j=1c x ∑1,1,2,...,0,1,2,...nij j i j ja xb i mx j n =⎧==⎪⎨⎪≥=⎩∑从Pj ( j = 1 , 2 , ⋯ , n )中一般能直接观察到存在一个初始可行基121(,,...,)n B P P P 0 0⎛⎫ ⎪0 1 0 ⎪== ⎪ ⎪0 0 1⎝⎭(2)第二种情况:对所有约束条件是“ ≤”形式的不等式, 可以利用化为标准型的方法, 在每个约束条件的左端加上一个松弛变量。
经过整理, 重新对j x 及ij a ( i = 1 , 2 , ⋯ , m ; j = 1 , 2 , ⋯ , n )进行编号, 则可得下列方程组11,111122,1122,1112.........,,...,0m m n n m m n n m m m m nn n nn x a x a x b x a x a x b x ax a x b x x x +++++++++=⎧⎪+++=⎪⎪⎨⎪+++=⎪⎪≥⎩显然得到一个m ×m 单位矩阵121(,,...,)n B P P P 0 0⎛⎫ ⎪0 1 0 ⎪== ⎪ ⎪0 0 1⎝⎭ 以B 作为可行基。
将上面方程组的每个等式移项得111,111222,112,11.........m m n nm m n nm m m m m mn n x b a x a x x b a x a x x b a x a x ++++++=---⎧⎪=---⎪⎨ ⎪⎪=---⎩令12...0,m m n x x x ++====由上式得(1,2,...,)i i x b i m == 又因i b ≥0, 所以得到一个初始基可行解12()12()(,,...,,0,...,0)(,,...,,0,...,0)Tm n m Tm n m X x x x b b b --= =个个(3)第三种情况:对所有约束条件是“ ≥”形式的不等式及等式约束情况, 若不存在单位矩阵时, 就采用人造基方法。