29
4.2.4 Gibbs-Duhem方程
n 1. Gibbs-Duhum Eq的一般形式 对溶液的热力学性质有下面两个表达形式:
nM mT , p, n1, n2 ,, nN
nM ni Mi
对这两个式子,分别求全微分:
30
dnM
nM
T
p,n
dT
nM
p
T
,ndpΒιβλιοθήκη M i dnidnM nidMi Midni
第4章 偏摩尔性质、逸度和活度
1
u 第3章学习了纯物质及均相定组成系统的热力学性质。
M f T , p
u 热力学更多的实际应用是涉及多组元混合物的均相 敞开系统。
u 由于混合物的组成常因为质量传递或化学反应而发 生变化,所以在用热力学来描述混合物时必须考虑 组成对其性质的影响。
M f T, p, xi
nM mT , p, n1, n2 ,...nN
dnM
nM
T
p,n
dT
nM
p
T
,n
dp
N i 1
nM
ni
T , p,nji
dni
定义:
Mi
nM ni
T , p,nji
Mi
18
注意:
1. 偏摩尔量的物理意义是:在T,p,及其他组元量nj 不变的情况下,向无限多的混合物中加入1mol组分i 所引起的混合物广度热力学性质的变化。其三要素 为:恒温恒压、广度性质、随组分i摩尔数的变化率。
dnG nV dp nS dT idni
10
注意:以上关系式的使用情况
n 1 适用于敞开体系,封闭体系;
n 2 当dni=0时,简化成适用于定组成、定质量 体系;