当前位置:文档之家› 水稻雌性不育突变体研究进展及应用展望

水稻雌性不育突变体研究进展及应用展望

水稻雌性不育突变体研究进展及应用展望
水稻雌性不育突变体研究进展及应用展望

《烟草突变体库创建与功能基因组学研究》项目内容与

附件: 《烟草突变体库创建与功能基因组学研究》项目内容与目标 一、总体要求 突变体通常指某个性状发生可遗传变异的材料,或某个基因发生突变的材料。长期以来,育种家尽力地发现和分离有价值的自然突变和变异材料。自20世纪70年代以来,γ射线和 EMS 理化诱变创制的人工突变体在遗传育种中开始应用,此后,T-DNA 插入和转座子标签等插入突变筛选突变体法的发展,大大地加快了突变体的创制步伐。水稻、番茄、油菜等作物中已建立了一系列突变体库,但烟草突变体库的创制基本没有开展。 建立烟草突变体库是烟草功能基因组学研究不可缺少的重要组成部分,是克隆和阐明烟草重要功能基因的基础和前提。随着烟草饱和突变体库的建立,可望直接获得突变基因的序列信息并确证基因序列与功能的关系,从而促进烟草重要功能基因的克隆鉴定。 利用理化诱变技术创制烟草突变体库本身也是一种传统的育种技术,通过筛选突变体,可望获得一系列性状特异、能稳定遗传、有利用价值的烟草育种材料,直接应用于新品种选育。 二、招标项目内容与目标

(一)攻关内容。 1.利用EMS、快中子诱变创建二倍体烟草(绒毛状烟草)、四倍体普通烟草的饱和突变体库。 2.利用逆转座子Tto1和Tto2创建四倍体烟草插入标签突变体库。 3.建立基于Tilling技术的烟草重要功能基因克隆与验证体系。 4.建立基于PCR技术的烟草重要功能基因克隆与验证体系。 5.建立基于逆转座子的烟草重要功能基因克隆与验证体系。 6.在建立功能基因克隆验证体系的基础上,对突变体进行初步的遗传分析并对重要农艺性状相关基因进行表达特性和功能分析。 (二)攻关目标。 1.创建烟草饱和的突变体库4个(二倍体、四倍体突变体,EMS突变体和快中子突变体),突变体数达8万个;逆转座子标签突变体2万以上。 2.建立基于Tilling技术、基于PCR技术、基于逆转座子的烟草重要功能基因克隆与验证体系并进行重要基因的克隆与功能鉴定。 3.阐明控制亚硝胺、钾含量、抗病等重要农艺性状的基因3个以上,获得低亚硝胺、高钾含量、高抗病的育种材料10个以上。

雄性不育性及其在杂种优势中的应用

第五节雄性不育性及其在杂种优势中的应用尽管利用杂种优势已成为提高农业生产效益的主要途径之一,但除了像玉米等少数雌雄异株或雌雄同株异花作物外,在未解决人工去雄的困难以前,难以在生产上大面积推广。而解决这一困难的有效途径是利用植物的雄性不育性。目前水稻、玉米、高粱、洋葱、油菜等作物已经利用雄性不育性进行杂交种子的生产,并产生了巨大的经济效益和社会效益。 一、雄性不育的类别 (一)细胞质不育不育由细胞质基因控制,而与核基因无关。其特征是所有可育品系给不育系授粉,均能保持不育株的不育性,也就是说找不到恢复系。这对营养体杂优利用的植物育种有重要的意义。如:Ogura萝卜细胞质不育系。 (二) 核不育不育性是由核基因单独控制的(简称GMS)。 1、一对隐性核基因控制的雄性不育性蔬菜不育材料大都属于此类。msms 不育,MsMs或Msms可育,共有三种基因型。msms与MsMs交配后代全部可育;msms与Msms交配后代可育、不育株1:1分离;Msms自交后代可育、不育株按3:1分离。只有用Msms作父本与msms不育株测交,可以获得50%的雄性不育株和50%的雄性可育株。 由于在一个群体里,有50%的可育株用于保持不育性。通常称其为“两用系”(ABline)或甲型两用系。将其用于杂种一代制种,则需要拔除50%的可育株。因此,隐性核不育后代不能得到固定(100%)的不育类型。 2、一对显性基因控制的雄性不育性有杂合的不育株Msms、纯合的可育株两种基因型,纯合不育株(MsMs)理论上存在但实际上无法获得。用Msms不育株与msms可育株杂交后代是半不育群体,此种两用系也叫乙型两用系。 3、由多个核基因控制的雄性不育中的一些组合可育成全不育系。有核基因互作假说和复等位基因假说(曹书142或景书159)。 (三)核质互作雄性不育(简称CMS) 不育性由核基因(msms)和细胞质基因(S)共同控制的,又简称为胞质不育型。 一个具有核质互作不育型的雄性不育植物,就育性而言,有一种不育基因型和五种可育基因型。不育基因型S(msms);可育基因型:N(MsMs)、N(Msms)、N(msms)、S(MsMs)、S(Msms)。因此有不育系S(msms)、保持系N(msms)、恢复系

拟南芥雄性不育突变体ms1502的遗传及定位分析

拟南芥雄性不育突变体ms1502的遗传及定位分析 易君,高菊芳,张在宝,江华,周根余,杨仲南,张森 (上海师范大学生命与环境科学学院,上海200234) 摘要:通过EMS诱变、背景纯化与遗传分析,从拟南芥(Arabidopsis thaliana)中筛选到了一棵隐性单基因控制的雄性不育突变体ms1502。细胞学观察发现,突变体在小孢子从四分体释放出后花药绒毡层过早衰亡,小孢子的内容物不正常地凝聚,最终无法形成正常的花粉粒。利用图位克隆的方法对该基因MS1502进行了定位,结果表明MS1502位于第4条染色体上分子标记F25I24和T12H20之间105kb区间内。目前该区间内尚未见到花药发育必需基因(不育基因)的报道,因此MS1502是一个控制花粉发育的新基因。 关键词:拟南芥;花药发育;雄性不育突变体;图位克隆 中图分类号:Q943文献标识码:A文章编号:0253-2700(2006)03-283-06 Genetic and Mapping Analysis of Arabidopsis thaliana Male Sterile Mutant ms1502(Cruciferae)* YI Jun,GAO Ju-Fang,ZHANG Zai-Bao,JIANG Hua,ZHOU Gen-Yu, YANG Zhong-Nan,ZHANG Sen** (Life and Environment Science College,Shanghai Normal University,Shanghai200234,China) Abstract:Molecular and genetic characterizations of mutants have led to a better understanding of many developmental processes in the model system Arabidopsis thaliana.However,the anther and pollen development that is specific to plants has been little studied.A large-scale screening of mutants with male sterility was performed in this study to dissect geneti-cally the anther and pollen development.An independent mutant line of male sterility controlled by a novel nuclear gene, designated MS1502,was generated and identified by ethyl-methae sulfonate(EM S)mutagenesis and genetic analysis. Genetics analysis indicated that the mutant was controlled by a single recessive gene MS1502.The phenotypic analysis in-dicated the MS1502gene plays important role during anther and pollen development.Cytological analysis showed that an-ther tapetum of mutant degenerated earlier that of wild type after microspores were released fro m the tetrads,and that cyto-plasm of microspores in mutant condensed abnormally,resulting in that mutant plant cannot produce viable pollens.With the further genetic analysis and the map-based cloning of gene MS1502,we have mapped it to a region of105kb between the molecular markers F25I24and T12H20on chromoso me4using map-based cloning technique. Key words:Arabidopsis thaliana;Pollen development;Male sterile mutant;Map-based cloning 拟南芥(Arabidopsis thaliana)具有生长周期短,基因组较小的优势,因此成为了目前进行植物基因功能研究的一种重要的模式植物(黄娟和李家洋,2001)。花药及花粉的发育是植物功能基因研究的一个重要方向,花药及花粉发育异常通常会导致雄性不育。这种雄性不育现象大多与花药形态、体细胞与生殖细胞的发育、小孢子发生、花粉发育、花药的开裂、花粉粒的功能等相 云南植物研究2006,28(3):283~288 Acta Botanica Yunnanica 通讯作者:Author for correspondence.E-mail:senzhang@https://www.doczj.com/doc/564295265.html, 收稿日期:2005-11-28,2006-02-13接受发表 作者简介:易君(1980-)女,在读硕士研究生,主要从事植物基因功能的研究工作。 基金项目:国家自然科学基金资助项目(30470170),科技部重大基础研究前期研究专项(973预研)(2003CCA01100)

拟南芥突变体购买流程-完全图解

最近要购买一批拟南芥突变体,想请教有经验的虫友购买拟南芥突变体的具体流程,例如我需要一个APETALA1的突变体,应到哪个网站进行搜索,怎样进行选择订购,越具体越好,有截图就更好了,谢谢大家了! Step 1. 打开NCBI主页:https://www.doczj.com/doc/564295265.html,/ 打开的页面如下: 如下 得到如下页面:

进一步获得该基因在NCBI里面的基因信息,到此我为什么要做这一步呢,主要是想获得该gene在拟南芥中的系统名,见下图: 记住这个名称:AT1G69120这个就是APETALA1(AP1)基因 接下来开始查找APETALA1(AT1G69120)的突变体,拟南芥突变体库世界上有很多,公开的没有公开私用的都有,突变的方法也不尽相同,有DS的,T-DNA插入的,Tos17,EMS方法突变的等等。。。。。。 但是,我们通常用美国SALK研究所的突变体库,这个突变体库比较权威,从这里可以找到几乎现有的所有拟南芥突变体,包括T-DNA插入,RIKEN FST等等各种不同的突变类型,而且有详细的突变位点介绍和购买方法 它的搜索界面一目了然,使用也很方便。 下面介绍SALK突变体库的使用方法: Step 2:打开SALK主页:https://www.doczj.com/doc/564295265.html,/ 点击T-DNA Express 进入(红圈处点击),如下显示:

显示如下,所有信息全在如下窗口中 从上述窗口中可以获得很多不同group制得的突变体,有SALK T-DNA,CSHL FST(冷泉港实验室的)等等,我个人建议使用SALK 的突变体,订购比较方便,听同学说好像一百美元一个,上图中,蓝色下划线的那两个,以SALK_冠名的那个,两个显示的是不同的插入位置,和T-DNA插入方向(看在图中的位置和箭头方向) 点击其中一个进入信息页,比如点击SALK_056708,得到如下页面:

雄性不育

雄性不育系 几乎所有的二倍体植物,不论是野生或栽培的,都可以找到导致雄性不育的核基因。据不完全统计,现已发现近200种植物存在着核质互作型的雄性不育性,其不育程度和遗传稳定性颇不相同。育种上需要的是对环境条件不敏感,能够稳定遗传的雄性不育系。 雄性不育系主要在杂种优势利用(植物)上作母本,可以省去去雄工作,便于杂交制种,为生产上大规模利用杂种一代优势创造条件。核、质互作型不育系的种子繁殖,须靠一个花粉正常而又能保持不育系不育特性的雄性不育保持系授粉。杂交制种则须有一个花粉可育,并能使杂种恢复育性的育性恢复系。这样,不育系、保持系和恢复系(分别简称A、B和R 系)三系配套,就成为利用不育系以大量配制杂交种子的重要前提。 雄性不育系主要可分两类: 一、细胞核雄性不育系 即由控制花粉正常育性的核基因发生突变而形成的不育系。 1、不育机制:一般由1对隐性基因控制,但也有由2~3 对隐性基因互作而产生的雄性不育性(如莴苣)。假如控制花粉正常育性是一对显性基因RfRf,则由于隐性突变,杂合体Rfrf自交后将会分离出纯合基因型rfrf,表现为雄性不育。大麦、玉米、高粱、大豆、番茄、棉花等很多作物都有这样的突变体。但偶尔还发现有杂合的显性核不育现象。其正常可育的基因型为msms,而经显性突变后产生的杂合基因型Msms会由于Ms的显性作用表现为雄性不育,当它被正常育性植株msms授粉结实时,其子代按1:1比例分离出显性不育株和隐性可育株,并依此方法代代相传。1972年中国在山西省发现的由显性单基因控制的太谷核不育小麦就属于此类。 2、利用:因隐性核不育系难以找到有效的保持系,故不能大量产生不育系种子供制种用;但可用杂合可育株给不育株授粉,在正常育性受 1对显性基因控制的情况下,其子代将按1:1比例分离出纯合不育株和杂合可育株。用杂合可育株对不育株授粉,下一代育性分离仍是1:1的比例。采用这种作法可以较大量地繁殖不育株与可育株的混合群体。这种群体内既有不育株又有保持不育性能力的植株,有人因此称之为两用系。杂交制种时,必须在开花前剔去母本群体内的可育株,以保证制种的纯度。一般栽培品种都可作隐性核不育系的恢复系,因此易于配出强优势组合。但要在混合群体开花前的短促时间内剔除全部可育株,对于繁殖系数低、用种量大的作物常因十分费工而不易做到。 1965年,美国R.T.拉梅奇为解决大麦核不育系种子繁殖的困难,提出利用“平衡三级三体”的遗传机制:即在正常染色体上具有隐性雄性不育和隐性稃色正常的基因,在额外染色体上有相应的显性可育基因,并在其附近设法引入一个能使稃壳有色的显性标志基因,两者紧密连锁。额外染色体一般不能由花粉传递,只能以30%的比例由雌配子传给下代。这样的三级三体自交后将产生二体和三体两类植株,二体植株具纯合的雄性不育基因和正常稃色;三体植株带有一个显性可育基因和有色稃壳。通过光电比色装置对种子稃色进行筛选,可将带雄性可育基因的有色种子剔除,以繁殖纯不育系。这一设想后得到实现,育成了1个大麦杂交种,并在生产上推广。但后来在推广繁殖过程中,发现额外染色体通过雄配子的传递率比预期的高,上述机制受到干扰,而且杂种优势不够强,因而停止应用。对于繁殖系数高、用种量少的作物如番茄等,则可直接应用两用系作母本,于开花前逐株检查育性并剔除可育株,授以父本恢复系花粉,产生杂交种子。总之,核不育系由于难以找到保持系,目前在生产上仍不能有效利用。而单基因控制的太谷显性核不育小麦在没有作出标志基因之前,只能作为常规育种中开展轮回选择和回交育种的亲本之用。

水稻EMS诱变

水稻EMS诱变 1、EMS诱导水稻中花11突变体的筛选和鉴定,顾佳清,等.上海农业学报,2005,21(1):7~ll。这篇文献所使用的方法主要是:(1)先用清水浸种16h,再用0.5%的EMS在28℃下处理4h,播种,收种子(M1)。 (2)将M1代种子用清水浸种16h,用0.5%的EMS在28℃下处理4h,再用0.7%的EMS处理4h,播种,收种子M2代。 (3)将M2代播种,筛选突变植株。 在这篇文献中,经两次诱变后,突变率达12.4%,有各种突变体产生,其中有叶片形状的突变。只是两次诱变所花时间长。 2、三种化学诱变剂对不同水稻品种的生物学效应研究,彭波,等.湖南人文科技学院学报,2007年8月,第4期。这篇文献主要使用的方法是: 用三种浓度(0.5%,1.0%,2.0%)的EMS,在26℃的培养箱中处理水稻种子12h,再用清水冲洗4h,播种。其中0.5%的发芽率最高,在80-90%之间,1.0%的发芽率在40%-50%之间,作者认为这种半致死量(1.0%)的浓度为诱导水稻突变的最佳浓度,我想对我们工作来说,我们是寻找表皮和气孔的突变体,所以用0.5%的比较适宜。 3、水稻“9311"突变体筛选和突变体库构建,叶俊,等. 作物学报,第32卷第10期,2006年10月 1525~1529页。这篇文献主要使用的方法是: 将9311种子浸种16 h,用0.4% EMS处理8h。

4、Selection of stable mutants from cultured rice anthers treated with ethyl methane sulfonic acid.Joong Ho Lee & Seung Yeob Lee. Plant Cell, Tissue and Organ Culture 71: 165–171, 2002。这篇文献主要使用的方法是: 用0.5%的EMS在25±2 ?C下处理,轻微摇晃6h。 所以,我们诱变可以选用0.5%的EMS,在25 ?C下处理6-8h为宜。

突变体鉴定

作物突变体的细胞学研究 一、突变体的初步观察和遗传分析 在某品系材料A中发现一株突变体,将其命名为M,优先将M自交,得到具有突变性状的纯系,如果为不育等特殊性状则可以采取不断回交的方式得到相应 纯系;再将M与A和另外一品系Y分别正交和反交,得到F 1世代;将得到的F 1 自交得到各个的F 2世代;将F 1 与M进行回交,分别得到对应的BC 1 世代;如果需 要,还可以继续回交得BC 2 等世代。 观察M的突变性状在自交过程中是否始终存在,则能初步判别此突变性状是否为可遗传性状; 分别统计M与A,M与Y的正反交的表型数据,分析所有正交与反交的差异,可以判别此性状是由核基因控制或者细胞质基因控制,甚至为核质互作控制; 结合M自交过程中的突变性状的遗传特性和所有F 1 突变性状,可判别突变性状为隐性或显性; 统计分析F 2和BC 1 世代的突变表型数据,可判别控制突变性状为质量性状或 者数量性状,以及质量性状中的的基因的对数。 在数据的分析过程中要充分应用生物统计的方法,如方差分析,Χ2检验等。 二、突变体的细胞学观察 核型分析原理与步骤 核型分析是指在一个物种内,对其染色体数目。结构及其它特征进行描述性分析,从而对单一染色体进行初步分析的过程。在突变基因确定为核基因后,则可以进行核型分析。 不同物种的染色体都有各自特定的形态结构(包括染色体的长度、着丝点位置、臂比、随体大小等)特征,而且这种形态特征是相对稳定的。因此,染色体核型分析是植物遗传性研究的重要内容。 染色体核型分析主要包括染色体长度、染色体臂比、着丝点位置、次缢痕等。染色体的长度差异有两种,一种是不同种、属间染色体组间相对应的染色体的绝对长度差异,一种是同一套染色体组内不同染色体的相对长度差异。

水稻突变体介绍及鉴定(很详细)汇总教材

RMD水稻突变体信息及基因型鉴定 1.背景介绍: 突变体对于遗传学研究有着重要作用,随着拟南芥和水稻等物种全基因组测序的开展,人类积累了前所未有的基因序列信息,为了弄清这些基因序列的生物学信息,寻找该基因区段序列发生变异的突变体是阐释基因功能最直接最有效的方法。 植物在自然的环境条件下也会产生突变性状,早期普通正向遗传学研究往往通过寻找与某种生物学特性相关的突变体来发掘或定位某个特定基因。为配合植物功能基因组研究高通量的策略,构建水稻等物种的大型突变体库已成为必然,借助水稻全基因组测序信息、通过反向遗传学的手段大规模地筛选突变体库,理论上可以获得基因组中任一基因的突变体,最终实现阐释基因功能的目的。 2.原理: 2.1农杆菌介导的T-DNA 插入 农杆菌是寄主范围非常广泛的土壤杆菌,它能通过伤口侵染植物导致冠瘿瘤和毛状根的发生。1974从根癌农杆菌中分离出一种与肿瘤诱导相关的质粒,称为致瘤质粒(Tumor-inducing plasmid),简称Ti 质粒。Ti 质粒上存在一段DNA,能够转移并整合到植物基因组中,称为Transferred DNA,简称T-DNA。 研究发现,T-DNA 两端存在非常保守的同向重复的25bp 序列,分别称为左边界(LB)和右边界(RB)。T-DNA 的转移只与边界序列相关,尤其是RB,而与T-DNA区段的其它基因或序列无关。我们将T-DNA 区段上的致瘤基因和其它无关序列去掉,利用其转移的特性,实现农杆菌介导的T-DNA 转入水稻愈伤,从而构建水稻突变体库。大量研究表明,农杆菌T-DNA 整合到植物基因组中的位置是随机的,并且整合到植物基因组中的T-DNA 能稳定遗传。由于插入到植物基因组中的T-DNA 区段序列已知,这样随机插入到植物基因组中的T-DNA 类似于给植物基因“贴”了一个序列标签。我们利用这个标签,通过各类PCR技术最终可以获取其插入的位点。 2.2 水稻Tos17 反转录转座子 创造水稻突变体的另一种方法是利用植物的反转录转座子,它们是以DNA→RNA→DNA 的方式进行转座,在水稻上已发现大约40 种长未端重复的反转录转座子,它们是Tos1-Tos32,RIRE1-RIRE8,其中5 类被证明是有转座活性的,分别是Tos10、Tos17、Tos19、Tos25 和Tos27。这些反转录转座子只有在组织培养条件下才具备转座活性,其中Tos17 的转座活性最强,容易插入到富含基因的区域,因此可以直接用于创造插入失活的突变体库。利用含有Tos17 插入的水稻突变体库,可以进行突变性状的筛选, T os17 反转录转座子正成为水稻功能基因组研究的一个有力工具。由于Tos17 反转录转座子为水稻内源的转座子,不需要进行转基因的过程,而且平均每株含有8 个Tos17 个拷贝,在正常情况下能够稳定遗传,因此Tos17 转座子突变体库是水稻功能基因组研究的一个有用资源。但也有研究表明,Tos17 在转座过程中

拟南芥突变体购买流程-完全图解

Step 1. 打开NCBI主页: 打开的页面如下: 如下 得到如下页面: 进一步获得该基因在NCBI里面的基因信息,到此我为什么要做这一步呢,主要是想获得该gene在拟南芥中的系统名,见下图:

记住这个名称:AT1G69120这个就是APETALA1(AP1)基因 接下来开始查找 APETALA1(AT1G69120)的突变体,拟南芥突变体库世界上有很多,公开的没有公开私用的都有,突变的方法也不尽相同,有DS的,T-DNA插入的,Tos17,EMS方法突变的等等。。。。。。 但是,我们通常用美国SALK研究所的突变体库,这个突变体库比较权威,从这里可以找到几乎现有的所有拟南芥突变体,包括T-DNA插入,RIKEN FST等等各种不同的突变类型,而且有详细的突变位点介绍和购买方法 它的搜索界面一目了然,使用也很方便。 下面介绍SALK突变体库的使用方法: Step 2:打开SALK主页:点击 T-DNA Express 进入(红圈处点击),如下显示:

显示如下,所有信息全在如下窗口中 从上述窗口中可以获得很多不同group制得的突变体,有SALK T-DNA,CSHL FST(冷泉港实验室的)等等,我个人建议使用SALK 的突变体,订购比较方便,听同学说好像一百美元一个,上图中,蓝色下划线的那两个,以SALK_冠名的那个,两个显示的是不同的插入位置,和T-DNA插入方向(看在图中的位置和箭头方向) 点击其中一个进入信息页,比如点击SALK_056708,得到如下页面:

我们主要是从 ABRC 订购,点击进入页面,填写要求的相关信息,万事大吉。祝实验顺利!

水稻TOS17突变体库的创建与应用

1文献综述 1.1水稻基因组学研究现状 1.1.2 水稻全基因组测序 水稻(Oryza sativa L.)是世界上最主要的粮食作物之一,全世界有一半的人口食用它,水稻年总产量占世界粮食作物产量第三位,维持较多人口的生活。亚洲是世界水稻主产区,近年稻米产量占世界的90%以上,中国稻米年产量占亚洲的38%。大米作为我国主要粮食种类,在养活我国13亿人口和改善我国居民营养结构中具有举足轻重的影响。同时,水稻又以其基因组相对较小(~430Mbp),高效的遗传转化体系,与玉米、大麦和小麦等其它禾本科作物在基因组上存在明显的共线性,而成为研究单子叶植物的模式植物。 国际水稻基因组计划(IRGSP)启动于1998年,以粳稻品种(japonica)日本晴(Nipponbare)为模式材料,由中国、日本、美国等是十个国家参与,所采用的方法为逐步克隆策略(clone by clone sequencing),随后在2002年由日本和中国科学家率先公布了第1、4染色体的精确序列(Feng et al., 2002; Sasaki et al., 2002; Consortium 2003);2003年9月第10条染色体的全长序列由美国Clemson大学公布(Rice Chromosome 10 Sequencing Consortium, 2003)。2005年8月水稻全基因组精确序列在Nature发表(International Rice Genome Sequencing Project, 2005)。IRGSP公布的水稻“日本晴”精确序列经过分析表明:(1) 水稻“日本晴”基因组大小为389Mb,IRGSP公布的序列能够覆盖其全基因组的95%,并包含了所有的常染色质和两个完整的着丝粒;(2) 整个基因组中包含大约37544个非转座相关基因,其中71%的基因可能在拟南芥中有同源基因;(3)通过与拟南芥基因组序列对比分析发现,拟南芥90%的基因在水稻中可能存在同源物;(4) 水稻中预测的37544个基因中,29%是属于成簇的基因家族;(5) 水稻基因组中转座元件的数目和种类与玉米和高粱基因组共线性区段的扩张是一致的;(6) 有证据证明基因能从细胞器中转移到细胞核(International Rice Genome Sequencing Project, 2005)。 另外的一些科学研究部门和公司也分别启动了各自的水稻测序计划。如华大基因在2005年宣布完成籼稻品种“93-11”的全基因组序列测序,其所采用的方法为鸟枪法。Syngenta公司也于2002年宣布完成了粳稻品种“日本晴”的全基

水稻不育系、保持系和恢复系是怎么回事

水稻不育系、保持系和恢复系 早在1926年J· W·琼期就报道了水稻的杂种优势现象。但是由于水稻是自花授粉作物,花器小且雌雄同花,靠人工去雄生产大量的杂交种是不可能的。难怪有人曾一度认定,即使水稻有了强优势的亲本组合,也没有办法大量生产杂交种。 20年代未有人发现了水稻雄性不育现象,后经多年的研究,人们了解了水稻雄性不育的某些规律。从50年代末到60 年代末,日本学者先后培育出了水稻的细胞质与细胞核互作所导致的不育类型,继而实现了水稻不育系、保持系和恢复系的“三系”配套,为水稻杂交种的生产开创了一条道路。1958年日本学者胜尾清用中国的野生稻为母本与日本粳稻藤坂5号杂交,结果发现野生稻的细胞质可使杂种的雄花败育(花粉没有授精能力),为了获得纯合稳定的不育材料,他让野生稻与藤坂5号的杂种后代始终接受藤坂5号的花粉——这种杂种与其亲本之一的杂交称做回交。如此回交几代之后,杂种除了细胞质来自原母本野生稻(杂种的细胞质由母本提供),其细胞核基因几乎都来自藤坂5号,遗传特性也几乎完全象藤坂5号,只是由于其细胞质来自野生稻,花粉不能正常发育,这便育成了藤坂5号雄性不育系。与此同时藤坂5号便是该不育系的保持系,因为它与该不育系的杂交后代可以保持雄花不育性。与之相反,另外一些品种与此不育系杂交的Fl代其雄花可能“恢复”可育,并可以自交结实,我们称这些品种为该不育系的恢复系。如果不育系与恢复系匹配合适,便可以生产出具有强大优势的F1代杂种用于农业生产。所遗憾的是,日本尽管在60年代末就实现了粳稻三系配套,但终因杂种优势不明显而未能应用于生产。 1964年我国湖南的袁隆平在洞庭早籼等品种中发现了一批天然不育材料,并提出了通过选育“三系”利用水稻杂种优势的设想,当时只是苦于找不到理想的保持系。197O年他的合作者李必湖在海南省的野生稻群落中发观了一雄花败育株(简称野败),为水稻三系法制种提供了宝贵的种质资源。通过这个野败材料很快育成了一批籼型不育系,继而筛选出了强优势的恢复系,从而揭开了水稻杂种优势利用的新篇章。 三系中不育系的不育性是受细胞质和细胞核基因共同控制的,只有细胞质和细胞核中都不含可育基因,才表现为雄花败育;保持系与恢复系的差别之一就是前者的细胞核中所含是隐性不育基因(但细胞质可育),而后者的细胞核则含有显性可育基因。三系法所制出的杂种Fl代核基因是杂合的。所以杂种只能用一代,F2代会发生性状分离,对于某些育性类型还会发生育性分离,不能再做种用。

水稻不育相关基因

HSA1a和HSA1b 【定位与克隆】 hsa1位点由两个互作基因HSA1a和HSA1b组成,利用Asominori/IR24和 Koshihikari/W0106-2构建的两个分离群体将hsa1位点定位在87.1-kb区域内,互补实验证实Os12g39880和Os12g39920是引起高度不育的原因(Kubo et al. 2016)。 粳稻等位基因HSA1a-j编码一个高度保守未知功能的植物特异结构域蛋白DUF1618,而籼稻等位基因HSA1a-i s包括6个SNPs和两个删除突变,导致结构域结构的破坏(Kubo et al. 2016)。 【时空表达谱】 HSA1a在幼穗和单核期的生殖器官包括雌蕊、雄蕊中表达,在叶片、茎、根中没有表达,HSA1a蛋白在单核期的幼穗中表达(Kubo et al. 2016)。 【生物学功能】 HSA1a和HSA1b具有遗传互作,DUF1618蛋白在配子发育中可能发挥作用(Kubo et al. 2016)。 Takahiko Kubo;Tomonori Takashi;Motoyuki Ashikari;Atsushi Yoshimura;Nori Kurata, Two Tightly Linked Genes at the hsa1 Locus Cause Both F1 and F2 Hybrid Sterility in Rice.Molecular Plant, 2016, 9(2): 221-232 pms3; p/tms12-1; IncRNA; LDM 控制粳稻农垦58S光敏型雄性不育和控制籼稻培矮64S温敏雄性不育的基因,克隆证实它们位于同一个位点,是一个非编码RNA。 【基因的发现、命名与定位】 以―农垦58S×农垦58‖及―农垦58S×1514‖两个F2群体为材料,通过BSA分析找到了农垦58S 所携带的另1个光敏核不育基因pms3,并将其定位于第12 染色体上(梅明华等, 1999);对农垦58S/大黑矮生标记基因系FL2 组合组建可育集团和不育集团,并以亲本对照进行了RFLP、RAPD和双引物RAPD分析,结果发现第12 染色体的1个单拷贝标记G2140 与光敏核不育基因连锁遗传,二者之问的遗传图距为14.1cM(李子银等, 1999);陈亮等筛选出与光敏不育基因pms3连锁的标记F3和V4,其与pms3的遗传距离分别为5.80cM和7.75cM;李香花等则进一步将pms3定位在12号染色体上的RFLP标记M36和RZ261之间,与两标记的遗传距离分别为1.5cM 和3.05cM。 【基因的克隆、功能研究】 华中农业大学张启发研究团队指出控制农垦58S不育的是一个长的非编码RNA,LOC_12g36030的转录本1即pms3。研究表明一个长度为1236bp,且与长光照下特异的雄性不育相关的RNA分子(LDMAR)。长日照条件下,足够的LDMAR 转录量是维持正常花粉发育所必需的,但由于一个单碱基突变造成LDMAR 二级结构改变,导致了LDMAR 在

EMS诱变水稻突变体致变基因的鉴定0725

EMS突变体致变基因鉴定 在植物遗传学研究中,研究者除了采用传统的正向遗传学手段外,反向遗传学也得到广泛应用。采用各种物理或化学突变,导致遗传物质发生突变,进而根据突变性状来研究变异基因的生物学功能。在众多的致突变手段中,EMS突变技术由于导致的突变多为单碱基突变,且遵循C>T突变规律,在近代遗传学研究中得到广泛的应用。常规的对突变基因的鉴定多采用建立F2连锁群体,通过分子标记进行图位克隆,研究的周期长、工作量大且过程繁琐。随着高通量测序技术的快速发展,实现了在短期时间内获得植物的基因组信息,为研究突变体的突变基因的鉴定提供了一条新的研究途径。 根据对研究材料中突变基因的信息不同可以分为两种策略: 方案一:对于已经比较纯合的突变体植株,可以直接对野生型植物和突变体植株进行深度测序,通过对野生型和突变体中的变异信息的分析,直接对导致表型的致变位点进行鉴定。 方案二:对于没有初步定位突变位点信息的材料,可以对突变植株的自交F2后代中,选择具有突变表型的植株进行混合测序,突变位点在混合群体中应该处于高度纯合而极低的杂合度,因此通过对全基因组中位点进行扫描,从而定位到突变位点。该方法特别适合于大量突变体的鉴定,可以同时鉴定大量的株系,且群体建立方法简便,工作量低。

变位点,并定位突变基因,然后对可能的突变基因的表达进行检测。 方案二:如果没有定位信息,可以将多株具有突变表型的F2个体的DNA按等量混合,并进行低深度(30X)测序,即可减少工作量

又可降低测序成本。由于EMS诱变F2代中具有表型的多为隐性纯合突变,突变基因所在区间为纯合子,为了减少假阳性出现,结合分析该区间的杂合度综合分析,获得突变位点后在扩大样品群体中进一步验证,即可定位导致突变表型的位点和基因。 水稻、拟南芥、玉米等重要模式和粮食作物已经完成了基因组的完整测序,为基于高通量测序技术的突变基因的鉴定奠定了丰富的资源基础。该方案的实施将为加快作物突变体的鉴定具有重要的推动作用,并为作物功能基因组研究提供了一种高效、便捷的技术手段。该方案一中针对具有明显表型的突变体方案包括以下三个步骤:(1)测序样本的选择及测序深度的确定 选择连续多代自交的突变体植株,以及野生型植株个体,提取基因组DNA,按照标准的Illunima 建库流程,建立插入片段为350bp 的文库,根据不同作物基因组大小进行30X测序。 (2)基因组重测序数据的获得与生物信息学分析 通过对测序数据的质控之后,将获得的reads同野生型基因组序列进行,找出测序数据中的SNP、InDel,对全基因组的SNP纯合度进行分析,找出可能的突变位点,并进一步采用其他分析软件进行确认,从而锁定出突变表型相关位点及基因。 (3)突变位点的鉴定和扩大群体中验证 根据生物信息学获得突变位点信息,利用Sanger测序进一步在突变体中进行验证。

【CN110218811A】一种筛选水稻突变体的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910379866.0 (22)申请日 2019.05.08 (71)申请人 中国科学院植物研究所 地址 100093 北京市海淀区香山南辛村20 号 (72)发明人 漆小泉 张英春 冯来宝 池旭  (74)专利代理机构 北京纪凯知识产权代理有限 公司 11245 代理人 魏少伟 (51)Int.Cl. C12Q 1/6895(2018.01) C12Q 1/686(2018.01) C12N 15/11(2006.01) (54)发明名称 一种筛选水稻突变体的方法 (57)摘要 本发明公开了一种筛选水稻突变体的方法。 本发明公开的筛选水稻突变体的方法包括:利用 多重PCR富集待测水稻中的目标DNA片段,得到富 集的目标DNA片段;对富集的目标DNA片段测序, 得到待测水稻目标DNA片段序列;比较待测水稻 目标DNA片段序列与野生型水稻目标DNA片段的 序列,确定待测水稻目标DNA片段是否发生突变, 以确定待测水稻是否为突变体。实验证明,利用 本发明的方法可成功检测目标DNA片段是否发生 突变, 进一步可用于筛选突变体。 权利要求书3页 说明书43页序列表1页 附图7页CN 110218811 A 2019.09.10 C N 110218811 A

权 利 要 求 书1/3页CN 110218811 A 1.鉴定生物目标DNA片段突变的方法,包括: 1)利用多重PCR富集待测生物中的目标DNA片段,得到富集的目标DNA片段;所述利用多重PCR富集待测生物中的目标DNA片段包括利用多重PCR方法扩增得到目标DNA片段,实现目标DNA片段的富集;所述多重PCR方法,包括:利用成套引物对目标DNA片段进行PCR扩增,得到PCR产物,将该PCR产物记为PCR产物1;所述成套引物满足如下a1)、a2)和a3):a1)所述成套引物由n个引物对组成,n为大于等于2的自然数; a2)所述成套引物中的每个引物对的因素J小于50%,所述因素J为引物对的反向引物与所述成套引物的其它引物形成引物二聚体的个数占所述成套引物中引物个数的百分比; a3)所述成套引物中的每个引物对的9个因素中至多一个因素不在标准范围内;所述9个因素为因素A、B、C、D、E、F、G、H和I; 所述因素A为引物对的反向引物的GC含量; 所述因素B为引物对的反向引物的TM值, 所述因素C为目标片段的GC含量; 所述因素D为从目标片段上游400bp处至该目标片段下游400bp处间的DNA片段的GC含量; 所述因素E为目标片段的结构自由能; 所述因素F为目标片段及目标片段下游150bp的连续DNA片段的结构自由能; 所述因素G为目标片段及目标片段上游150bp的连续DNA片段的结构自由能; 所述因素H为引物对的正向引物3’末端5个核苷酸的结构自由能; 所述因素I为引物对的反向引物与所述成套引物的其它引物中部连续大于等于5个核苷酸所形成的多个双链DNA的TM值总和; 所述9个因素的标准范围如下: 35%≤所述因素A≤60%; 68℃≤所述因素B≤79℃; 30%≤所述因素C≤70%; 30%≤所述因素D≤70%; 15kcal/mol≤所述因素E的绝对值≤70kcal/mol; 所述因素F的绝对值<100kcal/mol; 所述因素G的绝对值<100kcal/mol; 4kcal/mol≤所述因素H的绝对值≤10kcal/mol; 所述因素I<100℃; 2)对所述富集的目标DNA片段测序,得到待测生物目标DNA片段序列; 3)比较所述待测生物目标DNA片段序列与野生型生物所述目标DNA片段的序列,确定所述待测生物目标DNA片段是否发生突变:所述待测生物目标DNA片段序列与野生型生物所述目标DNA片段的序列相同,所述待测生物目标DNA片段未发生或候选未发生突变;所述待测生物目标DNA片段序列与野生型生物所述目标DNA片段的序列不同,所述待测生物目标DNA 片段发生或候选发生突变。 2.根据权利要求1所述的方法,其特征在于:所述成套引物中各引物对的正向引物含有相同的序列,记为正向引物共同序列;各引物对的反向引物含有相同的序列,记为反向引物 2

水稻脆性突变体叶的解剖结构和化学特性

作物学报ACTA AGRONOMICA SINICA 2008, 34(8): 1417?1423https://www.doczj.com/doc/564295265.html,/zwxb/ ISSN 0496-3490; CODEN TSHPA9E-mail: xbzw@https://www.doczj.com/doc/564295265.html, DOI: 10.3724/SP.J.1006.2008.01417 水稻脆性突变体叶的解剖结构和化学特性 韦存虚1谢佩松1周卫东2陈义芳2严长杰3,* (1扬州大学生物科学与技术学院; 2扬州大学测试中心; 3教育部植物功能基因组学重点实验室/江苏省作物遗传生理重点实验室, 江 苏扬州225009) 摘要: 植物机械强度是一个十分重要的农艺性状, 为了解作物控制机械强度的机制, 本文对一个水稻脆性突变体[bc7(t)]叶进行了细胞学观察及叶细胞化学组成分析。光镜和电镜观察都发现突变体厚壁细胞的细胞壁变薄; 对细胞 壁成分的化学分析显示突变体纤维素含量明显低于对照, 硅含量明显升高, 而木质素变化不明显; 木质素的组化反 应也显示了木质素在突变体和对照之间差异不大; X-射线微区分析表明, 硅元素在突变体叶表面明显提高。上述结果 表明, 突变体叶纤维素含量的降低影响了厚壁细胞次生壁的形成, 导致细胞壁变薄, 机械强度降低, 硅含量的升高 有助于突变体增强机械强度。 关键词:水稻; 脆性突变体; 叶; 纤维素; 硅 Anatomical Structure and Chemical Features of Leaf in Brittle Mutant of Rice WEI Cun-Xu1, XIE Pei-Song1, ZHOU Wei-Dong2, CHEN Yi-Fang2, and YAN Chang-Jie3,* (1 College of Bioscience and Biotechnology; 2 Analytical Centre; 3 Key Laboratory of Plant Functional Genomics, Ministry of Education / Jiangsu Key Laboratory for Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, Jiangsu, China) Abstract: Plant mechanical strength is an important agronomic trait. A rice brittle mutant bc7(t) which derived from japonica variety Zhonghua 11 by radiation of 60Co-γ displayed normal phenotype similar to its wild type (WT) plants except for the fragi- lity of all plant body. To understand the mechanism of controlling plant mechanical strength, the anatomical structure and chemical features of leaf of brittle mutant bc7(t) were investigated. Anatomical analyses were carried out by means of various microscopic techniques, such as light microscopy, scanning electron microscopy and transmission electron microscopy. It was found that the cell walls of sclerenchyma cells of leaf sheath and leaf blade in the mutant were thinner than that in WT. For histochemical loca- lization of lignin, fresh freezing-cut transverse sections of leaf blade and sheath were stained with Wiesner reagents. Responding to the Wiesner reaction, the sclerenchyma cells below the epidermis, vascular bundle sheath and xylem were stained red. Though no noticeable staining difference in leaf blade between WT and mutant, the sclerenchyma cells of leaf sheath of mutant were stained slightly deeper than that of WT. Separation and purification of cell wall of leaf blade and sheath were carried out. The lignin content of cell wall was determined by thioglycollic acid method, the results revealed a slightly higher lignin content in mutant than in WT without significant difference. The cellulose content of cell wall was assayed with the anthrone reagent; the results showed that the amount of cellulose of leaf blade and sheath in mutant was significantly lower than that in WT. The test of silicon content of cell wall showed an increased content in the mutant. The energy dispersive X-ray micro-analysis attached to the FE-SEM provided the information on the distribution and content of silicon in the epidermal cells of leaf blade and sheath. The X-ray map analysis at the upper and lower epidermis of leaf blade and outer epidermis of leaf sheath showed that the content of silicon in mutant was obvious higher than that in WT. The result from silicon X-ray mapping of upper epidermis of leaf blade indicated that the distribution of silicon was concentrated in cell wall of silica cells. X-ray point analysis on the upper epidermis of leaf blade in the cell walls of silica cell, dork cell, long cell, and bulliform cell showed that the contents of silicon at these locations in mutant were all higher than these in WT. These results suggested that the reduction of cellulose might affect the formation of 基金项目:国家自然科学基金项目(30300215, 30300220); 国家重点基础研究发展计划(973计划)项目(2005CB120804) 作者简介:韦存虚(1973–), 男, 安徽临泉人, 博士, 副教授, 从事植物细胞结构与功能研究。 *通讯作者(Corresponding author):严长杰。 Received(收稿日期): 2007-12-27; Accepted(接受日期): 2008-03-28.

相关主题
文本预览
相关文档 最新文档