第三章软件无线电的结构--电子科技大学(经典)知识讲解
- 格式:ppt
- 大小:1.06 MB
- 文档页数:83
1、软件无线电的关键思想:构建一个具有开放性、标准化、模块化的通用硬件平台,将工作频段调制/解调方式、数据格式、加密模式以及通信协议等各种功能用软件来完成,并使宽带A/D 转换器和D/A 转换器尽量靠近天线,以实现高度灵活性和开放性的新一代无线电系统。
2、软件无线电与软件控制的数字无线电的区别:软件无线电摆脱了硬件的束缚,在结构通用和稳定的情况下具有多功能,便于改进升级、互联和兼容。
而软件控制的数字无线电对硬件是一种依赖关系。
3、软件无线电的基本结构:4、软件无线电定义:软件无线电是将模块化、标准化的硬件单元以总线方式连接构成基本平台,并通过软件加载实现各种无线电功能的一种开放式体系结构。
5、采样频率(fs)、信号中心频率(fo)、处理带宽(B)及信号的最低频率(f L )、最高频率(f H )之间的关系,最低采样频率满足的条件:答:带通采样解决信号为(f L ~f H )上带限信号时,当f H 远远大于信号带宽B 时,若按奈奎斯特采样定理,其采样频率会很高,而采用带通信号则可以解决这一问题,其采样频率12n 4f 12n )f f (2f 0H L s +=++=,n 取能满足2B f S ≥的最大正整数,B 212n f 0+=。
6、低通采样定理:设有一个频率带限信号x(t),其频带限制在(0,f H )中,若以不小于fs=2f H 的采样速率对x(t)进行等间隔采样,得到时间离散的采样信号x(n)=x(nTs ),其中Ts =1/fs 称为采样间隔,则信号x(t)将被所得的采样值x(n)完全地确定。
7、带通采样定理:设一个频率带限信号x(t),其频带限制在(f L ,f H )内,如果其采样速率fs 满足12n )f f (2f H L s ++=,n 取满足fs ≥2(f H -f L )的最大正整数(0,1,2...),则用fs 进行等间隔采样所得信号采样值x(nfs)能准确确定原信号。
软件无线电的主要原理及技术嘉兆科技本文主要介绍了软件无线电的概念、主要原理、关键技术及在生活中的广泛应用。
它是以开放性、标准化、模块化、通用性、可扩展的硬件为平台,通过加载各种应用软件来实现不同用户,不同应用环境的不同需求,是以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支撑的新的无线电通信体系结构,是数字无线电的高级形式。
首先介绍了软件无线电的理论基础,即带通采样理论,多速率处理信号技术,高效信号滤波,数字正交变换理论,这些都是软件无线电实现的理论基础,然后是其关键技术,宽带智能天线技术,A/D转换技术,数字上/下变频技术,数字信号处理部分,这些技术是实现软件无线电的关键和核心所在。
最后,对其应用领域也进行了描述,指出其在个人移动通信,军事通信,电子站,雷达和信息加电中的巨大潜力。
软件无线电这个术语最早是美军为了解决海湾战争中多国部队各军种进行联合作战时遇到的互通互操作问题而提出的新概念。
陆,海,空三军简单就工作频段来分,解决了互不干扰问题,但三军联合作战时互通,互联,互操作问题难以解决,于是1992年提出了软件无线电的最初设想,并于1995年美国国防高级研究计划局提出了SPEAKEASY计划,称之为易通话计划,其最终目的是开发一种能适应联合作战要求的三军统一的多频段,多模式电台,即MBMMR电台。
进而实现联合战术无线电系统(简称JTRS),它是在MBMMR的基础上提出的一种战术通信系统。
软件无线电以开放性,标准化,模块化,通用性,可扩展的硬件为平台,通过加载各种应用软件来实现不同用户,不同应用环境的不同需求,实现各种无线电功能,选用不同软件可实现不同功能,软件可以升级更新,硬件也可像计算机升级换代,可称为超级计算机。
它是以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支撑的新的无线电通信体系结构,是数字无线电的高级形式。
理想软件无线电的结构框图:一、软件无线电的理论基础•采样理论:由于软件无线电所覆盖的频率范围一般都要求比较宽,例如从0.1MHZ到2.2GHZ,只有具有这么宽的频段才能具有广泛的适应性。
1、软件无线电的核心思想:可重配置性。
采用开放的、标准化的通用平台构造无线电系统,使宽带ADC/DAC尽可能的靠近天线,用软件实现尽可能多的无线电功能,并通过软件实现功能的设定和升级,使通信系统具有多频带、多模式的通信能力。
2、软件无线电的定义:(1)、软件无线电是多频带无线电,它具有宽带的天线、射频转换、模/数和数/模转换,能够支持多个空中接口和协议,在理想状态下,所有方面(包括物理空中接口)都可以通过软件定义。
(2)软件无线电是一种新型的无线体系结构,它通过硬件与软件的结合使无线网络和用户终端具有可重配置能力。
软件无线电提供了一种建立多模式、多频段、多功能无线设备的有效而且相当经济的解决方案,可以通过软件的升级实现功能提高。
软件无线电可以使整个系统(包括用户终端和网络)采用动态的软件编程对设备特性进行重配置。
3、软件无线电的特点:(1)、可多频带/多模式/多功能工作。
(2)、具有可重配置、可重编程能力。
4、硬件体系结构的分类:1按照物理介质划分:第一种是以通用处理器GPP为基础的结构。
第二种是以DSP为基础进行数字信号处理的体系结构。
第三种是以FPGA为基础进行数字信号处理的体系结构。
2按照系统中各功能模块的连接方式划分的硬件体系结构:1流水式结构2总线式结构3交换式结构4基于计算机和网络式结构5、比较DSP和FPGA的性能:1硬件结构,DSP采用哈佛结构 FPGA器件由大量的逻辑宏单元组成 2 灵活性 DSP处理器软件更易改变,而硬件个管脚是固定的.FPGA则需通过改变FPGA中构成DSO系统的硬件结构来改变硬件功能。
3 适用场合 DSP适用于状态复杂的操作 FPGA适用于简单重复的操作和需要并行处理的操作。
4处理能力 DSP处理速度慢 FPGA 处理速度快 5开发流程 DSP的仿真必须有合适的硬件平台 FPGA有多个层次的仿真测试和硬件调试环节 6开发技术标准化不同的DSP处理器结构有较大区别,需选择不同的汇编语言机仿真开发工具和编码软件 FPGA则采用开发技术的标准化和规范化。
软件无线电技术软件无线电简介现代通信系统中最具代表性的是软件无线电和认知无线电。
软件无线电是指其通路的调制波形是由软件确定的,它是一种用软件实现物理层连接的无线通信设计。
采用软件无线电技术的通信系统一般是可以进行重新配置的系统,同时还需要一套相应的硬件设施。
因此,软件无线电是一种灵活的无线电体系结构,能够实时改变无线系统的特性。
软件无线电的典型结构如下图在这样一个平台上,包括工作频段、调制解调方式、信道多址方式等均可通过注入不同的软件编程实现传统电路的各种功能,形成不同标准的通信系统,保证各通信系统的无缝集成。
软件无线电的特点1.具有完全的可编程性软件无线电是通过安装不同的软件来实现电路功能的,通信的工作模式是通过可编程软件来改变的,系统的功能由软件来定义。
2.软件无线电基于DSP技术DSP及其相应软件是软件无线电的关键模块。
通信所需要的各种功能均由DSP对数据流的实时或近实时处理来实现。
这极大的改善和提高了无线通信系统的性能。
3.软件无线电具有很强的灵活性由于用软件实现,通信设备可以任意转换接入方式,改变调制和解调的方式或者接受不同系统的信号。
4.软件无线电具有集中性软件无线电具有集中统一的平台,因此多个信道可以享有共同的射频前端和宽带A/D—D/A转换器,从而可以获得每一个信道相对低廉的信号处理性能。
软件无线电的应用1.在军事通信中的应用软件无线电的概念最早提出是在海湾战争中多国部队各军种联合作战时遇到的互通、互联、互操作问题。
特别是在海湾战争中,美军暴露出军事通信互通性差、反应速度慢、带宽窄、速度低等一系列影响作战的问题。
针对这些问题,有人于1992年提出了软件无线电的最初想法。
1995年美国国防部开发了一种多频段多模式的电台,即MBMMR电台。
在此电台的基础上,美军研制出联合战术无线电系统。
2.民用通信中的应用对于软件无线电基站发射系统,如图所示。
其中利用数字信号处理技术对信号进行数字调制,由于信号工作频率很高,对A/D 转换器的速率要求很高,难以实现。
软件无线电技术集成技术和计算机技术的发展,使信号处理设备呈现了由模拟到数字、由专用硬件到软件替换的变革趋势。
通信设发备的发展也经历了这一过程:从模拟器件到对基带信号进行采样的数字接收机,再到对中频(射频)信号进行采样的“全数字接收机”。
软件无线电(Software Radio)是无线电通信方面的一种新的变革。
软件无线电技术是在通用的开放式无线电智能平台上,通过安装不同的软件来完成各种通信功能,系统的功能级是通过软件的升级来实现的。
软件无线电系统适用于多个频段,可灵活地改变运作模式,能与不同体制和标准的各种设备联瓦通和兼容,一、软件无线电的体系结构软件无线电的体系由天线、宽带射频转换器、A/D、D/A变换器与DSP(数字信号处理器)几部分组成。
软件无线电的关键部件是以编程能力强的DSP处理器来代替专用的数字电路,使系统硬件结构与功能相对独立。
DSP处理器用来完成中频(射频)、基带与比特流处理等功能。
软件无线电的硬件平台采用模块化没计,是一个开放的通信平台.通过加载不同的软件(需要时更换插卡)来实现不同的硬件功能。
但软件无线电的硬件平台要求较高,它需要有宽带射频前端、宽带A/D、D/A转换器和高速DSP,工作频率可高达几百兆赫兹。
因信号干扰很严重,所以,它必须多个CPU并行操作才能满足系统处理速度的要求。
另外,DSP处理数据要求高速转换,系统总线必须具有极高的I/O传输速率。
二、软件无线电技术的主要特点1.软件化软件无线电将A/D变换尽量向射频端椎拢,将中频以后全部进行数字化处理,工作模式由软件编程改变,包括可编程的射频段宽带信号接人方式和可编程调制方式等。
这样,就可以任意更换信道接入方式,改变调制方式或接收不同系统的信号。
同样,可通过软件工具来扩展业务、分析无线通信环境、定义所需增强的业务和实时环境测试,使通信功能由软件来控制。
因而.系统的更新换代变成软件版本的升级,开发周期与费用大为降低。
2.模块化软件无线电采用模块化设计,不同的模块实现不同的功能,同类模块通用性好,通过更换或升级某种模块就可实现新的通信功能。
1. 软件无线电是什么无线通信在现代通信中占据着极其重要的位置, 几乎任何领域都使用无线通信, 包括有 商业、气象、金融、军事、工业、民用等。
我们可从通信系统、调制方式、多址方式等几方 面可看到无线通信系统种类的繁多。
类 别 通信系统 调制方式 多址方式 种 类卫星通信系统、蜂窝移动通信系统、无线寻呼系统、短波通信系统、 微波通信系统等 AM、FM、LSB、USB、ISB、FSK、PSK、MSK、GMSK、QAM 等 时分多址(TDMA) 、频分多址( FDMA)和码分多址(CDMA)等各种通信系统由于自身的特点而适用于各种特定的场合,例如: 短波电台适合远距离,其所需的发射功率不大,传输的“中继系统” —电离层不会被 摧毁;卫星通信能传播高质量的信息,所能提供的频带很宽 微波通信抗干扰能力强,适合大量的数据传输,但只能在点与点之间传输,传输距离 又有一定的限制 由于无线通信的设备简单、便于携带、易于操作、架设方便等特点,在军事和民用通信领域 中都是不可缺的重要通信手段。
然而, 电台往往是根据某种特定的用途而设计的, 功能单一, 有些电台的基本结构相似,而信号特征差异很大。
比如,工作的频段不同,调制方式不同, 波形结构不同,通信协议不同,数字信息的编码方式、加密方式不同等等。
电台之间的这些 差异极大地限制了不同电台之间的互通互连。
经过几十年的发展, 无线通信已有很大的发展, 通信系统由模拟体制不断向数字化体制过渡, 因此是否可能在数字化体制础上一个电台能满足多调制方式和多址方式, 从而根椐需要构成 多种通信系统呢。
我们先看一下一个数字蜂窝网接收站, 显示在图 1 中。
(注意: 为了说明软件无线电的概念, 这里给出了无线电的接收装置部分) 。
图 1:窄带无线接收装置在窄带接收装置中所有的功能模块:滤波、放大、向下变频,直到调制,都是使用模拟 技术 ( 除了频率合成的部分 ) 实现的 。
信号解调出来以后,使用一个可编程的数字信号 处理 ( DSP ) 器件进行处理。
从零开始学SDR系列:详解软件无线电架构软件无线电架构软件无线电(SDR)最初的概念是一种通信技术或者体系结构,而现在SDR,确切地说是软件定义无线电,更接近一种设计方法或者设计理念。
软件无线电在理论上有着良好的应用前景,实际应用中却受到软、硬件工艺或者处理能力的限制,但是基于软件无线电概念基础上的软件定义无线电技术却越来越受到人们的重视。
在2001 年10 月份举行的ITU-8F 会议上,软件定义无线电被推荐为未来无线通信极有可能的发展方向。
软件定义无线电的功能需求包括重新编程及重新设定的能力、提供并改变业务的能力、支持多标准的能力以及智能化频谱利用的能力等。
可见,SDR 是可为所有技术使用的公共平台,例如认知无线电。
下面我们将从一个相对完整的SDR 平台角度来阐述SDR 平台的架构,主要包括以软件为中心的SDR 架构和SDR 硬件结构两个方面。
1、以软件为中心SDR 架构软件无线电,其重点在于基于一款通用平台来进行功能的软件化处理。
在SDR 探讨中,开发人员往往注重平台的硬件开发,偏重于搭建平台时使用器件的处理性能,以使得通用平台尽可能的接近理想软件无线电的设计要求。
这使得一部分人忽略了SDR 中软件平台的设计。
这里提出的SDR 软件平台,是指在利用通用硬件平台实现SDR 功能时的一种用户算法处理框架(或简单认为信号处理框架),甚至是一种操作环境(如满足软件通信体系架构规范用户接口环境)。
SDR 软件平台(也称作SDR架构)负责的功能一般包括:·提供用户接口,用户通过该接口添加、删除功能模块。
·算法封装,将算法包装与外界隔离,算法包括通信算法、信号处理算法、C/C++等其他算法。
·互联接口,以完成模块间互联。
·中间信号的测试调试接口。
·调度器或者适配器,用来管理模块。
SDR 架构中,最受欢迎的两类开源平台分别是开源软件定义无线电(GNU Radio)和开源软件通信体系框架嵌入式解决方案(OSSIE)。
浅析软件无线电的体系结构及应用【摘要】本文通过浅析软件无线电的体系结构及应用,旨在探讨其在通信和军事领域的重要性及发展趋势。
在研究背景介绍了软件无线电的起源和发展历程,研究意义强调了其在现代通讯技术中的重要作用,研究目的明确了对软件无线电的深入探讨。
在从软件无线电的基本概念入手,详细解释了其体系结构及应用前景,特别关注了其在通讯和军事领域的具体应用案例。
在总结了软件无线电的发展趋势,强调了其在社会中的应用推广和影响。
通过本文的分析,可以更好地了解软件无线电的现状和未来发展方向,为相关领域的研究和实践提供参考。
【关键词】软件无线电、体系结构、应用前景、通信领域、军事领域、发展趋势、应用推广、社会影响1. 引言1.1 研究背景软件无线电技术是一种将无线电功能实现在软件中的新兴技术,它的出现为无线通信领域带来了革命性的变化。
软件无线电技术不仅可以通过软件定义的方式实现传统无线电设备的功能,还可以通过灵活的软件编程实现更多功能和性能的提升。
在数字化、网络化、智能化的时代背景下,软件无线电技术的发展对于推动通信领域的进步具有十分重要的意义。
随着移动互联网、物联网、5G等技术的快速发展,对无线通信技术的需求也日益增加。
传统的硬件无线电设备往往存在功能单一、调试困难、更新维护成本高等问题,而软件无线电技术的出现可以很大程度上解决这些问题,提高无线通信设备的灵活性和可控性。
对软件无线电技术进行深入研究和探索,不仅可以推动通信领域的技术进步,还可以促进无线通信设备的创新和发展,为人类社会的信息化建设提供更加强大的支持。
在这样的背景下,对软件无线电技术的研究具有重要的现实意义和深远的影响。
1.2 研究意义软件无线电是无线电通信技术的一种新形式,它利用软件定义的方式实现无线电通信设备的功能。
软件无线电技术的出现,极大地拓展了无线电通信领域的发展空间,为通信系统的搭建和优化提供了新的思路和方法。
研究软件无线电的意义主要体现在以下几个方面:软件无线电技术具有很高的灵活性和可编程性,能够适应不同的通信需求和环境变化。