电场中的力和动能定理
- 格式:doc
- 大小:626.50 KB
- 文档页数:2
电场力做功电势能动能之间的关系主要是电场力和动能之间的关系电势能和动能的关系
答案
电场力做功=-电势能变化量=动能变化量如一个点电荷只在点场力
作用下由静止开始运动,则电场力做正功的量=动能增加量=电势能减少的量
带电粒子在电场中运动,这里按不计重力分析:粒子只具有电势能和动能,满足能量守恒。
电场力做正功,电势能减少(功能关系),转化为动能;反之,电场力做负功,电势能增,动能转化为电势能。
电势能与动能之和不变。
此时电场力做功等于动能变化量。
如果是带电物体,重力不能忽略,能量守恒应该是电势能和动能,重力势能总和不变。
电势能,重力势能变化分别看电场力,重力做功。
动能变化据动能定理,等于合外力的功(重力做功与电场力做功的代数和)。
电场力做功常用计算方法电场力做功的计算就是将电、力以及能量等相关知识点综合在一起来考查的,因此在高考中常常出现。
同时由于涉及到的知识点比较多,常常令我们感觉有些难度,见了就害怕。
其实对于这类题目虽然计算方法很多,但只要我们进行归纳总结,找出这些方法的基本思路与共同点,解题时就有了头绪。
知道如何着手解题,做起来就容易多了。
解决电场力做功的问题我们必须认识到这就是涉及“电场”、“力”、“功”三个方面的问题,因此这类题目我们就可以依据这三个方面的特点来解题。
下面我们就根据这些特点总结出常用的几种计算电场力做功的方法。
方法及特点根据功与力的关系与功与能的关系,可以将功的计算转化为对力或能量的计算。
在知道电场的主要参数后电场力与电势能都很容易计算出来,因此问题就能够解决。
下面我们来瞧瞧具体的方法与它们的特点:1、 利用功的定义计算:W FScos θ= 由于力F 就是电场力,因此可以用F qE =计算,故有W qEScos θ=。
在中学阶段由于数学限制,式中F 必须为恒力,即E 不变才可以计算,故该方法仅在匀强电场中适用。
2、 利用公式AB AB W qU =计算。
电荷q 从A 点运动到B 点,电势为变化AB U ,则电场力做功可以用上式求解。
对于匀强电场还可使用W qEd =。
3、 根据“功就是能量改变的量度”使用公式W ε=-∆计算,其意义为电场力做功等于电势能的减小量,在一直电荷电势能时使用这种方法较为简便。
4、 利用动能定理进行计算。
知道电荷动能的改变量,减去除电场力之外的力所做的功即可得到。
这种方法在知道粒子在电场中的运动状态时使用较好。
依据题目的特点选取适当的方法解题,问题就很容易解决,下面我们来瞧瞧解题的思路。
经典体验(1)如图,地面上方有匀强电场,取场中一点O 为圆心在竖直面内作半径为R=0.1m 的圆,圆平面与电场方向平行。
在O 点固定电量Q=5×10-4C 的负点电荷,将质量为m=3g,电量为q=2×10-10C 的带电小球放在圆周上的a 点时,它恰好静止。
专题24 带电粒子在电场中的运动重点知识讲解 一、带电粒子在匀强电场中的加速1.带电粒子在电场中运动时,重力一般远小于静电力,因此重力可以忽略。
2.如图所示,匀强电场中有一带正电q 的粒子(不计重力),在电场力作用下从A 点加速运动到B 点,速度由v 0增加到v.,A 、B 间距为d ,电势差为U AB.(1)用动力学观点分析:Eq a m =, U E d=,2202v v ad -= (2)用能量的观点(动能定理)分析:2201122AB qU mv mv =- 能量观点既适用于匀强电场,也适用于非匀强电场,对匀强电场又有AB W qU qEd ==。
二、带电粒子在匀强电场中的偏转(1)带电粒子以垂直于电场线方向的初速度v 0进入匀强电场时,粒子做类平抛运动。
垂直于场强方向的匀速直线运动,沿场强方向的匀加速直线运动。
(2)偏转问题的处理方法,类似于平抛运动的研究方法,粒子沿初速度方向做匀速直线运动,可以确定通过电场的时间0lt v =。
粒子沿电场线方向做初速度为零的匀加速直线运动,加速度F qE qU a m m md===; 穿过电场的位移侧移量:221at y =222001().22Uq l ql U md v mv d=⋅=; 穿过电场的速度偏转角: 20tan y v qlU v mv dθ==。
两个结论:(1)不同的带电粒子从静止开始,经过同一电场加速后再进入同一偏转电场,射出时的偏转角度总是相同的。
(2)粒子经过电场偏转后,速度的反向延长线与初速度延长线的交点为粒子水平位移的中点。
(与平抛运动的规律一样) 三、示波管的构造原理(1)示波管的构造:示波器的核心部件是示波管,示波管的构造简图如图所示,也可将示波管的结构大致分为三部分,即电子枪、偏转电极和荧光屏。
(2)示波管的原理a 、偏转电极不加电压时,从电子枪射出的电子将沿直线运动,射到荧光屏的中心点形成一个亮斑。
b 、在XX '(或YY ')加电压时,则电子被加速,偏转后射到XX '(或YY ')所在直线上某一点,形成一个亮斑(不在中心),如图所示。
电场的力的性质知识点一 电荷及电荷守恒定律 1.元电荷、点电荷 (1)元电荷:e =1.6×10-19C ,所有带电体的电荷量都是元电荷的整数倍,其中质子、正电子的电荷量与元电荷相同.(2)点电荷:当带电体本身的大小和形状对研究的问题影响很小时,可以将带电体视为点电荷.2.静电场(1)定义:存在于电荷周围,能传递电荷间相互作用的一种特殊物质. (2)基本性质:对放入其中的电荷有力的作用.3.电荷守恒定律(1)内容:电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量保持不变.(2)起电方式:摩擦起电、接触起电、感应起电. (3)带电实质:物体带电的实质是得失电子. 知识点二 库仑定律1.内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比.作用力的方向在它们的连线上.2.表达式:F =k q 1q 2r 2,式中k =9.0×109 N·m 2/C 2,叫静电力常量.3.适用条件:真空中的点电荷. 知识点三 电场强度、点电荷的场强1.定义:放入电场中某点的电荷受到的电场力F 与它的电荷量q 的比值. 2.定义式:E =Fq.单位:N/C 或V/m.3.点电荷的电场强度:真空中点电荷形成的电场中某点的电场强度:E =k Qr 2.4.方向:规定正电荷在电场中某点所受电场力的方向为该点的电场强度方向.5.电场强度的叠加:电场中某点的电场强度为各个点电荷单独在该点产生的电场强度的矢量和,遵从平行四边形定则. 知识点四 电场线1.定义:为了形象地描述电场中各点电场强度的强弱及方向,在电场中画出一些曲线,曲线上每一点的切线方向都跟该点的电场强度方向一致,曲线的疏密表示电场的强弱.2.【基础自测】1.如图所示的情况中,a、b两点电势相等、电场强度也相同的是(D)解析:平行板电容器中场强相同而电势不同,A错误;点电荷等势面上的点,电势相等而场强不同,B错误;两等量同种电荷其连线的中垂线上与连线中点等距的任意两点电势相等而场强的方向不同,C错误;两等量异种电荷其连线的中垂线上与连线中点等距的任意两点电势为零,场强相同,D正确.2.关于静电场,下列结论普遍成立的是(B)A.电场强度为零的地方,电势也为零B.电场强度的方向与等势面处处垂直C.随着电场强度的大小逐渐减小,电势也逐渐降低D.任一点的电场强度总是指向该点电势降落的方向解析:电场强度与电势没有直接关系,电场强度为零时,电势不一定为零;电势为零时,电场强度不一定为零,故A、C 错误;电场线与等势面垂直,而电场强度的方向为电场线的方向,所以电场强度的方向与等势面垂直,故B正确;顺着电场线方向电势降低,但电势降低的方向并不一定是电场强度的方向,电场强度的方向是电势降低最快的方向,故D错误.3.A、B两个点电荷在真空中所产生的电场的电场线(方向未标出)如图所示,图中C点为两个点电荷连线的中点,MN为两个点电荷连线的中垂线,D为中垂线上的一点,电场线的分布关于MN左右对称.则下列说法正确的是(A)A.这两个点电荷一定是等量异种电荷B.这两个点电荷一定是等量同种电荷C.C点的电场强度比D点的电场强度小D.C点的电势比D点的电势高解析:根据电场线的特点,从正电荷出发到负电荷终止可以判断,这两点电荷是两个等量异种电荷,故A正确,B错误;在两等量异种电荷连线的中垂线上,中间点电场强度最大,也可以从电场线的疏密判断,所以C点的电场强度比D点的电场强度大,故C错误;中垂线和电场线垂直,所以中垂线为等势线,所以C点的电势等于D点的电势,故D错误.4.已知均匀带电的无穷大平面在真空中激发电场的场强大小为σ2ε0,其中σ为平面上单位面积所带的电荷量,ε0为常量,如图所示的平行板电容器,极板正对面积为S,其间为真空,带电量为Q,不计边缘效应时,极板可看作无穷大导体板,则极板间的电场强度大小和两极板间相互的静电引力大小分别为(D)A.Qε0S和Q2ε0S B.Q2ε0S和Q2ε0SC.Q2ε0S和Q22ε0S D.Qε0S和Q22ε0S解析:两极板均看作无穷大导体板,极板上单位面积上的电荷量σ=QS;则单个极板形成的场强E0=σ2ε0=Q2ε0S,两极板间的电场强度为:2×σ2ε0=Qε0S;两极板间的相互引力F=E0Q=Q22ε0S.5.(多选)如图为静电除尘器除尘机理示意图,尘埃在电场中通过某种机制带电,在电场力的作用下向集尘极迁移并沉积,以达到除尘目的,下列表述正确的是(BD)A.到达集尘极的尘埃带正电荷B .电场方向由集尘极指向放电极C .带电尘埃所受电场力的方向与电场方向相同D .同一位置带电荷量越多的尘埃所受电场力越大解析:由题图所示可知,集尘极电势高,放电极电势低,放电极与集尘极间电场方向向左,即电场方向由集尘极指向放电极,尘埃在电场力的作用下向集尘极迁移,则知尘埃所受的电场力向右,故到达集尘极的尘埃带负电荷,故A 错误,B 正确.电场方向向左,带电尘埃所受电场力方向向右,带电尘埃所受电场力的方向与电场方向相反,故C 错误.由F =Eq 可知,同一位置带电荷量越多的尘埃所受电场力越大,故D 正确.6.如图所示,水平地面上方分布着水平向右的匀强电场,有14圆弧形的绝缘硬质管竖直固定在匀强电场中,圆心与管口在同一水平线上,管的半径为R ,下端管口切线水平,离水平地面的距离为h ,有一质量为m 的带电荷量+q 的小球从管的上端口A 由静止释放,小球与管间摩擦不计,小球从下端管口飞出时,管壁对小球的作用力为4mg ,g 取10 m/s 2.求:(1)小球运动到管口B 时的速度大小. (2)匀强电场的场强.(3)若R =0.3 m ,h =5.0 m ,小球落地时的速度大小. 解析:(1)小球从下端管口飞出时,由牛顿第二定律得: F N -mg =m v 2BR解得:v B =3gR(2)小球从A 运动到管口B 的过程中,由动能定理得: mgR +qER =12m v 2B 解得:E =mg2q(3)小球离开管口B 后,水平方向做匀加速运动,竖直方向做自由落体运动,则有: 竖直方向:h =12gt 2解得:t =1 s v y =gt =10 m/s 水平方向:qE =ma v x =v B +at 解得:v x =8 m/s故:v =v 2x +v 2y =241 m/s答案:(1)3gR (2)mg2q(3)241 m/s知识点一 库仑定律的理解及应用1.对库仑定律的两点理解(1)F =k q 1q 2r2,r 指两点电荷间的距离.对可视为点电荷的两个均匀带电球,r 为两球心间距.(2)当两个电荷间的距离r →0时,电荷不能视为点电荷,库仑定律不再适用,它们之间的静电力不能认为趋于无限大. 2.解决库仑力作用下平衡问题的方法步骤库仑力作用下平衡问题的分析方法与纯力学平衡问题的分析方法是相同的,只是在原来受力的基础上多了电场力.具体步骤如下:确定研究对象—可以根据问题需要,选择“整体法”或“隔离法” 受力分析—多了电场力()F =kq 1q 2r 2或F =qE 列平衡方程—F 合=0或F x =0、F y =0 3.“三个自由点电荷平衡”的问题(1)平衡的条件:每个点电荷受到另外两个点电荷的合力为零或每个点电荷处于另外两个点电荷产生的合电场强度为零的位置.(2)1.如图所示,半径相同的两个金属球A 、B 带有相等的电荷量,相隔一定距离,两球之间相互吸引力的大小是F .今让第三个半径相同的不带电的金属小球先后与A 、B 两球接触后移开.这时,A 、B 两球之间的相互作用力的大小是( A )A.F8 B.F 4 C.3F 8D.3F 4解析:A 、B 两球互相吸引,说明它们必带异种电荷,设它们带的电荷量分别为+q 、-q .当第三个不带电的C 球与A 球接触后,A 、C 两球带电荷量平分,每个球带电荷量为q 1=+q2,当再把C 球与B 球接触后,两球的电荷先中和再平分,每球带电荷量q 2=-q 4.由库仑定律F =k q 1q 2r 2知,当移开C 球后,A 、B 两球之间的相互作用力的大小变为F ′=F8,A 项正确.2.(多选)如图所示,水平地面上固定一个光滑绝缘斜面,斜面与水平面的夹角为θ.一根轻质绝缘细线的一端固定在斜面顶端,另一端系有一个带电小球A ,细线与斜面平行.小球A 的质量为m 、电量为q .小球A 的右侧固定放置带等量同种电荷的小球B ,两球心的高度相同、间距为d .静电力常量为k ,重力加速度为g ,两带电小球可视为点电荷.小球A 静止在斜面上,则( AC )A .小球A 与B 之间库仑力的大小为kq 2d 2B .当q d =mg sin θk 时,细线上的拉力为0 C .当q d =mg tan θk 时,细线上的拉力为0 D .当q d=mgk tan θ时,斜面对小球A 的支持力为0 解析:根据库仑定律可得两小球之间的库仑力大小为F =kq 2d 2,选项A 正确;当细线上的拉力为0时,小球A 受到库仑力、斜面支持力、重力,由平衡条件得kq 2d 2=mg tan θ,解得qd=mg tan θk,选项B 错误,C 正确;由受力分析可知,斜面对小球的支持力不可能为0,选项D 错误.3.相距为L 的点电荷A 、B 带电荷量分别为+4q 和-q ,如图所示,今引入第三个点电荷C ,使三个点电荷都处于平衡状态,则C 的带电荷量和放置的位置是( C )A .-q ,在A 左侧距A 为L 处B .-2q ,在A 左侧距A 为L2处C .+4q ,在B 右侧距B 为L 处D .+2q ,在B 右侧距B 为3L2处解析:A 、B 、C 三个电荷要平衡,必须三个电荷在一条直线上,外侧两个电荷相互排斥,中间电荷吸引外侧两个电荷,所以外侧两个电荷距离大,要平衡中间电荷的引力,必须外侧电荷电量大,中间电荷电量小,所以C 必须带正电,在B 的右侧,设C 所在位置与B 的距离为r ,则C 所在位置与A 的距离为L +r ,要能处于平衡状态,所以A 对C 的电场力大小等于B 对C 的电场力大小,设C 的电量为Q ,则有:k 4q ·Q (L +r )2=k Q ·q r 2,解得:r =L ,对点电荷A ,其受力也平衡,则:k 4q ·Q (L +r )2=k 4q ·qL 2,解得:Q =4q ,即C 带正电,电荷量为4q ,在B 的右侧距B 为L 处,故选项C 正确.知识点二 电场线的理解与应用1.电场线的三个特点(1)电场线从正电荷或无限远处出发,终止于无限远或负电荷处. (2)电场线在电场中不相交.(3)在同一幅图中,电场强度较大的地方电场线较密,电场强度较小的地方电场线较疏. 2.六种典型电场的电场线3.两种等量点电荷的电场分析沿连线先变小后变大4.4.一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示,容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是(C)A.A点的电场强度比B点的大B.小球表面的电势比容器内表面的低C.B点的电场强度方向与该处内表面垂直D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同解析:由题图知,B点处的电场线比A点处的密,则A点的电场强度比B点的小,选项A错误;沿电场线方向电势降低,选项B错误;电场强度的方向总是与等势面(容器内表面)垂直,选项C正确;沿任意路径将检验电荷由A点移动到B点,电场力做功都为零,选项D错误.5.如图所示为两个等量点电荷的电场线,图中A点和B点、C点和D点皆关于两电荷连线的中点O对称,若将一电荷放在此电场中,则以下说法正确的是(D)A.电荷在O点受力最大B.电荷沿直线由A到B的过程中,电场力先增大后减小C.电荷沿直线由A到B的过程中,电势能先增大后减小D.电荷沿直线由C到D的过程中,电场力先增大后减小解析:根据电场线的疏密特点,在AB直线上,O点电场强度最小,则受到电场力最小,而在CD直线上,O点的电场强度最大,则受到电场力最大,因此电荷在O点受力不是最大,故A错误.根据电场线的疏密可知,从A到B的过程中,电场强度先减小后增大,则电场力也先减小后增大;同理从C到D的过程中,电场强度先增大后减小,则电场力也先增大后减小,故B错误,D正确.电荷沿直线由A到B的过程中,无法确定电荷做功的正负,因此无法确定电势能变化,故C错误.6.(多选)两个相同的负电荷和一个正电荷附近的电场线分布如图所示,c是两负电荷连线的中点,d点在正电荷的正上方,c、d到正电荷的距离相等,则(ACD)A.a点的电场强度比b点的大B.a点的电势比b点的高C.c点的电场强度比d点的大D.c点的电势比d点的低解析:由题图看出,a点处电场线比b点处电场线密,则a点的场强大于b点的场强,故A正确;电场线从正电荷到负电荷,沿着电场线电势降低,所以b点的电势比a点的高,所以B错误;负电荷在c点的合场强为零,c点只有正电荷产生的电场强度,在d点正电荷产生的场强向上,两个负电荷产生的场强向下,合场强是它们的差值,所以c点的电场强度比d 点的大,所以C正确;正电荷到c点的平均场强大于正电荷到d点的平均场强,根据U=Ed可知,正电荷到c点电势降低的多,所以c点的电势比d点的低;也可以根据电势这样理解:正电荷在d、c两点产生的电势相等,但两个负电荷在d点产生的电势高于c点,所以c点的总电势低于d点,所以D正确.知识点三带电体的力电综合问题1.解决力电综合问题的一般思路2.分析力电综合问题的三种途径(1)建立物体受力图景.①弄清物理情境,选定研究对象.②对研究对象按顺序进行受力分析,画出受力图.③应用力学规律进行归类建模.(2)建立能量转化图景:运用能量观点,建立能量转化图景是分析解决力电综合问题的有效途径.(3)运用等效思维法构建物理模型:电场力和重力做功均与路径无关,在同一问题中可将它们合成一个等效重力,从而使问题简化.典例(2017·北京卷)如图所示,长l=1 m的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向的夹角θ=37°.已知小球所带电荷量q=1.0×10-6 C,匀强电场的场强E=3.0×103 N/C,重力加速度g取10 m/s2,sin37°=0.6,cos37°=0.8.求:(1)小球所受电场力F的大小.(2)小球的质量m.(3)将电场撤去,小球回到最低点时速度v的大小.【审题关键点】解此题应注意两点(1)小球平衡时,正确进行受力分析.(2)撤去电场后,小球会从高处摆下,在小球从开始运动到到达最低点的过程中,机械能守恒.【解析】本题考查物体的平衡与动能定理.(1)F=qE=3.0×10-3 N.(2)由qEmg=tan37°,得m=4.0×10-4 kg.(3)由mgl(1-cos37°)=12m v2,得v=2gl(1-cos37°)=2.0 m/s.【答案】(1)3.0×10-3 N(2)4.0×10-4 kg(3)2.0 m/s【突破攻略】解此类问题应注意三点(1)电子、质子、正负离子等基本粒子在没有明确指出或暗示时一般不计重力,带电油滴、带电小球、带电尘埃等带电体一般计重力;(2)分析研究对象所处的状态是平衡状态(静止或匀速直线运动)还是非平衡状态(变速运动等);(3)根据平衡条件或牛顿第二定律列方程求解.7.有三个完全相同的金属小球A、B、C,其中小球A和B带有等量的同种电荷,小球C(未画出)不带电,如图所示,A球固定在竖直支架上,B球用不可伸长的绝缘细线悬于A球正上方的O点处,静止时细线与竖直方向的夹角为θ.小球C可用绝缘手柄移动,重力加速度为g,现在进行下列操作,其中描述与事实相符的是(B)A.仅将球C与球A接触后离开,B球再次静止时细线中的张力比原来要小B.仅将球C与球B接触后离开,B球再次静止时细线与竖直方向的夹角为θ1,仅将球C与球A接触后离开,B球再次静止时细线与竖直方向的夹角为θ2,则θ1=θ2C.剪断细线瞬间,球B的加速度等于gD.剪断细线后,球B将沿OB方向做匀变速直线运动直至着地解析:仅将球C与球A接触后离开,球A的电荷量减半,致使A、B间的库仑力减小,对球B进行受力分析如图,可知它在三个力的作用下平衡,由三角形相似(图中阴影)可知mgH=TL,故细线的张力大小不变,故A错误;将球C与球B接触后离开,与球C与球A接触后离开这种情况下A、B间的斥力相同,故夹角也相同,故B正确;剪断细线瞬间,球B在重力和库仑力作用下运动,其合力斜向右下方,与原来细线的张力等大反向,故其加速度不等于g,故选项C错误;剪断细线后,球B在空中运动时受到的库仑力随间距的变化而变化,即球B在落地前做变加速曲线运动,故选项D错误.8.(多选)如图所示,竖直平面内有固定的半径为R的光滑绝缘圆形轨道,水平匀强电场平行于轨道平面向左,P、Q分别为轨道的最高、最低点.质量为m、电荷量为q的带正电小球(可视为质点)在轨道内运动,已知重力加速度为g,场强E=3mg4q.要使小球能沿轨道做完整的圆周运动,下列说法中正确的是(BC)A .小球过Q 点时速度至少为5gRB .小球过Q 点时速度至少为23gR2C .小球过Q 、P 点受轨道弹力大小的差值为6mgD .小球过Q 、P 点受轨道弹力大小的差值为7.5mg解析:根据“等效场”知识可得,电场力与重力的合力大小为mg 效=(mg )2+(qE )2=54mg ,则g 效=54g ,如图所示,tan θ=qE mg =34,即θ=37°,当小球刚好通过C 点关于O 对称的D 点时,就能做完整的圆周运动.小球在D 点时,由电场力和重力的合力提供向心力,则54mg =m v 2DR ,从Q 到D ,由动能定理得-mg (R +R cos θ)-qER sin θ=12m v 2D -12m v 2Q ,联立解得v Q =23gR 2,故A 错误,B 正确;在P 点和Q 点,由牛顿第二定律得F Q -mg =m v 2Q R ,F P +mg =m v 2PR ,从Q 到P ,由动能定理得-mg ·2R =12m v 2P -12m v 2Q,联立解得F Q -F P =6mg ,C 正确,D 错误.9.如图所示,绝缘的水平面上有一质量为0.1 kg 的带电物体,物体与水平面间的动摩擦因数μ=0.75,物体恰能在水平向左的匀强电场中向右匀速运动,电场强度E =1×103 N/C ,g 取10 m/s 2.(1)求物体所带的电荷量;(2)只改变电场的方向,使物体向右加速运动,求加速度的最大值及此时电场的方向.解析:(1)物体向右匀速运动,则电场力与摩擦力大小相等,方向相反,因摩擦力方向向左,故电场力方向向右,而电场方向向左,则物体带负电.由Eq =μmg解得q =μmg E=7.5×10-4 C(2)设电场方向与水平方向的夹角为θ,则 Eq cos θ-μ(mg -qE sin θ)=ma 解得a =qEm(cos θ+μsin θ)-μg由数学知识可知,当θ=37°时,cos θ+μsin θ有极大值54,此时a =158 m/s 2即电场方向与水平方向的夹角为37°斜向左下时,加速度有最大值,为a =158m/s 2. 答案:(1)-7.5×10-4 C (2)158m/s 向左下方与水平方向成37°角巧解场强的四种方法场强有三个公式:E =F q 、E =k Q r 2、E =Ud ,在一般情况下可由上述公式计算场强,但在求解带电圆环、带电平面等一些特殊带电体产生的场强时,上述公式无法直接应用.这时,如果转换思维角度,灵活运用补偿法、微元法、对称法、极限法等巧妙方法,可以化难为易.(一)补偿法将有缺口的带电圆环补全为圆环,或将半球面补全为球面. (二)微元法可将带电圆环、带电平面等分成许多微元电荷,每个微元电荷可看成点电荷,再利用公式和场强叠加原理求出合场强. (三)对称法利用空间上对称分布的电荷形成的电场具有对称性的特点,可以使复杂电场的叠加计算大为简化. (四)等效法在保证效果相同的条件下,将复杂的电场情景变换为简单的或熟悉的电场情景.10.(2019·石家庄质检)均匀带电的球壳在球外空间产生的电场等效于电荷集中于球心处产生的电场.如图所示,在半球面AB 上均匀分布正电荷,总电荷量为q ,球面半径为R ,CD 为通过半球面顶点与球心O 的轴线,在轴线上有M 、N 两点,OM =ON =2R .已知M 点的场强大小为E ,则N 点的场强大小为( A )A.kq2R 2-E B.kq 4R 2 C.kq4R 2-E D.kq4R 2+E 解析:左半球面AB 上的正电荷产生的电场等效为带正电荷为2q 的整个球面的电场和带电荷-q 的右半球面的电场的合电场,则E =k 2q(2R )2-E ′,E ′为带电荷-q 的右半球面在M 点产生的场强大小.带电荷-q 的右半球面在M 点的场强大小与带正电荷为q 的左半球面AB 在N 点的场强大小相等,则E N =E ′=k 2q (2R )2-E =kq2R 2-E ,则A 正确. 11.下列选项中的各14圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各14圆环间彼此绝缘.坐标原点O 处电场强度最大的是( B )解析:将圆环分割成微元,根据对称性和矢量叠加,D 项O 点的场强为零,C 项等效为第二象限内电荷在O 点产生的电场,大小与A 项的相等,B 项正、负电荷在O 点产生的场强大小相等,方向互相垂直,合场强是其中一个的2倍,也是A 、C 项场强的2倍,因此B 项正确.12.(2019·济南模拟)MN 为足够大的不带电的金属板,在其右侧距离为d 的位置放一个电荷量为+q 的点电荷O ,金属板右侧空间的电场分布如图甲所示,P 是金属板表面上与点电荷O 距离为r 的一点.几位同学想求出P 点的电场强度大小,但发现问题很难,经过研究,他们发现图甲所示的电场分布与图乙中虚线右侧的电场分布是一样的.图乙中是两等量异号点电荷的电场线分布,其电荷量的大小均为q ,它们之间的距离为2d ,虚线是两点电荷连线的中垂线.由此他们分别对甲图P 点的电场强度方向和大小做出以下判断,其中正确的是( C )A .方向沿P 点和点电荷的连线向左,大小为2kqdr 3B .方向沿P 点和点电荷的连线向左,大小为2kq r 2-d 2r 3C .方向垂直于金属板向左,大小为2kqdr 3D .方向垂直于金属板向左,大小为2kq r 2-d 2r 3解析:据题意,从乙图可以看出,P 点电场方向为水平向左;由图乙可知,正、负电荷在P 点电场的叠加,其大小为E =2k q r 2cos θ=2k qdr3,故选项C 正确.13.如图所示,均匀带电圆环所带电荷量为Q ,半径为R ,圆心为O ,P 为垂直于圆环平面中心轴上的一点,OP =L ,试求P 点的场强.解析:设想将圆环看成由n 个小段组成,当n 相当大时,每一小段都可以看成点电荷,其所带电荷量Q ′=Qn ,由点电荷场强公式可求得每一小段带电体在P 处产生的场强为E =kQ nr 2=kQ n (R 2+L 2).由对称性知,各小段带电体在P 处场强E 的垂直于中心轴的分量E y 相互抵消,而其轴向分量E x 之和即为带电环在P 处的场强E P ,E P =nE x =nk Q n (R 2+L 2)cos θ=k QL(R 2+L 2)32. 答案:k QL(R 2+L 2)32。
电势与电势能练习题一、电场力的功1、特点:电场力做功与路径无关,只与初末位置有关。
2、计算方法(1)由公式W=qE·d (d 为电荷初末位置在电场方向上的位移)(2)由公式AB AB W qU =(AB U 为电荷初末位置A →B 间电势差,注意下标的使用) (3)由电场力做功和电势能的变化的关系:(.AB PA PB PA PB W E E E E =-分别是电荷电场中A 、B 两点的电势能)(4)由动能定理:K E W W ∆=+其他力电场力二、电势能1.电势能:电荷在电场中由其相对位置决定的能(类似重力势能)2.电荷在电场中某点的电势能等于电荷从这点移到零电势能点(通常选大地或无限远处)过程中电场力做的功。
E PA =W A →∞电场力做正功,电势能减少;电场力做负功,电势能增加;电场力不做功,电势能不变。
3.比较电势能的大小 (1)场电荷判断法①离场正电荷越近,检验正电荷的电势能越大;检验负电荷的电势能越小. ②离场负电荷越近,检验正电荷的电势能越小;检验负电荷的电势能越大. (2)电场线法①正电荷顺着电场线的方向移动时,电势能逐渐减小;逆着电场线的方向移动时,电势能逐渐增大.②负电荷顺着电场线的方向移动时,电势能逐渐增大;逆着电场线的方向移动时,电势能逐渐减小.(3)做功判断法无论正、负电荷,电场力做正功,电荷从电势能较大的地方移向电势能较小的地方,反之,如果电荷克服电场力做功,那么电荷将从电势能较小的地方移向电势能较大的地方. 三、电势1.定义:qEPA A =ϕ EPA 为试探电荷在该点A的电势能,q 为电荷量,可以带符号运算。
2.单位:伏特V ,1V=1J/C3.电势是标量,有正负,但没有方向。
规定大地或无限远电势为零。
4.物理意义:描述电场能的特性,由场源电荷量和相对位置来决定,与是否放试探电荷无关。
5.电势高低判断的三种方法(1)根据公式计算:qEPA A =ϕ,带符号代入运算。
《静电场》概念公式总结一求静电力1库仑定律(1)适用于真空中两个点电荷之间(2)计算时不带正负号。
(2)方向:沿二者连线,同斥异吸。
2 F=qE(1)适用于匀强电场(2)计算时不带正负号。
(2)正电荷受力方向与场强方向相同,负电荷受力方向与场强方向相反。
二求电场强度的大小1场强的定义式:E=F/q(1)适用于任何电场(2)计算时不带正负号。
(3)q指的是试探电荷所带的电荷量。
(4)场强E的大小与F、q无关,只由电场本身决定。
2 点电荷的场强:(1)适用于真空中点电荷形成的电场(2)计算时不带正负号。
(3)场强E的大小与场源电荷Q,距Q的距离有关。
距场源电荷越近的位置,场强越大。
3 场强与电势差的关系E=U/d(1)适用于匀强电场,但对于非匀强电场可以定性分析(2)计算时不带正负号。
(3)d指的是A、B两点间沿电场方向的距离。
4 在电场线分布图中,线的疏密代表场强的大小。
线密则场强强,线疏则场强弱。
三判断电场的方向1已知电荷在电场中受力情况场强E的方向与正电荷受力方向相同,与负电荷受力方向相反。
2已知场源电荷的情况正电荷产生的电场:场强方向由正电荷指向无穷远处。
即沿半径向外。
负电荷产生的电场:场强方向由无穷远处指向负电荷,即沿半径向里。
3在电场线分布图中某点的场强方向即该点的切线方向。
4在等势面分布图中电场线垂直于等势面,由电势高的等势面指向电势低的等势面。
5 电场强度的方向即电势降落最快的方向。
四求静电力做功1 功的定义式:w=FLcosα(1)适用于恒力做功,即在匀强电场中。
(2)计算时不带正负号(3)做功的正负看位移(速度)方向与力的方向。
钝角做负功,锐角做正功,垂直不做功。
2静电力做功与电势能的关系:(1)适用于任何电场。
(2)计算时带正负号(2)静电力做正功,电势能减小。
减小的电势能等于静电力做的功。
静电力做负功,电势能增加。
增加的电势能等于克服静电力做的功。
3 静电力做功与电势差的关系:W AB=qU AB(1)适用于任何电场。
【导语】在物理的学习中,学⽣会学习到很多的知识点,下⾯将为⼤家带来关于动能定理的知识点的介绍,希望能够帮助到⼤家。
⾼中物理动能定理的知识点 动能定理的基本概念 合外⼒做的功,等于物体动能的改变量,这就是动能定理的内容。
动能定理还可以表述为:过程中所有分⼒做的功的代数和,等于动能的改变量。
这⾥的合外⼒指研究对象受到的所有外⼒的合⼒。
动能定理的表达式 动能定理的基本表达式:F合s=W=ΔEk; 动能定理的其他表⽰⽅法: ∫Fds=W=ΔEk; F1s1+F2s2+F3s3+……=ΔEk; 功虽然是标量,但有正负⼀说。
最为严谨的公式是第⼆个公式;最常⽤的,有些难度的却是第三个公式。
动能定理根源 我们来推导动能定理,很多学⽣可能认为这是没有必要的,其实恰恰相反。
近⼏年的⾼考物理试题,特别注重基础知识的推导和与应⽤。
理解各个知识点之间的关联,能够帮你更好的理解物理考点。
在内⼼理解了动能定理,知道了它的本源,才能在考试中科学运⽤动能定理来解题。
动能定理的推导分为如下两步: (1)匀变速直线运动下的动能定理推导过程 物体做匀变速直线运动,则其受⼒情况为F合=ma; 由匀变速直线运动的公式:2as=v2-v02;⽅程的两边都乘以m,除以2,有: mas=½(mv2-v02)=Ek2-Ek1=ΔEk; 上述⽅程的左端mas=F合s=W; 因此有:F合s=W=ΔEk; 这就是动能定理在匀变速直线运动情况下的推导过程。
(2)普通直线运动模式下动能定理的推导过程 运⽤微积分的思想,我们普通运动模式进⾏拆分,将其肢解为⾮常⼩的⼀段⼀段的运动(微元法应⽤;请同学们思考下位移公式的推导过程)。
当我们的运动模式被⽆限分割后,每⼀⼩段都可以认为是匀变加速直线运动模式(要么a>0;要么a<0;要么a=0)。
对任何⼀段(从t=m到t=n),我们都可以利⽤(1)中的推理过程得到W=F合s=man=En-Em 对整个过程,我们有: W总=W1+W2+W3+……=ma1+ma2+ma3+……=(E2-E1)+(E3-E2)+(E4-E3)+……+(En-Em)+……=E末-E初 即,W总=E末-E初;这就是普通的直线运动模式下的动能定理推导过程。
1.下列选项中的各
14
圆环大小相同,所带电荷量已在图中标出,且电荷均匀分布,各
14
圆环
间彼此绝缘. 坐标原点O 处电场强度最大的是
2、如图,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、b 、d 三个点,a 和b 、b 和c 、c 和d 间的距离均为R ,在a 点处有一电荷量为q 的固定点电荷。
已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)
A.k
B. k
C. k
D. k
3.如图所示,xOy 平面是无穷大导体的表面,该导体充满
0z <的空间,0z >的空间为真空。
将电荷为q 的点电荷置于z 轴上z=h 处,则在xOy 平
面上会产生感应电荷。
空间任意一点处的电场皆是由点电荷q 和导体表面上的感应电荷共同激发的。
已知静电平衡时导体内部场强处处为零,则在z 轴上2
h
z =
处的场强大小为(k 为静电力常量)
A .24q k
h B .2
49q k h C .2329q k
h D .2
409q
k h 4.如图,电荷量为q 1和q 2的两个点电荷分别位于P 点和Q 点。
已知在P 、Q 连线至某点R 处的电场强度为零,且PR=2RQ 。
则
A .q 1=2q 2
B .q 1=4q 2
C .q 1=-2q 2
D .q 1=-4q 2
5.如图所示,A 、B 均为半个绝缘正方体,质量均为m ,在A 、B 内部各嵌入一个带电小球,A 带电量为+q ,B 带电量为-q ,且两个小球的球心连线垂直于AB 接触面。
A 、B 最初靠在竖直的粗糙墙上。
空间有水平向右的匀强电场,场强大小为E ,重力加速度为g 。
现将A 、B 无初速度释放,下落过程中始终相对静止,忽略空气阻力,则下列说法中正确的是 ( )
A .两物块下落的加速度大小均为g
B .两物块下落的加速度大小应小于g
C .A 、B 之间接触面上的弹力为零
D .B 受到A 的摩擦力作用,方向沿接触面向上 6.如图9所示,两根长均为L 的绝缘细线下端各悬挂质量均为m 的带电小球A 和B ,带电荷量分别为+q 和-q ,若加上水平向左的场强为
E 的匀强电场后,使连接A 、B 的长也为L 的绝缘细线绷紧,且两球均处于平衡状态.则匀强电场的场强大小E 应满足什么条件? 7.在场强为E 、方向竖直向下的匀强电场中,有两个质量均为m 的带电
小球A 和B ,电量分别为+2q 和-q ,两小球间用长为l 的绝缘细线连接,并用绝缘细线悬挂在O 点,如图1所示.平衡时,细线对悬点的作用力多大?
8.如图,质量分别为m A 和m B 的两小球带有同种电荷,电荷量分别为q A 和q B ,用绝缘细线悬挂在天花板上。
平衡时,两小球恰处于同一水平位置,细线与竖直方向间夹角分别为θ1与θ2(θ1>θ2)。
两小球突然失去各自所带电荷后开始摆动,最大速度分别为v A 和v B ,最大动能分别为E kA 和E kB 。
则(
)
(A )m A 一定小于m B (B )q A 一定大于q B (C )v A 一定大于v B (D )E kA 一定大于E kB
9.A 、B 是一条电场线上的两个点,一带负电的微粒仅在电场力作用下以一定初速度从A 点沿电场线运动到B 点,其速度—时间图象如图所示.则这一电场可能是图中的(
)
q 1
10.在匀强电场中,有一质量为m 、带电荷量为q 的带电小球静止在O 点,
然后从O 点自由释放,其运动轨迹为一直线,直线与竖直方向的夹角为
θ,如图1所示,那么关于匀强电场的场强大小,下列说法中正确的是
A .唯一值是mg tan θq
B .最大值是mg tan θ
q
C .最小值是
mg sin θ
q
D .不可能是mg
q
11.如图4所示,光滑绝缘水平面上带异号电荷的小球A 、B ,它们一起在水平向右的匀强
电场中向右做匀加速运动,且保持相对静止.设小球A 的带电荷量大小为Q A ,小球B 的带
电荷量大小为Q B ,下列判断正确的是
A .小球A 带正电,小球
B 带负电,且Q A >Q B B .小球A 带正电,小球B 带负电,且Q A <Q B
C .小球A 带负电,小球B 带正电,且Q A >Q B
D .小球A 带负电,小球B 带正电,且Q A <Q B
12.如图5所示,a 、b 是两个带有同种电荷的小球,用绝缘丝线悬挂于同一点,两球静止
时,它们距水平面的高度相等,绳与竖直方向的夹角分别为α、β,且β>α.若同时剪断两
根细线,空气阻力不计,两球带电荷量不变,则( )
A .a 球的质量比b 球的大
B .a 、b 两球同时落地
C .a 球的电荷量比b 球的大
D .a 、b 两球飞行的水平距离相等
13. ,光滑绝缘细杆与水平面成θ角固定,杆上套有一带正电的小球,
质量为m ,带电荷量为q .为使小球静止在杆上,可加一匀强电场.所
加电场的场强满足什么条件时,小球可在杆上保持静止( ) A .垂直于杆斜向上,场强大小为
mg cos θq B .竖直向上,场强大小为mg
q C .垂直于杆斜向下,场强大小为
mg sin θq D .水平向右,场强大小为mg cot θ
q
14.一个带正电的粒子,从A 点射入水平方向的匀强电场中,粒子
沿直线AB 运动,如图所示.已知AB 与电场线夹角θ=30°,带电
粒子的质量m =1.0×10-7 kg ,电荷量q =1.0×10-10
C ,A 、B 相距L =20 cm.(取g =10 m/s 2,结果保留两位有效数字)求: (1)粒子在电场中运动的性质,要求说明理由. (2)电场强度的大小和方向.
(3)要使粒子从A 点运动到B 点,粒子射入电场时的最小速度是多少?
14.1已知如图,在光滑绝缘水平面上有三个质量都是m 的相同小球,两两间的距离都是l ,A 、B 电荷量都是+q 。
给C 一个外力F ,使三个小球保持相对静止共同加速运动。
求:C 球的带电电性和电荷量;外力F 的大小。
15、A 、B 两点各放有电量为+Q 和+2Q 的点电荷,A 、B 、C 、D 四
点在同一直线上,且AC=CD=DB 。
将一正电荷从C 点沿直线移到D
点,则( ) A 、电场力一直做正功 B 、电场力先做正功再做负功 C 、电场力一直做负功 D 、电场力先做负功再做正功
16.如图6所示,实线是一簇未标明方向的由点电荷产生的电场线, 虚
线是某一带电粒子通过该电场区域时的运动轨迹,a 、b 是轨迹上的两点,
若带电粒子在运动中只受电场力作用,根据此图
可作出正确判断的是
A .带电粒子所带电荷的性质
B .带电粒子在a 、b 两点的受力方向
C .带电粒子在a 、b 两点的速度何处较大
D .带电粒子在a 、b 两点的加速度何处较大
17.如图所示,地面上某区域存在着竖直向下的匀强电场,一个质量
为m 的带负电的小球以水平方向的初速度v 0由O 点射入该区域,刚好通过竖直平面中的P 点,已知连线OP 与初速度方向的夹角为450
,则此带电小球通过P 点时的动能为 ( )
A.
2
mv B.
2
mv /2 C. 220mv D.52
0mv /2
18、如图3-2-11所示,在竖直平面内,有一半径为R 的绝缘的光滑圆环,圆环处于场强大小为E ,方向水平向右的匀强电场中,圆环上的A 、C 两点处于同一水平面上,B 、D 分别为圆环的最高点和最低点. M 为圆环上的一点,∠MOA=45°.环上穿着一个质量为m ,带电量为+q 的小球,它正在圆环上做圆周运动,已知电场力大小qE 等于重力
的大小mg ,且小球经过M 点时球与环之间的相互作用力为零.试确定小球经过A 、B 、C 、D 点时的动能各是多少?。