人教版九年级上册数学【教学设计】 圆周角定理
- 格式:doc
- 大小:443.68 KB
- 文档页数:7
人教版数学九年级上册《圆周角的概念和圆周角定理》教学设计1一. 教材分析《圆周角的概念和圆周角定理》是人教版数学九年级上册第五章第二节的内容。
本节主要让学生理解圆周角的概念,掌握圆周角定理及推论。
教材通过实例引入圆周角的概念,引导学生探究圆周角定理,并通过练习让学生熟练运用圆周角定理解决实际问题。
二. 学情分析九年级的学生已经掌握了八年级的平面几何知识,对图形的性质和变换有一定的了解。
但是,对于圆周角的概念和定理,学生可能还比较陌生。
因此,在教学过程中,需要通过实例和引导,让学生逐步理解和掌握圆周角的概念和定理。
三. 教学目标1.知识与技能:理解圆周角的概念,掌握圆周角定理及推论,能运用圆周角定理解决实际问题。
2.过程与方法:通过观察、操作、探究等方法,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.圆周角的概念。
2.圆周角定理及推论。
3.运用圆周角定理解决实际问题。
五. 教学方法1.情境教学法:通过实例引入圆周角的概念,让学生在实际情境中理解圆周角。
2.启发式教学法:引导学生探究圆周角定理,培养学生的几何思维能力。
3.合作学习法:分组讨论,让学生在团队合作中掌握圆周角定理。
4.巩固练习法:通过适量练习,让学生熟练运用圆周角定理解决实际问题。
六. 教学准备1.教材、教案、课件。
2.三角板、直尺、圆规等几何画图工具。
3.练习题及答案。
七. 教学过程导入(5分钟)教师通过一个实际问题引入圆周角的概念:“在圆形操场上,小明站在圆心,小红站在任意一点,小明观测到小红的角度是多少?”让学生思考并回答,引导学生认识圆周角。
呈现(10分钟)教师通过课件展示圆周角的定义,让学生观察和理解圆周角的特点。
同时,引导学生发现圆周角与圆心角的关系,为学生探究圆周角定理做好铺垫。
操练(10分钟)教师引导学生分组讨论,每组尝试画出几个不同的圆周角,并观察它们的特点。
圆周角教学目标1、学习圆周角概念2、论证圆周角定理教学重点:圆周角的概念和圆周角定理教学难点:发现并论证圆周角定理.一、引入新课在曲线运动中,轨迹是圆周的物体的运动是很常见的,如转动的电风扇上各点的运动,地球和各个行星绕太阳的运动等,今天我们就来学习最简单的圆周运动──匀速圆周运动。
二、探索新知圆周角的定理1、提出圆周角的度数问题问题:圆周角的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.(在教师引导下完成)(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.证明:作出过C的直径(略)圆周角定理:一条弧所对的周角等于它所对圆心角的一半.说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)师:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
例题,如下图,△ABC 内接于00,AB=BC,∠ABC=120°,AD为00的直径,AD=6,那么BD=三、小试牛刀1、如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠ADC=50°,求∠CEB的度数.2、如图,BC是⊙O的直径,A是⊙O上任一点,你能确定∠BAC的度数吗?四、总结这节课你收获了什么?。
人教版数学九年级上册24.1.4《圆周角定理》教学设计一. 教材分析人教版数学九年级上册24.1.4《圆周角定理》是本节课的主要内容。
圆周角定理是圆周角定理系列中的重要定理之一,也是后续学习圆的性质和圆的方程的基础。
本节课的内容包括圆周角定理的证明和应用。
教材通过丰富的例题和练习题,帮助学生理解和掌握圆周角定理,并能够运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,对角的性质有一定的了解。
但是,对于圆周角定理的理解和运用还需要进一步引导和培养。
因此,在教学过程中,需要注重引导学生通过观察和操作,发现和总结圆周角定理的规律。
三. 教学目标1.了解圆周角定理的内容和证明过程。
2.能够运用圆周角定理解决实际问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.圆周角定理的证明过程。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作,发现和总结圆周角定理的规律。
2.运用多媒体辅助教学,展示圆周角定理的证明过程,增强学生的直观感受。
3.通过例题和练习题,让学生在实际问题中运用圆周角定理,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.圆规、直尺等绘图工具。
3.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾相似三角形的性质和角的性质。
让学生思考:在圆中,圆周角和圆心角之间有什么关系?2.呈现(10分钟)展示圆周角定理的证明过程,引导学生观察和理解证明方法。
通过多媒体动画演示,让学生更直观地感受圆周角定理的应用。
3.操练(10分钟)让学生分组讨论,尝试解决一些与圆周角定理相关的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一些例题和练习题,让学生独立解答。
教师选取部分学生的解答进行讲解和分析,巩固所学知识。
5.拓展(10分钟)引导学生思考:圆周角定理在实际问题中的应用。
玻璃乙圆周角的定理 教学目标(一)知识与技能1、理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2、准确地运用圆周角定理及其推论进行简单的证明计算。
(二)过程与方法1、通过观察、比较、分析圆周角与圆心角的关系发展学生合情推理和演绎推理的能力。
2、通过观察图形,提高学生的识图的能力3、通过引导学生添加合理的辅助线,培养学生探究问题的兴趣。
(三)情感与价值观1、经过探索圆周角定理的过程,发展学生的数学思考能力。
2、通过积极引导,帮助学生有意识主动探究,并能在探究中获得成功的体验。
教学重点圆周角定理、圆周角定理的推导及运用它们解题.教学难点1.认识圆周角定理需要分三种情况逐一证明的必要性。
2.推论的灵活应用以及辅助线的添加教学突破让学生学会分类讨论、转换化归是教学突破的关键教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容,制作圆形纸片教学过程活动1: 创设情景,引入概念师:课件(出示圆柱形海洋馆图片)右图是圆柱形海洋馆的俯视图.海洋馆的前侧延伸到海洋里,并用玻璃隔开,人们站在海洋馆内部,透过其中的圆弧形玻璃窗可以观看到窗外的海洋动物.如图是圆柱形的海洋馆横截面的示意图, AB⌒表示圆弧形玻璃窗.同学甲站在圆心O 的位置,同学乙站在正对着玻璃窗的靠墙的位置C,丙、丁分别站在其他靠墙的位置D和E,师:同学甲的视角∠AOB的顶点在圆心处,我们称这样的角为圆心角.同学乙的视角∠ACB、同学丙的视角∠ADB和同学丁的视角∠AEB不同于圆心角,是与圆有关的另一类角,我们称这类角为圆周角.师:提出问题问题1:观察∠ACB、∠ADB和∠AEB的边和顶点与圆的位置有什么共同特点?问题2:∠ACB、∠ADB和∠AEB与∠AOB有什么区别?问题3:∠ACB、∠ADB和∠AEB有哪些共同点?(教师引导学生进行探究,并关注以下问题)1、问题的出示是否引起学生的兴趣2、学生是否理解示意图3、学生是否理解圆周角的定义4、学生是否清楚了要探究的数学问题生:这三个角的共同点有两个:①顶点都在圆周上;②两边都与圆相交.师:评价并鼓励学生的总结给出肯定,我们把顶点在圆上,并且两边都与圆相交的角叫做圆周角.(教师板书圆周角定义,并强调定义的两个要点,学生在学案上写出圆周角的定义.)设计意图:从生活中的实例入手,让学生经历观察、分析,抽象出图形的共同属性,得出圆周角定义,理解圆周角概念的本质.跟踪练习:请同学们根据定义回答下面问题:在下列与圆有关的角中,哪些是圆周角?哪些不是,为什么?(学生思考片刻之后,教师就每个图形分别请一位学生作答.)玻璃乙(C)设计意图:为了使学生更加容易地掌握概念,此处教师并排地呈现正例和反例,可以有利于学生对本质属性与非本质进行比较.活动2:问题探究探究同弧所对圆周角及圆周角与圆心角的关系师:下面我们继续研究海洋馆的问题,设想你是一名游客,甲、乙、丙、丁四位同学的位置供你选择,你认为在哪个位置看到的海洋景象范围更广一些?预设生:(会很肯定的说)当然是同学甲的位置可以看到更广的海洋范围了.师提出:你是如何知道的?预设生1:因为我发现∠AOB 比∠ACB 、∠ADB 和∠AEB 都大.预设生2:因为发现在圆内当角的顶点距离弧越近角就越大师提出:如果在乙、丙、丁三位同学的位置中选择,哪个位置看到的海洋范围更广一些?预设生:(看了图形想了想)三个位置看到海洋范围的大小应该是一样的. 师提出问题:1、弧AB 所对的圆周角的个数有多少个?2、弧AB 所对的圆周角的度数是否发生变化?预设生:有无数个,度数相等师:你是怎么知道的?预设生:观察猜到的。
师:学习数学需要有观察、猜想但更重要的还要验证。
请同学们验证你们的说法,并与同伴交流.师提出问题:弧AB 所对的圆周角与其所对的圆心角有什么关系?(学生分组开始动手操作验证:有的借助量角器,用度量的方法进行验证;有的采用折叠重合的方法进行验证……)预设生:(兴奋地惊叫着……)老师,我发现了:同学乙、丙、丁的视角∠ACB 、∠ADB 和∠AEB 相等,同学甲的视角∠AOB 比其他同学的视角都大,是它们的2倍!(其他同学也都兴奋得不得了,教室里顿时一片欢腾)设计意图:引导学生经历观察、猜想、操作、分析、验证、交流等基本数学活动,探索圆周角的性质,感知基本几何事实,初步体会两种数量关系:①同弧所对的圆周角和圆心角的关系;②同弧所对的圆周角的关系.师:下面,老师用计算机进一步验证我们刚才所得到的结论:(教师开始在计算机上进行验证.)首先采用《几何画板》的度量功能,量出∠AOB、∠ACB、∠ADB和∠AEB,发现:∠AOB最大,∠ACB=∠ADB=∠AEB,接着,采用计算功能,计算∠ACB 和∠AOB的比值,发现:∠ACB:∠AOB=1:2.然后教师分别从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的关系有无变化:①拖动圆周角的顶点使其在圆周上运动;②改变圆心角的度数;③改变圆的半径大小.设计意图:通过《几何画板》做进一步演示与验证,用几何动态的语言来研究圆周角与圆心角的关系,在某些量变化的过程中让学生观察不变的数量关系,帮助学生更好地理解圆周角与圆心角的关系.师:既然这样,我们请一位同学把所发现的结论用文字语言表述一下.预设生1:同弧所对的圆周角相等,并且都等于圆心角的一半.预设生2:他的说法不准确,应该是:在同圆或等圆中,同弧所对的圆周角相等,并且都等于这条弧所对的圆心角的一半.丢掉了“在同圆或等圆中”和“这条弧所对的”这两点.师:前一位同学总结得很好,但后一位同学总结得更准确,我们要学习他们这种严谨治学的态度和精神.设计意图:把直观操作与逻辑推理有机结合,使将要进行的推理论证成为学生观察、实验、探究得出结论的自然延续.活动3:用分类讨论的方法证明定理Array师: 为了更好地说明结论的正确性,下面我们探究其论证⌒所对的圆周方法.先请同学们在右图的⊙O中尽可能多地画AB角,并思考圆心与圆周角有哪几种位置关系?(学生分组画图,每个小组总结所画的图形的情况,教师巡视,在同学们所画的图形中发现圆心与圆周角的三种位置关系的例子,并在展示台上演示.)预设生1:圆心在圆周角的一边上预设生2,圆心在圆周角的内部,预设生3在圆周角的外部.师:圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)师:在上述三种情况中我们先选择其中的一种情况进行证明,选哪种情况,如何证明?(学生先独立思考, 然后在同伴间悄悄交流自己的思路.)预设生:选择第一种情况进行证明,因为圆心在圆周角的一边上,是最简单的一种情况.因为圆心在圆周角的一边上,所以AC 是圆的直径,由同圆半径相等可知,OC=OB ,所以∠C=∠B ,根据定理“三角形的外角等于和它不相邻的两个内角的和”可得,∠AOB=∠C+∠B=2∠C ,即同弧所对的圆周角等于这条弧所对的圆心角的一半.师:证明得非常好,掌声给予鼓励!师:当圆心在圆周角的一边上的时候,圆周角∠ACB 的边AC 部分就是⊙O 的直径,因此给证明思路的寻找带来了不少方便,当圆心不在圆周角的边上时,比如在角的内部,沿CO 对折⊙O ,展开后你有什么发现?对该情况下命题的证明有哪些启示?(学生开始对折圆形纸片,观察,分析,交流……)预设生:由对折发现,可以转化为第一种情况的证明,即,如果做过点C 的直径CD ,那么,由(1)中的结论可知:∠ACD=21∠AOD ,∠BCD=21∠BOD ,两式相加即可得到∠ACB=21∠AOB .师:很好!请同学们在学案上写出这种情况下的证明过程,之后完成最后一种情况的证明,同伴之间交流自己的证明思路.(各小组学生思考交流后一种情况的证明思路,完成证明过程.一名学生黑板上展示证明过程,教师做思路和规范性点评.)设计意图:在本段的教学中,注意突出图形性质的探究过程,重视学生主体地位的落实,通过观察度量、实验操作、图形变换、合情推理来探索图形的性质,从而让学生学会分析问题和解决问题的方法.另外,教学时尽可能地从数学语言C 第一种情况 第二种情况 第三种情况的三种形态“文字语言、图形语言、符号语言”进行描述,以强化对数学知识的学习与理解,加强数学语言的运用与表达.师:通过上面的证明,我们得到:同弧所对的圆周角等于这条弧所对的圆心角的一半.其实,等弧的情况下该命题也是成立的,命题“同弧或等弧所对的圆周角相等”也是正确的,想一想为什么?(教师板书)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.活动4:巩固练习,拓展性质1、如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4各内角分成8个角,这些角中哪些是相等的角?2、如图,点A、B、C、D在⊙O上,若∠C=60°,则∠D=____∠O=____.3、如图,等边△ABC的顶点都在⊙O上,点D是⊙O上一点,则∠BDC=____.价教学效果.)设计意图:习题的作用是将基本知识技能化,通过技能的训练帮助学生理解基本知识.比如在第3题中,学生要求∠BDC,首先要根据定义判断这个角是圆中的什么角?要求它的值应该建立与哪个量的关系?(弧)借助于这个量又可以与谁相联系?(∠A)通过这样的转化考察了学生对定理的理解和应用,并使学生在从复杂的图形中分解出基本图形的训练中,培养空间识图能力.活动5:课堂小结,巩固反思师:问题:本节课你学到了什么知识?从中得到了什么启发?预设生:我这节课学会了圆周角的定义和圆周角的定理,知道圆周角有两个要点,同弧对的圆周角式相等的关系,圆心角和圆周角是二倍的关系.预设生:我通过这节课学会了从特殊到一般的解决问题的方法,知道分类和转化的数学思想.预设生:这节课的学习,我感到很高兴,因为我学到了好些解决问题的方法,更重要的是,老师的提问和鼓励使我认识到自己的能力,相信一定能学好这门课!……师:同学们都反思总结得很好,真诚希望在今后的学习中能一如既往地养成勤反思多总结的好的学习习惯,使我们的学习成绩更上一层楼.布置作业:P87页2、3题,习题24.1第4、5、12题.设计意图:通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.。