一元一次方程追及问题
- 格式:doc
- 大小:7.11 KB
- 文档页数:4
一元一次方程应用题-(含答案)一元一次方程应用题-(含答案)一元一次方程应用题列方程解应用题的一般步骤(解题思路)(1)审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设出未知数:根据提问,巧设未知数.(3)列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)一、相遇与追击问题1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时 3.6km,骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,的车长是多少米?6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)7、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
一元一次方程应用题公式大全1、行程问题 *基本量之间的关系: 路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题快行距+慢行距=原距(2)追及问题快行距-慢行距=原距(3)航行问题 顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系一般情况下问题就能迎刃而解。
并且还常常借助画草图来分析,理解行程问题。
2、工程问题 *一、工程问题中的数量关系:(1)工作时间工作效率工作总量⨯= (2)完成工作总量的时间工作时间工作效率=(3)工作效率工作总量工作时间= (4)各队工作量之和全部工作量之和=(5)各队工作效率之和各队合作工作效率=二、考点归纳考点1 工作总量 = 工作效率×工作时间一件工作,甲单独做x 小时完成,乙单独做y 小时完成,那么甲、乙的工作效率分别为x 1、y 1;甲、乙合作m 天可以完成的工作量为y m x m +或 m y x ⎪⎪⎭⎫ ⎝⎛+11 考点2 全部工作量之和=各队工作量之和相等关系:全部工作量=甲独做工作量+甲、乙合作工作量考点3 甲完成工作量+乙完成工作量=1变式:甲x 天完成的工作量 + 乙y 天完成的工作量 = 13、利润问题 *?利润问题中常用数量:成本价(进价),售价,定价,标价,利润(获利),利润,利润率,盈利; 亏损; 折扣, 原价,现价,?【知识点一】折扣问题常用数量:原价, 现价?,折扣,常用数量关系:现价=原价×折扣折扣=现价÷原价【知识点二】通过了解利润问题的数量关系解决实际问题 ?利润中常用数量及等量关系:.进价(成本)、售价(定价。
标价。
)、利润、利润率 的关系式:利润 = 售价 —售价=标价×折扣数 ()利润 ×100%=利润率 定价=进价×(1+利润率)利润=进价×利润率4、数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c (其中a 、b 、c 均为整数,且1≤a ≤9, 0≤b ≤9, 0≤c ≤9)则这个三位数表示为:100a+10b+c 。
一元一次方程应用题归类聚集〔含答案〕一、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题根本类型〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距二、环行跑道与时钟问题:三、行船与飞机飞行问题:航行问题:顺水〔风〕速度=静水〔风〕速度+水流〔风〕速度逆水〔风〕速度=静水〔风〕速度-水流〔风〕速度水流速度=〔顺水速度-逆水速度〕÷2四、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1.一元一次方程应用题型1.两车站相距275km,慢车以50km/一小时的速度从甲站开往乙站,1h时后,快车以每小时75km的速度从乙站开往甲站,那么慢车开出几小时后与快车相遇?设慢车开出a小时后与快车相遇50a+75〔a-1〕=27550a+75a-75=275125a=350a=2.8小时2.一辆汽车以每小时40km的速度由甲地开往乙地,车行3h后,因遇雨,平均速度被迫每小时减少10km,结果到乙地比预计的时间晚了45min,求甲乙两地间隔。
设原定时间为a小时45分钟=3/4小时根据题意40a=40×3+〔40-10〕×〔a-3+3/4〕40a=120+30a-67.510a=52.5a=5.25=5又1/4小时=21/4小时所以甲乙间隔40×21/4=210千米3、某车间的钳工班,分两队参见植树劳动,甲队人数是乙队人数的 2倍,从甲队调16人到乙队,那么甲队剩下的人数比乙队的人数的一半少3人,求甲乙两队原来的人数?解:设乙队原来有a人,甲队有2a人那么根据题意2a-16=1/2×〔a+16〕-34a-32=a+16-63a=42a=14那么乙队原来有14人,甲队原来有14×2=28人如今乙队有14+16=30人,甲队有28-16=12人4、某商店3月份的利润为10万元,5月份的利润为13.2万元,5月份月增长率比4月份增加了10个百分点.求3月份的月增长率。
一元一次方程应用题解题方法和技巧一元一次方程应用题解题方法和技巧如下:方法:(1)和差倍分问题:①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长,公率......”来体现。
②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。
(2)行程问题:基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间。
路程=速度×时间。
①相遇问题:快行距+慢行距=原距。
②追及问题:快行距-慢行距=原距。
③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度。
逆水(风)速度=静水(风)速度-水流(风)速度。
技巧:1、注意语言与解析式的互化:如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”等。
2、注意从语言叙述中写出相等关系:如,x比y大3,则x-y=3或x=y+3或x-3=y。
3、注意单位换算:如,“小时”、“分钟”的换算;s、v、t单位的一致等。
一元一次方程:一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
一元一次方程最早见于约公元前1600年的古埃及时期。
公元820年左右,数学家花拉子米在《对消与还原》一书中提出了“合并同类项”、“移项”的一元一次方程思想。
16世纪,数学家韦达创立符号代数之后,提出了方程的移项与同除命题。
1859年,数学家李善兰正式将这类等式译为一元一次方程。
一元一次方程的应用之追及问题——初中数学第一册教案第16课4。
4一元一次方程的应用之追及问题教学目的一、使学生会分析相向而行的同时与不同时动身的相遇问题中的相等关系,列出一元一次方程解简单的应用题。
二、使学生增强了解列一元一次方程解应用题的方式步骤。
教学分析重点:利用路程、速度、时间的关系,按照相遇问题中的相等关系,列出一元一次方程。
难点:寻觅相遇问题中的相等关系。
冲破:同时动身到相遇时,所历时间相等。
注重审题,从而找到相等关系。
教学进程一、温习一、列方程解应用题的一般步骤是什么?二、路程、速度、时间的关系是什么?3、慢车每小时行驶48千米,x小时行驶千米,快车每小时行驶72千米,若是快车先开0。
5小时,那么慢车开出x小时后,快车行驶了千米。
二、新授一、引入列方程解应用题,关键是寻觅相等关系,今天咱们通过一例来学习如何寻觅相等关系,和把相等关系表示成方程的方式。
例(讲义P216例3)题目见教材。
分析:(1)可以画出图形,明显有这样的相等关系:慢车行程+快车行程=两站路程设两车行了x小时相遇,则两车的行程的代数式别离为85x,65x,放入相等关系中,即可得出方程:85x+65x=450(2)再分析快车先开了30分两车相向而行的情形。
一样画出图形,并按讲义讲解,(见教材P217~218)由学生完成求解进程,并作出答案。
解:略说明:(1)本题是相向而行的相遇问题,一路点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。
不同点是一个同时动身,一个不是同时动身,所以所历时间不必然相等。
(2)不是同时动身的,要注意时间的关系。
三、练习P220练习:1,2。
四、小结一、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。
二、相向而行的相遇问题中,要注意时间的关系。
五、作业一、P222 4。
4A:13,14,15。
二、基础训练:同步练习3。
一元一次方程追及问题一元一次方程追及问题是初中数学中的一个重要知识点,也是我们日常生活中常见的问题。
例如,当两个人在同一条直道上奔跑,若他们起始位置不同、速度不同,那么在什么时间,一个人能够追上另一个人,这就是一元一次方程追及问题。
当然,在现实生活中,追及问题不仅仅局限于奔跑,还有车辆、同船漂流等情况。
下面本文将详细介绍一元一次方程追及问题以及解题方法。
一、理论基础
在学习一元一次方程追及问题之前,我们需要了解一些基本的知识点。
首先是速度的概念,速度可以理解为某个物体的位移变化量与时间的比值。
在追及问题中,速度是一个非常重要的参数,通常表示为v(velocity)。
其次,我们需要了解时间和路程的概念,时间就是指某个物体运动所需要的时间,通常表示为t(time),路程就是指某个物体在特定时间内所运动的距离,通常表示为s (distance)。
此外,在物理学中,还有一个常用单位——米每秒,也就是m/s,是表示速度的标准单位。
在了解了这些基本概念后,我们就可以开始解决一元一次方程追及问题了。
对于一元一次方程追及问题,我们通常需要建立起一个关于时间的方程。
在方程中,我们需要确定两个物体的初始位置、速度以及它们的相对关系。
然后,把这些信息代入方程中,就可以求得它们相遇所需要的时间。
二、解题方法
具体来说,解决一元一次方程追及问题的方法主要有以下几种:
1、建立关于时间的方程式
在解决一元一次方程追及问题中,首先需要建立起一个关于时间的方程。
方程中的未知量通常是时间t,利用题目中所给出的速度v和距离s,我们可以将题目中的关键信息代入方程中,从而得到一个关于时间的方程。
例如,这里给出一个样例:若A从地点1开始,以10m/s的速度向地点2移动,当他到达地点2时,B从地点3以20m/s的速度出发向地点2移动,求A、B两人相遇的时间和位置。
首先,我们设两人相遇的时间为t,那么在这段时间里,A和B所运动的路程分别是10t和20(t-t1)(t1为B 先行的时间)。
由此可得方程:10t = 20(t-t1)。
同时,两人相遇的位置为地点2,根据勾股定理可得(2t1+40)² = 100t1²,即4t1² + 80t1 - 400 = 0。
解以上方程组,就可以得到A、B两人相遇的时间和位置。
2、利用比例关系
在一些简单的问题中,我们可以使用比例关系来解决问题。
例如,有两个人在同一条直道上奔跑,人A的速度
是人B的一倍,那么当A从B的后面超过他的时候,他们各自所走的距离比是多少?此时我们可以设A所走的距离为x,B所走的距离为y,则有x = 2y,而当A超过B的时候,A所走的距离等于B所走的距离加上自己跑的距离,即x = y + d(d为A与B之间的距离)。
代入原比例式中可得y = d/3,x = 2d/3,因此,y与x的比是1:2。
3、利用平均速度公式
平均速度公式是解决一元一次方程追及问题时经常使用的公式之一。
平均速度公式表明,两个物体相遇的时间等于它们之间距离的平均速度所需的时间。
所以,如果两个物体之间的距离以及它们的速度已知,我们就可以利用平均速度公式求出它们相遇所需的时间。
例如,两辆车A、B从同一地点出发,A的速度为50km/h,B的速度为
60km/h,它们相遇的时间是6小时,求它们之间的距离。
这时,我们可以利用平均速度公式进行求解:设A、B之间的距离为d,则有d = 50t + 60t = 6(50+60)。
因此,它们之间的距离为:660公里。
三、注意事项
在解决一元一次方程追及问题时,需要注意以下几个方面:
1、建立方程时,应根据题目要求确定两个物体的初始位置、速度以及它们的相对关系。
2、在方程中,未知量通常是时间t,代入初始信息,建立关于时间的方程。
3、在求解方程时,应根据实际情况,灵活运用各种数学方法。
4、需要注意单位的换算,特别是速度的单位,应该将其统一转换成一个标准单位,如m/s或km/h。
总而言之,一元一次方程追及问题是我们生活中常见的一类问题,能够灵活运用解题方法,可以帮助我们更好地理解和解决这类问题。
在解决问题时,要根据题目的特点,灵活采用不同的方法,从而更好地解决问题。