分式培优讲义(1)
- 格式:doc
- 大小:457.00 KB
- 文档页数:13
分式1. 分式的概念:形如BA(A,B 是整式,且B 中含有字母)。
要使分式有意义,作为分母的整式B 的值不能为0,即B ≠0。
要使分式的值为0,只能分子的值为0,同时保证分母的值不为0,即A=0,且B ≠0。
1、式子①x 2 ②5y x + ③a -21 ④1-πx中,是分式的有( )A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x ax 中,当a x -=时,下列结论正确的是( )A .分式的值为零 B.分式无意义C. 若31-≠a 时,分式的值为零D. 若31≠a 时,分式的值为零3. 若分式1-x x无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4.如果分式x 211-的值为负数,则的x 取值范围是( )A.21≤xB.21<xC.21≥xD.21>x2. 分式的基本性质:分式的分子,分母同时乘以,或除以一个不等于0的整式,分式的值不变。
即B A =CB C A ⋅⋅ ,B A =CB C A ÷÷ (C ≠0) 1.不改变分式的值,使分式115101139x yx y -+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .902.下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a bc+;④m n m --=-m n m-中,成立的是( )A .①②B .③④C .①③D .②④3.不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+4.对于分式11-x ,永远成立的是( ) A .1211+=-x x B. 11112-+=-x x x C. 2)1(111--=-x x x D. 3111--=-x x 5.下列各分式正确的是( )A.22a b a b =B. b a b a b a +=++22C. a a a a -=-+-11122D. xx xy y x 2168432=--3. 最简分式及分式的约分与通分:1)最简分式:分子分母没有公因式的分式称之为最简分式。
《分式》全章复习与巩固(基础)【学习目标】1. 理解分式的概念,能求出使分式有意义、分式无意义、分式值为0的条件.2.了解分式的基本性质,掌握分式的约分和通分法则.3.掌握分式的四则运算.4.结合分析和解决实际问题,讨论可以化为一元一次方程的分式方程,掌握这种方程的解法,体会解方程中的化归思想.【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简. 要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算 a b a b c c c ±±= ;同分母的分式相加减,分母不变,把分子相加减. ;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算 a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算 a c a d ad b d b c bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠. 两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.【典型例题】类型一、分式及其基本性质1、在ma y x xy x x x x 1,3,3,)1(,21,12+++π中,分式的个数是( ) A.2 B.3 C.4 D.5【答案】C ;【解析】()21131x x a x x x y m+++,,,是分式. 【总结升华】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、当x 为何值时,分式293x x -+的值为0? 【思路点拨】先求出使分子为0的字母的值,再检验这个值是否使分母的值等于0,当它使分母的值不等于0时,这个值就是要求的字母的值.【答案与解析】解: 要使分式的值为0,必须满足分子等于0且分母不等于0.由题意,得290,30.x x ⎧-=⎨+≠⎩解得3x =. ∴ 当3x =时,分式293x x -+的值为0. 【总结升华】分式的值为0的条件是:分子为0,且分母不为0,即只有在分式有意义的前提下,才能考虑分式值的情况. 举一反三:【变式】(1)若分式的值等于零,则x =_______;(2)当x ________时,分式没有意义.【答案】(1)由24x -=0,得2x =±. 当x =2时x -2=0,所以x =-2;(2)当10x -=,即x =1时,分式没有意义. 类型二、分式运算3、计算:2222132(1)441x x x x x x x -++÷-⋅++-. 【答案与解析】解:222222132(1)(1)1(2)(1)(1)441(2)(1)1x x x x x x x x x x x x x x -+++-++÷-⋅=⋅⋅++-+-- 22(1)(2)(1)x x x +=-+-. 【总结升华】本题有两处易错:一是不按运算顺序运算,把2(1)x -和2321x x x ++-先约分;二是将(1)x -和(1)x -约分后的结果错认为是1.因此正确掌握运算顺序与符号法则是解题的关键.举一反三:【变式】(2020•滨州)化简:÷(﹣)【答案】解:原式=÷=• =﹣. 类型三、分式方程的解法4、(2020•呼伦贝尔)解方程:.【思路点拨】观察可得最简公分母是(x ﹣1)(x +1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【答案与解析】解:方程的两边同乘(x ﹣1)(x +1),得3x +3﹣x ﹣3=0,解得x=0.检验:把x=0代入(x ﹣1)(x +1)=﹣1≠0.∴原方程的解为:x=0.【总结升华】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.举一反三:【变式】()1231244x x x -=---, 【答案】解: 方程两边同乘以()24x -,得()()12422332x x x =---=-∴ 检验:当32x =-时,最简公分母()240x -≠, ∴32x =-是原方程的解.类型四、分式方程的应用5、(2020•东莞二模)某市为治理污水,需要铺设一条全长为600米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加20%,结果提前5天完成这一任务,原计划每天铺设多少米管道?【思路点拨】先设原计划每天铺设x 米管道,则实际施工时,每天的铺设管道(1+20%)x 米,由题意可得等量关系:原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,最后检验并作答.【答案与解析】解:设原计划每天铺设x 米管道,由题意得: ﹣=5,解得:x=20,经检验:x=20是原方程的解.答:原计划每天铺设20米管道.【总结升华】本题主要考查分式方程的应用,解题的关键是熟练掌握列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.举一反三:【变式】小明家、王老师家、学校在同一条路上,并且小明上学要路过王老师家,小明到王老师家的路程为3 km ,王老师家到学校的路程为0.5 km ,由于小明的父母战斗在抗震救灾第一线,为了使他能按时到校、王老师每天骑自行车接小明上学.已知王老师骑自行车的速度是他步行速度的3倍,每天比平时步行上班多用了20 min ,王老师步行的速度和骑自行车的速度各是多少?【答案】解:设王老师步行的速度为x km/h ,则他骑自行车的速度为3x km/h . 根据题意得:230.50.520360x x ⨯+=+. 解得:5x =.经检验5x =是原方程的根且符合题意.当5x =时,315x =.答:王老师步行的速度为5km/h ,他骑自行车的速度为15km/h .。
第3课时 分式考点综述:中考中对于分式的要求是了解分式的概念,会利用分式基本性质约分和通分,会进行简单的分式运算。
中考的考查多以填空、选择、计算等形式出现,在解决相关问题时,还要求能结合类比转化等数学思想方法。
中考知识梳理1.弄清分式有意义,无意义和值为零的条件分式有意义的条件是分母不为零;无意义的条件是分母为零;值为零的条件是分子为零且分母不为零,弄懂这几个条件是做分式题很重要的一点.2.分式基本性质的灵活应用利用分式的基本性质熟练进行约分和通分,这是分式运算的基础,利用分式的基本性质时,要注意分子、分母同乘以和除以不为零的整式.3.会进行分式的四则运算分式的四则运算主要出现在化简中,与通分、约分、分式的基本性质联合,要保证最后结果为最简分式. 考点精析考点1 分式(1)分式的概念:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么代数式B A 叫做分式,其中A 是分式的分子,B 是分式的分母。
(2)分式有意义、无意义、等于0、大于0、小于0的条件①分式有意义的条件:分母不等于0;②分式无意义的条件:分母等于0;③分式的值等于0的条件:分子等于0且分母不等于0;④分式的值为正的条件:分子、分母同号;⑤分式的值为负的条件:分子、分母异号。
(3)有理式的定义 整式和分式统称为有理式,即⎩⎨⎧分式整式有理式。
考点2 分式的基本性质 (1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于0的数或整式,分式的值不变。
用式子表示为:M B M A B A ∙∙=,MB M A B A ÷÷=(其中M 是不等于0的数或整式)。
注意:①基本性质中的A 、B 、M 表示的是数或整式,其中B ≠0是已知条件中的隐含条件,一般在解题过程中不需要强调;M ≠0是在解题过程中另外附加的条件,在运用分式的基本性质时,必须重点强调M ≠0这个前提条件。
②应用分式的基本性质时,要深刻理解“都”和“同”这两个字的含义,避免犯只乘分子或分母一项的错误。
分式一、从分数到分式:(1).分式定义:一般地,形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母。
整式和分式称为有理式。
注意:判断代数式是否是分式时不需要化简。
例:下列各式πa ,11x +,15x y +,22a b a b --,23x -,0•中,是分式的有___ ________;是整式的有_____ ______;是有理式的有_________. 练习:1.下列各式:①312-x ;②x x 22;③21x;④πv.其中分式有 。
2.在代数式m 1,41,xyy x 22,yx +2,32a a +中,分式的个数是 。
(2)分式有意义的条件:分母不等于0. 例:下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.练习:1.当___________________时,分式)2)(1(--x x x有意义.2.当____________________时,分式2)2(--x x x 无意义. 3.当m____________时,分式mm 4127-+有意义.4.下列各式中,不论字母x 取何值时分式都有意义的是( )A.121+x B.15.01+x C.231x x - D.12352++x x 5.下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x+ D .2221x x +7.使分式||1xx -无意义,x 的取值是( )A .0B .1C .1-D .1±8.应用题:一项工程,甲队独做需a 天完成,乙队独做需b 天完成,问甲、乙两队合作,需________天完成.(3)分式的值为0:分子等于0,分母不等于0例:1.当x=____________时,分式xxx -2的值为0,2.当x _______时,分式2212x x x -+-的值为零.3.当x _______时,分式15x -+的值为正;当x ______时,分式241x -+的值为负.4.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++练习: 1.分式24xx -,当x _______时,分式有意义;当x _______时,分式的值为零. 2.若分式34922+--x x x 的值为零,则x 的值为3.当m =________时,分式2(1)(3)32m m m m ---+的值为零. 4.若分式23xx -的值为负,则x 的取值是( ) A.x <3且x≠0 B.x >3 C.x <3 D.x >-3且x≠0 5.分式31x ax +-中,当x a =-时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若13a -≠时,分式的值为零; D .若13a ≠时,分式的值为零 6.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++7.已知123x y x-=-,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(3)y 的值是零;(4)分式无意义. 8.若分式212xx -+的值是正数、负数、0时,求x 的取值范围. 9.已知34=y x ,求2222532253y xy x y xy x -++-的值. 10.已知13x y 1-=,求5352x xy yx xy y +---的值. 二、分式的基本性质:分式的分子或分母同时乘以或除以一个不等于0的整式,分式的值不变。
分式一、基本知识1、分式定义:形如BA的式子叫分式,其中A 、B 是整式,且B 中含有字母。
(1)分式无意义:B=0时,分式无意义; B ≠0时,分式有意义。
(2)分式的值为0:A=0,B ≠0时,分式的值等于0。
(3)分式的约分:把一个分式的分子与分母的公因式约去叫做分式的约分。
方法是把分子、分母因式分解,再约去公因式。
(4)最简分式:一个分式的分子与分母没有公因式时,叫做最简分式。
分式运算的最终结果若是分式,一定要化为最简分式。
(5)通分:把几个异分母的分式分别化成与原来分式相等的同分母分式的过程,叫做分式的通分。
(6)最简公分母:各分式的分母所有因式的最高次幂的积。
(7)有理式:整式和分式统称有理式。
2、分式的基本性质: (1))0(的整式是≠⋅⋅=M M B M A B A ;(2))0(的整式是≠÷÷=M MB M A B A (3)分式的变号法则:分式的分子,分母与分式本身的符号,改变其中任何两个,分式的值不变。
3、分式的运算:(1)加、减:同分母的分式相加减,分母不变,分子相加减;异分母的分式相加减,先把它们通分成同分母的分式再相加减。
(2)乘:先对各分式的分子、分母因式分解,约分后再分子乘以分子,分母乘以分母。
(3)除:除以一个分式等于乘上它的倒数式。
(4)乘方:分式的乘方就是把分子、分母分别乘方。
二、例题讲析 1、 (2011黑龙江黑河,18,3分)分式方程=--11x x)2)(1(+-x x m 有增根,则m 的值为 ( )A 0和3B 1C 1和-2D 3 【答案】D2、 (2011年铜仁地区,4,4分)小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A.60512601015-=+x x B.60512601015+=-x x C.60512601015-=-x x D.5121015-=+x x .【答案】A3、(2011内蒙古包头,17,3分)化简122144112222-++÷++-⋅-+a a a a a a a ,其结果是 . 【答案】11-a 4. (2011广西梧州,24,10分)由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每台降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元.(1)今年甲型号手机每台售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每台进价为1000元,乙型号手机每台进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20台,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一台乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?【答案】解:(1)设今年甲型号手机每台售价为x 元,由题意得, 80000x+500=60000x . 解得x =1500. 经检验x =1500是方程的解.故今年甲型号手机每台售价为1500元. (2)设购进甲型号手机m 台,由题意得, 17600≤1000m +800(20-m )≤18400, 8≤m ≤12.因为m 只能取整数,所以m 取8、9、10、11、12,共有5种进货方案. (3)方法一: 设总获利W 元,则W =(1500-1000)m +(1400-800-a )(20-m ), W =(a -100)m +12000-20a .所以当a =100时,(2)中所有的方案获利相同. 方法二:由(2)知,当m =8时,有20-m =12.此时获利y 1=(1500-1000)×8+(1400-800-a )×12=4000+(600-a )×12 当m=9时,有20-m=11此时获利y 2=(1500-1000)×9+(1400-800-a )×11=4500+(600-a )×11 由于获利相同,则有y 1= y 2.即4000+(600-a )×12=4500+(600-a )×11,解之得a =100 .所以当a =100时,(2)中所有方案获利相同. 5. (2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位 清淤费用(元/m 3) 清淤处理费(元)甲公司18 5000 乙公司20 0 (1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0.4米,那么请哪个清淤公司进行清淤费用较省,请说明理由。
一、选择题1.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( ) A .扩大到原来的3倍 B .缩小到原来的13 C .保持不变 D .无法确定A解析:A【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案.【详解】 222(3)93333()x x x x y x y x y==⨯+++, 故分式的值扩大到原来的3倍,故选:A .【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键. 2.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯B .-77.610⨯C .-87.610⨯D .-97.610⨯ C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解 3.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =± D .0m = B 解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.4.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠B .0x =C .1x ≠-D .2x = A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】 ∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.5.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-4A 解析:A【分析】根据分式的值为0的条件可以求出x 的值;分式为0时,分子为0分母不为0;【详解】由分式的值为0的条件得x-3=0,x+4≠0,由x-3=0,得x=3,由x+4≠0,得x≠-4,综上,得x=3时,分式34x x -+ 的值为0; 故选:A .【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.6.计算()3222()m m m -÷⋅的结果是( ) A .2m -B .22mC .28m -D .8m - C解析:C先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()m m m -÷⋅ =()468m m -÷=()468m m -÷ =28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.7.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭ =()()a a 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-. 故选C .本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.8.分式242x x -+的值为0,则x 的值为( ) A .2-B .2-或2C .2D .1或2C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x 2-4=0,且x+2≠0,所以x 2=4,且x≠-2,解得,x=2.故选:C .【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.下列分式中,最简分式是( ) A .211x x +- B .2211x x -+ C .2222x xy y x xy -+- D .21628x x -+ B 解析:B【分析】 最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;【详解】A 、()()21111111x x x x x x ++==-+-- ; B 、2211x x -+ 的分子分母不能再进行约分,是最简分式; C 、()()22222x y x xy y x y x xy x x y x--+-==-- ; D 、()()()24416428242x x x x x x +---==++ ; 故选:B .【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.10.已知227x ,y ==-,则221639y x y x y ---的值为( ) A .-1B .1C .-3D .3B解析:B【分析】 先通分,再把分子相加减,把x 、y 的值代入进行计算即可.【详解】原式=()()16333y x y x y x y --+- =()()3633x y y x y x y +-+-=()()333x y x y x y -+- =13x y+, 当227x ,y ==-,原式=112221=-, 故选B .【点睛】 本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.二、填空题11.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷=2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13 故答案为:13【点睛】 本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.已知2510m m -+=,则22125m m m -+=____.22【分析】根据m2﹣5m+1=0可得m+=55m=m2+1然后将原分式适当变形后整体代入计算即可【详解】解:∵m2﹣5m+1=0∴m ﹣5+=05m=m2+1∴m+=5∴2m2﹣5m+=2m2﹣m2解析:22【分析】根据m 2﹣5m+1=0可得m +1m =5,5m=m 2+1,然后将原分式适当变形后整体代入计算即可.【详解】解:∵m 2﹣5m+1=0,∴m ﹣5+1m =0,5m=m 2+1, ∴m +1m=5, ∴2m 2﹣5m+21m =2m 2﹣m 2﹣1+21m =m 2+21m ﹣1 =(m +1m)2﹣3 =52﹣3=25﹣3=22.故答案为:22.【点睛】 本题考查分式的求值.掌握整体代入思想是解题关键.在本题中还需理解22211()2m m m m+=++. 14.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品?根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________.(2)乙型机器人每小时搬运产品_______________kg .【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每 解析:80060010x x=+80060010y y =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】(1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.15.观察给定的分式,探索规律:(1)1x ,22x ,33x ,44x ,…其中第6个分式是__________; (2)2x y ,43x y -,65x y ,87x y-,…其中第6个分式是__________; (3)2b a -,52b a ,83b a -,114b a,…其中第n 个分式是__________(n 为正整数).【分析】(1)分子是连续正整数分母是以x 为底指数是连续正整数第六个分式的分子是6分母是x6(2)分子是以x 为底指数是连续偶数分母是以y 为底指数是连续奇数第奇数个分式符号是正第偶数个分式符号为负第六个 解析:66x 1211x y - 31(1)n n n b a--【分析】(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,第六个分式的分子是6,分母是 x 6(2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,第六个分式是负号,分子是x 12,分母是 y 11,(3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个分式的符号是(-1)n , 分子是b 3n-1,分母是 a n ,【详解】解:(1)分子是连续正整数,分母是以x 为底,指数是连续正整数,所以,第六个分式是66x , (2)分子是以x 为底,指数是连续偶数,分母是以y 为底,指数是连续奇数,第奇数个分式符号是正,第偶数个分式符号为负,所以,第六个分式是1211x y-, (3)分子是以b 为底,第一个指数是2,以后依次加3,所以第n 个指数是3n-1;分母是以a 为底,指数是连续正整数,第奇数个分式符号是负,第偶数个分式符号为正,第n 个符号为(-1)n ,所以,第六个分式是31(1)n nn b a-- 【点睛】 本题考查了数字之间的规律,连续正整数、奇数、偶数和依次递增3的数字规律,包括符号依次变化规律,熟练掌握特殊数字之间的规律是解题关键16.23()a -=______(a≠0),2-=______,1-=______.【分析】根据负整数指数幂的运算法则计算即可【详解】=;;【点睛】此题考查了负整数指数幂:a-n=也考查了分母有理化解析:61a 13+ 【分析】 根据负整数指数幂的运算法则计算即可.【详解】23()a -=661a a -==;2-==13;1-=== 【点睛】此题考查了负整数指数幂:a -n =1(0)n a a ≠.也考查了分母有理化. 17.已知关于x 的分式方程211a x +=+的解是负数,则a 的取值范围_____________.且【分析】先解分式方程得到x=a+1根据方程的解是负数列不等式a+1<0且a+20求解即可得到答案【详解】解:a+2=x+1x=a+1∵方程的解是负数x≠-1∴a+1<0且a+20解得a<-1且a-解析:1a <-且2a ≠-【分析】先解分式方程得到x=a+1,根据方程的解是负数,列不等式a+1<0,且a+2≠0,求解即可得到答案.【详解】 解:211a x +=+ a+2=x+1x=a+1, ∵方程的解是负数,x≠-1∴a+1<0,且a+2≠0,解得a<-1,且a ≠-2,故答案为:1a <-且2a ≠-.【点睛】此题考查解分式方程,根据分式方程的解的情况求参数的取值范围,解题中考虑分式的分母不等于0的情况.18.已知114y x-=,则分式2322x xy y x xy y +---的值为______.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键 解析:112【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果.【详解】 ∵114y x-=, ∴x-y=4xy , ∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---,故答案为:112. 【点睛】 此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.19.约分:22618m n mn=-________________【分析】根据分式的基本性质:分子和分母同时除以6mn 化简【详解】故答案为:【点睛】此题考查分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式分式的值不变 解析:3m n-【分析】根据分式的基本性质:分子和分母同时除以6mn 化简.【详解】 22618m n mn=-3m n -, 故答案为:3m n -. 【点睛】此题考查分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不等于零的整式,分式的值不变.20.九年级()1班学生周末从学校出发到某实践基地研学旅行,实践基地距学校150千米,一部分学生乘慢车先行,出发30分钟后,另一部分学生乘快车前往,结果他们同时到达实践基地,已知快车的速度是慢车速度的1.2倍,如果设慢车的速度为x 千米/时,根据题意列方程为________.【分析】设慢车的速度为x 千米/小时则快车的速度为12x 千米/小时根据题意可得走过150千米快车比慢车少用小时列方程即可【详解】解:设慢车的速度为则快车的速度为根据题意得:故答案为:【点睛】本题考查了 解析:15011502 1.2x x-= 【分析】设慢车的速度为x 千米/小时,则快车的速度为1.2x 千米/小时,根据题意可得走过150千米,快车比慢车少用12小时,列方程即可. 【详解】解:设慢车的速度为xkm /h ,则快车的速度为1.2xkm /h , 根据题意得:1501150x 2 1.2x-=.故答案为:1501150x 2 1.2x-=. 【点睛】 本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出合适的等量关系,列方程.三、解答题21.先化简,再求值:213(1)211x x x x x +--÷-+-,其中4x =-. 解析:1x x -;45【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里的,然后代入求值即可.【详解】 解:213(1)211x x x x x +--÷-+- =2221(1)1(1)3x x x x x x -+-+-⨯-- =222111(1)3x x x x x x -+---⨯-- 2231(1)3x x x x x --=⨯-- 2(3)1(1)3x x x x x --=⨯-- 1x x =- 当4x =-时,原式441415x x -===---. 【点睛】 本题考查分式的混合运算,分式的化简求值,掌握运算顺序和计算法则正确计算是解题关键.22.先化简,再求值:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦,其中12a =,112b -⎛⎫=- ⎪⎝⎭. 解析:a b --,32【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把a 与b 的值代入计算即可求出值.【详解】解:()()()()2222222a b a b b a a a b a ⎡⎤-+-+--÷⎣⎦()22222444422a ab b a b a ab a ⎡⎤=-++---÷⎣⎦()2224422a ab a ab a =--+÷()2222a ab a =--÷a b =--, ∵1122b -⎛⎫=-=- ⎪⎝⎭∴当12a =,2b =-时,原式()13222=---=. 【点睛】 本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.23.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =, 经检验, = 5x 是原方程的解,且符合题意,1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.24.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.25.先化简,再求值:2246221121x x x x x x ++⎛⎫-÷⎪---+⎝⎭,其中x 取-1、+1、-2、-3中你认为合理的数. 解析:22(1)x x -+;3x =-;4 【分析】先算分式的减法运算,再把除法化为乘法,进行约分化简,再代入求值,即可.【详解】 原式2462(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++=-÷⎢⎥+-+--⎣⎦ 224(1)(1)(1)(2)x x x x x +-=⋅+-+ ()211x x -=+221x x -=+ 当3x =-时,原式2(3)2431⨯--==-+. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,是解题的关键.26.解答下列各题:(1)计算:()()()2233221x x x x x -⋅++--+(2)计算:()()()33323452232183a b cac a b a c -⋅÷-÷ (3)解分式方程:11222x x x++=-- 解析:(1)5x -;(2)19b ;(3)23x =【分析】 (1)首先利用同底数幂的乘法法则、平方差公式、完全平方公式计算,然后合并同类项求出答案;(2)先算积的乘方、幂的乘方,再从左到右计算同底数幂的乘法除法求出答案;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()2233221x x x x x -⋅++--+=223421x x x x +----=5x -;(2)()()()33323452232183a b cac a b a c -⋅÷-÷ =()()963345662721827a b c ac a b a c -⋅÷-÷=()()10664566541827a b c a b a c -÷-÷=()6666327a bc a c ÷ =19b ; (3)解分式方程:11222x x x++=-- 去分母得:1+2(x-2)=-(1+x ),去括号合并得,2x-3=-1-x ,移项合并得,3x=2, 解得:23x =, 经检验23x =是分式方程的解. 【点睛】此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.也考查了解分式方程,去分母转化为整式方程是关键.27.计算:0212|( 3.14)()2π---+-解析:5【分析】先计算绝对值、0指数、负指数,再加减.【详解】解: 0212|( 3.14)()2π---+-214=+5=【点睛】本题考查了包含绝对值、0指数和负指数的实数计算,准确应用各种法则,熟练计算是解题关键.28.分式计算与解方程:(1)21211a a a a----; (2)121221x x x +=-+. 解析:(1)1a -;(2)13x =【分析】 (1)先对分式变形化成同分母的分式,然后利用同分母分式的运算法则运算即可; (2)利用分式的性质,将分式方程化成整式方程,然后再求解,最后验根得出结果.【详解】解:(1)21211a a a a ----21211a a a a -=+--2211a a a -+=-()211a a -=-1a =-; (2)121221x x x +=-+ 方程两边同乘()()221x x -+,得:()()()()2122122x x x x x ++-+=- 解得:13x =, 检验:当13x =时,()()2210x x -+≠, 所以,原方程的解为13x =. 【点睛】本题考查分式的加减运算及解分式方程,熟练掌握分式运算的法则及解分式方程的方法是解题的关键.。
九年级数学分式辅导讲义对分式进行通分的关键是: ___________________________ .最简公分母: _____________________________________________________ . 分母如果是多项式,应该先 __________________ ,再 _________________ ・ 【例】1、如果把分式2xy中的兀和y 都扩大3倍,那么分式的值()x+ yA 、扩大3倍2、填空B 、缩小3倍C 、缩小6倍D 、不变2y _ 2/ 2-m 1 -aa 21 + y ~( 14-m 2()'1-^-()3、约分1+2兀X^r xy 2 2 兀-yX 2-94X 2+4X + 1 ? b-1'3x 2 +6A >, + 3}?29 — 6x + x~4、 一!—,,―^ 的最简公分母是 ______________________________(无+ l )y 4兀~ 6xy^z 5、 通分【知识点3】分式的加减:1、 同分母的分式相加减:分母 _____________ ,分子 _______________2、 异分母的分式相加减:先 _______________ ,后 _________________1 1 I?2 2h 2【例】计算:(1) —+ —-— (2) -4= ------- —(3) a + b-^-y — x 2y — 2x nV —9 m-3a + b【知识点4]分式的乘除1、 分式乘分式, __________________ 做积的分子, ____________ 做积的分母。
2、 分式除以分式,先 ___________________________ ,再 _____________________ o 【例】计算:(1)(丄-1)子〒:2兀+ 1(2)( —一三亠x + 2J T-4(J T-4X + 4 x + 2 丿 x-2【知识点5]分式方程1、 分式方程: __________ 中含有未知数的 ___________ 叫做分式方程2、 解分式方程的步骤: ______________________________________________________________ ;3、 在方程的两边同时乘 _________________ ,可以将分式方程转化为一元一次方程求解。
第十六章 分式一、本单元 知识结构图:1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
(0≠C ) 3.分式的通分和约分:关键先是分解因式 4.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd±±±=±=±= 混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n aa 1=- ()0≠a 6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数) (1)同底数的幂的乘法:n m n m a a a +=⋅; (2)幂的乘方:mn n m a a =)(; (3)积的乘方:n n n b a ab =)(;(4)同底数的幂的除法n m n m a a a -=÷( ≠0);(5)商的乘方:n nn ba b a =)(();(b ≠0)bcadc d b a d c b a bd ac d c b a =⋅=÷=⋅;CB C A B A ÷÷=7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
分式方程培优讲义分式方程拔高讲练一、含有参数方程1.若关于x的分式方程的解为非负数,则a的取值范围是2.分式方程=1﹣的根为3.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为二、方程无解1.若关于x的方程﹣=﹣1无解,则m的值是2.若=0无解,则m的值是3.若关于x的分式方程﹣=无解,求a= .三、有增根1、如果解关于x的分式方程﹣=1时出现增根,那么m的值为2、关于x的分式方程有增根,则增根为.3、若关于x的方程有增根,则m的值是.4、解关于x的方程+=产生增根,则常数a=四、整体代入解方程1.已知在方程x2+2x+=3中,如果设y=x2+2x,那么原方程可化为关于y 的整式方程是.2、用换元法解方程﹣2•+1=0时应设y= .3.如果实数x满足(x+)2﹣(x+)﹣2=0,那么x+的值是.四、实际问题1.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.﹣10= B.+10=C.﹣10= D.+10=2.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.= B.=C.=D.=3.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A. B. C. D.4.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5= D.﹣=55.西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据题意可列出方程为()A.+=1 B.+= C.+= D.+=1【同步训练】1.如果关于x的不等式组的解集为x>1,且关于x的分式方程+=3有非负整数解,则符合条件的m的所有值的和是()A.﹣2 B.﹣4 C.﹣7 D.﹣82.从﹣2、﹣1、0、2、5这一个数中,随机抽取一个数记为m,若数m使关于x的不等式组无解,且使关于x的分式方程+=﹣1有非负整数解,那么这一个数中所有满足条件的m的个数是()A.1 B.2 C.3 D.43.若关于x的分式方程+3=无解,则实数m= .4.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是.5.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.6.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.7.关于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣,则x+=c+的解是x1=c,x2= .8.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣39.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为cm/s(用含x的代数式表示).(2)求点P原来的速度.12.定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=﹣,等式右边是通常的加法、减法及除法运算,例如2⊗3=﹣=+=1.(1)求(﹣2)⊗3的值;(2)若x⊗2=1,求x的值.2017年12月02日峰尚的初中数学组卷参考答案与试题解析一.选择题(共14小题)1.若关于x的分式方程的解为非负数,则a的取值范围是()A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4【解答】解:去分母得:2(2x﹣a)=x﹣2,解得:x=,由题意得:≥0且≠2,解得:a≥1且a≠4,故选:C.2.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.3.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()A.3 B.1 C.0 D.﹣3【解答】解:解不等式组,可得,∵不等式组有且仅有四个整数解,∴﹣1≤﹣<0,∴﹣4<a≤3,解分式方程+=2,可得y=(a+2),又∵分式方程有非负数解,∴y≥0,且y≠2,即(a+2)≥0,(a+2)≠2,解得a≥﹣2且a≠2,∴﹣2≤a≤3,且a≠2,∴满足条件的整数a的值为﹣2,﹣1,0,1,3,∴满足条件的整数a的值之和是1.故选:B.4.分式方程=1﹣的根为()A.﹣1或3 B.﹣1 C.3 D.1或﹣3【解答】解:去分母得:3=x2+x﹣3x,解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3,故选C5.如果解关于x的分式方程﹣=1时出现增根,那么m的值为()A.﹣2 B.2 C.4 D.﹣4【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:m+2x=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,m+4=2﹣2,m=﹣4,故选D.6.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.﹣10=B.+10=C.﹣10=D.+10=【解答】解:设第一批购进x件衬衫,则所列方程为:+10=.故选:B.7.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.=B.=C.=D.=【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.8.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()A.B.C.D.【解答】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得,=.故选A.9.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5=D.﹣=5【解答】解:设原计划每天植树x万棵,需要天完成,∴实际每天植树(x+0.2x)万棵,需要天完成,∵提前5天完成任务,∴﹣=5,故选(A)10.西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据题意可列出方程为()A.+=1 B.+=C.+=D.+=1 【解答】解:由题意可得,,故选B.11.若关于x的方程﹣=﹣1无解,则m的值是()A.m=B.m=3 C.m=或1 D.m=或3【解答】解:去分母得:3﹣2x+mx﹣2=﹣x+3,整理得:(m﹣1)x=2,当m﹣1=0,即m=1时,方程无解;当m﹣1≠1时,x﹣3=0,即x=3时,方程无解,此时=3,即m=,故选C12.若=0无解,则m的值是()A.﹣2 B.2 C.3 D.﹣3【解答】解:方程两边都乘(x﹣4)得:m+1﹣x=0,∵方程无解,∴x﹣4=0,即x=4,∴m+1﹣4=0,即m=3,故选C.13.如果关于x的不等式组的解集为x>1,且关于x的分式方程+=3有非负整数解,则符合条件的m的所有值的和是()A.﹣2 B.﹣4 C.﹣7 D.﹣8【解答】解:,解①得x>m,解②得x>1.不等式组的解集是x>1,则m≤1.解方程+=3,去分母,得1﹣x﹣m=3(2﹣x),去括号,得1﹣x﹣m=6﹣3x,移项,得﹣x+3x=6﹣1+m,合并同类项,得2x=5+m,系数化成1得x=.∵分式方程+=3有非负整数解,∴5+m≥0,∴m≥﹣5,∴﹣5≤m≤1,∴m=﹣5,﹣3,1,∴符合条件的m的所有值的和是﹣7,故选C.14.从﹣2、﹣1、0、2、5这一个数中,随机抽取一个数记为m,若数m使关于x的不等式组无解,且使关于x的分式方程+=﹣1有非负整数解,那么这一个数中所有满足条件的m的个数是()A.1 B.2 C.3 D.4【解答】解:不等式组整理得:,由不等式组无解,得到m+2≥﹣2m﹣1,解得:m≥﹣1,即m=﹣1,0,2,5,分式方程去分母得:x﹣m+2=﹣x+2,即x=m,把m=﹣1代入得:x=﹣,不符合题意;把m=0代入得:x=0,符合题意;把m=2代入得:x=1,符合题意;把m=5代入得:x=2.5,不符合题意,则所有满足条件m的个数是2,故选B二.填空题(共15小题)15.若关于x的分式方程+3=无解,则实数m= 3或7 .【解答】解:方程去分母得:7+3(x﹣1)=mx,整理,得(m﹣3)x=4,当整式方程无解时,m﹣3=0,m=3;当整式方程的解为分式方程的增根时,x=1,∴m﹣3=4,m=7,∴m的值为3或7.故答案为3或7.16.若关于x的分式方程+=3的解为正实数,则实数m的取值范围是m<6且m≠2 .【解答】解:+=3,方程两边同乘(x﹣2)得,x+m﹣2m=3x﹣6,解得,x=,∵≠2,∴m≠2,由题意得,>0,解得,m<6,故答案为:m<6且m≠2.17.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:=.【解答】解:设甲工程队每天铺设x米,则乙工程队每天铺设(x+5)米,由题意得:=.故答案是:=.18.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为﹣=8 .【解答】解:设原计划每天植树x棵,则实际每天植树(1+20%)x=1.2x,根据题意可得:﹣=8,故答案为:﹣=8.19.若关于x的分式方程=2的解为非负数,则m的取值范围是m≥﹣1且m≠1 .【解答】解:去分母得,m﹣1=2(x﹣1),∴x=,∵方程的解是非负数,∴m+1≥0即m≥﹣1又因为x﹣1≠0,∴x≠1,∴≠1,∴m≠1,则m的取值范围是m≥﹣1且m≠1.故选:m≥﹣1且m≠1.20.若关于x的分式方程+=2有整数解,整数m的值是1,3,4,﹣2,6 .【解答】解:去分母得:mx﹣1+1=2x﹣4,整理得:(m﹣2)x=﹣4,解得:x=﹣,由分式方程有整数解,得到m﹣2=﹣1,1,﹣2,2,﹣4,4,且x﹣2≠0,解得:m=1,3,4,﹣2,6,故答案为:1,3,4,﹣2,621.已知在方程x2+2x+=3中,如果设y=x2+2x,那么原方程可化为关于y 的整式方程是y2﹣3y+2=0 .【解答】解:设y=x2+2x,则原方程可化为y+=3,去分母,得y2﹣3y+2=0.故答案是:y2﹣3y+2=0.22.用换元法解方程﹣2•+1=0时应设y= .【解答】解:设y=,则原方程变为y﹣+1=0,故答案为:.23.如果实数x满足(x+)2﹣(x+)﹣2=0,那么x+的值是 2 .【解答】解:设x+=u,原方程等价于u2﹣u﹣2=0,解得u=2或u=﹣1,x+=2或x+=﹣1(不符合题意,舍),故答案为:2.24.关于x的分式方程有增根,则增根为x=1 .【解答】解:∵原方程有增根,∴最简公分母x﹣1=0,解得x=1.故答案为x=1.25.若关于x的方程有增根,则m的值是 4 .【解答】解:方程两边都乘(x﹣2),得x+2=m∵原方程有增根,∴最简公分母(x﹣2)=0,解得x=2,当x=2时,m=2+2+4,故答案为:4.26.若分式方程的解为正数,则a的取值范围是a<8,且a≠4 .【解答】解:分式方程去分母得:x=2x﹣8+a,解得:x=8﹣a,根据题意得:8﹣a>0,8﹣a≠4,解得:a<8,且a≠4.故答案为:a<8,且a≠4.27.关于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣,则x+=c+的解是x1=c,x2= 3+.【解答】解:∵x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣,∴x+=c+可化为x﹣3+=c﹣3+,x+=c+的解是x1=c,x2=3+,故答案为3+.28.若关于x的分式方程﹣=无解,求a= ﹣1或2 .【解答】解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1或2.故答案为﹣1或2.29.解关于x的方程+=产生增根,则常数a= ﹣4或6 .【解答】解:去分母得:2x+4+ax=3x﹣6,由分式方程有增根,得到(x+2)(x﹣2)=0,即x=2或x=﹣2,把x=2代入得:8+2a=0,即a=﹣4;把x=﹣2代入得:﹣2a=﹣12,即a=6,综上,常数a=﹣4或6,故答案为:﹣4或6三.解答题(共6小题)30.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.(1)点Q的速度为x cm/s(用含x的代数式表示).(2)求点P原来的速度.【解答】解:(1)设点Q的速度为ycm/s,由题意得3÷x=4÷y,∴y=x,故答案为:x;(2)AC===5,CD=5﹣1=4,在B点处首次相遇后,点P的运动速度为(x+2)cm/s,由题意得=,解得:x=(cm/s),经检验x=是原方程的根,答:点P原来的速度为cm/s.31.若关于x的方程﹣=1的根是2,求(m﹣4)2﹣2m+8的值.【解答】解:∵关于x的方程﹣=1的根是2,∴把x=2代入方程得:2﹣=1,解得:m=4,则(m﹣4)2﹣2m+8=(4﹣4)2﹣2×4+8=0.32.设A=,B=(1)求A与B的差;(2)若A与B的值相等,求x的值.【解答】解:(1)A﹣B====(2)∵A=B∴去分母,得2(x+1)=x去括号,得2x+2=x移项、合并同类项,得x=﹣2经检验x=﹣2是原方程的解.33.定义新运算:对于任意实数a,b(其中a≠0),都有a⊗b=﹣,等式右边是通常的加法、减法及除法运算,例如2⊗3=﹣=+=1.(1)求(﹣2)⊗3的值;(2)若x⊗2=1,求x的值.【解答】解:(1)原式=﹣=﹣3(2)由题意可知:﹣=11﹣(x﹣2)=x1﹣x+2=xx=经检验,x=是原方程的解,34.(1)计算:(π﹣2)0++(﹣1)2013﹣(2)解分式方程:﹣=1.【解答】解:(1)原式=1+2﹣1﹣4=﹣2;(2)去分母得x(x﹣1)﹣(x+1)=(x+1)(x﹣1),解得x=0,经检验,x=0为原方程的根.35.解方程:+=.【解答】解:去分母得:x﹣4+x﹣3=﹣2x﹣6,解得:x=,经检验x=是分式方程的解.。
分式培优讲义【知识要点】(一)分式的基本性质:1、bm am b a =(m ≠0)2、mb m a b a ÷÷=(m ≠0)(二)分式的运算法则:1、同分母分式加减法:c b a c b c a ±=± 2、异分母分式加减法:bcbd ac c d b a ±=± 3、分式乘法:bd ac d c b a =⋅ 4、分式除法:bc ad c d b a d c b a =⋅=÷【例题讲解】1、计算: (1)mn m n m n m n n m ---+-+22 (2)2144111072322++÷+++⋅+-++a a a a a a a a a(3)2244222x y xy y x y y x x -+-++ (4)))(())(())((b c a c c a b c b b c a b a a --+--+--2、已知311=-y x , 求y xy x y xy x ---+2232的值.3、化简)111()111(3cb ac c b b a a ca bc ab abc ++÷-+-+-⋅++4、已知:a +x 2=2001, b +x 2=2002, c +x 2=2003, 且abc =24, 求-++ab c ca b bc a a 1b 1- c1-的值.5、有理数a, b 满足124422=-b a b a , 求代数式22229619ba b a +-的值.6、已知1=+y x xy , 2=+z y yz , 3=+x z zx , 求zy x 111++的值.7、已知4112=++x x x , 求1242++x x x 的值.8、已知a 2-3a +1=0, 求下列各式的值. (1)1242++a a a (2)163+a a (3)3a 3-8a 2+a +132+a9、已知cb ac b a ++=++1111, 求证:(a +b)(b +c)(c +a)=0.10、已知abc =1, 求111++++++++c ca c b bc b a ab a 的值.11、已知x, y, z 互不相等, 且x z zy y x 111+=+=+, 求xyz 的值.12、若a +b +c =0, 求下列各式的值. (1)abc c b a 333++ (2))11()11()11(b a c a c b c b a +++++(3)222222222111c b a b a c a c b -++-++-+ (4)ab c c ac b b bc a a +++++222222222【练习】一、选择填空1、将分式22b a ab +中的字母a, b 的值都扩大2倍, 则分式的值( ) A 、扩大2倍 B 、缩小21 C 、缩小41 D 、不变 2、计算aa a a +⋅+÷-11)11()1(的结果是( ) A 、a a +-11 B 、11+-a a C 、1-a 2 D 、a 2-1 3、已知ab =1, 设M =b a +++1111, N =b b a a +++11, 则M, N 的关系为( ) A 、M >N B 、M =N C 、M <N D 、不确定4、已知a +b +c =0, abc =1, 那么c b a 111++的值( ) A 、大于0B 、小于0C 、等于0D 、不能确定 二、填空题1、若分式xx x --21||有意义, 则x 的取值范围是_________; 若分式xx x --21||的值为零, 则x 的取值范围是_________. 2、若411=-b a , 则bab a b ab a 2722-+--=_________. 3、已知21111R R R +=(R 、R 1、R 2都为正数), 则R =_________. 4、若612=+-x x x , 则1242++x x x =_________. 三、计算1、43222)()()(a b a b b a -÷-⋅- 2、a ÷[)11()(2222b a b b a a b ab a b a -÷+-⋅+--]3、132333442222-+-++-⋅+--a a a a a a a a4、)()2(222222ab a b a a b ab a a b a a -+-÷+---。
分式及其分式的应用 专题培优、拔高(奥数)复习讲义一、中考考点梳理(一)解有条件的分式化简与求值问题时,既要瞄准目标.又要抓住条件,既要根据目标变换条件.又要依据条件来调整目标,除了要用到整式化简求值的知识方法外,还常常用到如下技巧:1.取倒数或利用倒数关系;2. 恰当引入参数;3.拆项变形或拆分变形;4.利用比例性质5.整体代入等. (二)给出一定的条件,在此条件下求分式的值称为有条件的分式求值.而分式的化简与求值是紧密相连的,求值之前必须先化简,化简的目的是为了求值,先化简后求值是解有条件的分式的化简与求值的基本策略.二、典型例题精选【例l 】 已知2310a a -+=,则代数式361a a +的值为 .解题思路:目前不能求出a 的值,但可以求出13a a +=,需要对所求代数式变形含“1a a+”.【例2】 已知一列数1234567,,,,,,,a a a a a a a 且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为( )A .648B .832C .1168D .1944 解题思路:引入参数k ,把17a a 用k 的代数式表示,这是解决等比问题的基本思路.【例3】 3(0)x y z a a ++=≠.求222()()()()()()()()()x a y a y a z a z a x a x a y a z a --+--+---+-+-解题思路:观察发现,所求代数式是关于x a y a z a ---、、的代数式,而条件可以拆成x a y a z a ---、、的等式,因此很自然的想到用换元法来简化解题过程.【例4】 已知1,2,3,xy yz zxx y y z z x===+++求x 的值.解题思路:注意到联立等式得到的方程组是一个复杂的三元一次方程组,考虑取倒数,将方程组化为简单的形式.【例5】 不等于0的三个正整数,,a b c 满足1111a b c a b c++=++,求证:,,a b c 中至少有两个互为相反数. 解题思路:,,a b c 中至少有两个互为相反数,即要证明()()()0a b b c c a +++=.【例6】 已知,,a b c 为正整数,满足如下两个条件:①32;a b c ++=②14b c a c a b a b c bc ac ab +-+-+-++=为三边长可以构成一个直角三角形. 解题思路:本题熟记勾股定理的公式即可解答.三、课后过关自测小练习1.若a b c d b c d a ===,则a b c da b c d-+-+-+的值是 .2.已知2131xx x =-+,则24291x x x =-+ .3.若2221998,1999,2000a x b x c x +=+=++=且24abc =,则111c a b ab bc ac a b c++--- 的值为 .4.已知232325x xy y x xy y +-=--,则11x y-= .5.如果111,1a b b c+=+=,那么1c a +=( ). A .1 B .2 C .12 D .146.设有理数,,a b c 都不为0,且0a b c ++=,则222222222111b c a c a b a b c +++-+-+-的值为( ).A .正数B .负数C .零D .不能确定7.已知4360,270(0)x y z x y z xyz --=+-=≠,则22222223657x y z x y z++++的值为( ). A .0 B .1 C .2 D .不能确定8.已知211xx mx =-+,则36331x x m x -+的值为( )A .1B .313m +C .2132m -D .2131m +9.设0a b c ++=,求222222222a b c a bc b ac c ab+++++的值.10.已知111x y z y z x+=+=+其中,,x y z 互不相等,求证2221x y z =.11.设,,a b c 满足1111a b c a b c ++=++,求证2121212121211111n n n n n n a b c a b c ------++=++.(n 为自然数)12.三角形三边长分别为,,a b c .(1)若a a b cb c b c a ++=+-,求证:这个三角形是等腰三角形; (2)若1111a b c a b c-+=-+,判断这个三角形的形状并证明.13.已知1ax by cz ===,求444444111111111111a b c x y z +++++++++++的值.14.解下列方程(组): (1)18272938x x x x x x x x +++++=+++++;(2)596841922119968x x x x x x x x ----+=+----;(3)111211131114x y z y z x z x y ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪+⎩.四、能力提升拓展训练1.设,,a b c 满足0a b c ++=,0abc >,若a b cx a b c=++,111111()()()y a b c b c c a a b =+++++,则23x y xy ++= .2.若0abc ≠,且a b b c c a c a b+++==,则()()()a b b c c a abc +++= .3.设,,a b c 均为非零数,且2(),3(),4()ab a b bc b c ac a c =+=+=+,则a b c ++= .4.已知,,x y z 满足1x y z y z x z y x ++=+++,则222x y z y z x z y x+++++的值为 .5.设,,a b c 是三个互不相同的正数,已知a c c bb a b a-==+,那么有( ). A .32b c = B .32a b = C .2b c = D .2a b =6.如果0a b c ++=,1114a b c ++=-,那么222111a b c++的值为( ). A .3 B .8 C .16 D .207.已知2519910x x --=,则代数式42(2)(1)1(1)(2)x x x x -+----的值为( ).A .1996B .1997C .1998D .199998.若615325x y x y y x y x -==-,则222245623x xy y x xy y-+-+的值为( ).A .92 B .94C .5D .69.已知非零实数,,a b c 满足0a b c ++=. (1)求证:3333a b c abc ++=; (2)求()()a b b c c a c a bc a b a b b c c a---++++---的值.10.已知2410a a ++=,且42321322a ma a ma a++=++.求m 的值.12.设222222222,,222b c a a c b b a c A B C bc ac ab+-+-+-===,当3A B C ++=-时,求证:2002200220023A B C ++=.13.某商场在一楼和二楼之间安装了一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部.(1)扶梯露在外面的部分有多少级?(2)现扶梯近旁有一从二楼下到一楼的楼梯道,台阶的级数与自动扶梯的级数相等,两人各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘自动扶梯上楼(不考虑扶梯与楼梯间的距离).求男孩第一次追上女孩时走了多少级台阶?。
初中数学分式的概念、运算及分式方程培优考试要求:例题精讲:模块一分式的概念【例1】x为何值时,分式29113xx-++有意义?【解析】根据题意可得:110330xx⎧+≠⎪+⎨⎪+≠⎩,解得3x≠-且4x≠-;如果问:x为何值时,分式29113xx-++值为零,答案为3x=.【答案】3x=【巩固】⑴若分式216(3)(4)xx x--+有意义,则x;⑵若分式216(3)(4)xx x--+无意义,则x;【解析】⑴若分式216(3)(4)xx x--+有意义,则3x≠且3x≠-且4x≠-;⑵若分式216(3)(4)xx x--+无意义,则3x=或3x=-或4x=-;【答案】⑴3x≠且3x≠-且4x≠-;⑵3x=或3x=-或4x=-【例2】解下列不等式:①53xx-<-;②523xx->-【解析】①由题意可知5030xx->⎧⎨-<⎩或者5030xx-<⎧⎨->⎩,解得3x<;5x>,所以原不等式的解集为3x<或5x>;②5203x x -->-,即11303xx ->-,由题意可知113030x x ->⎧⎨->⎩或者113030x x -<⎧⎨-<⎩, 解得1133x <<;无解,所以原不等式的解集为1133x <<. 【答案】3x <或5x >;1133x <<.【巩固】⑴解不等式304x x +<- ;⑵解不等式334x x +>- .【解析】 ⑴由题意可知3040x x +>⎧⎨-<⎩或者3040x x +<⎧⎨->⎩,由得34x -<<;无解集,所以原不等式的解集为34x -<<;⑵由题意可知3304x x +->-,15204xx ->-,可得:152040x x ->⎧⎨->⎩或者152040x x -<⎧⎨-<⎩得1542x <<;无解集,所以原不等式的解集为1542x <<. 【答案】34x -<<;1542x <<.模块二 分式的运算☞分式的化简求值裂项【例3】 设为正整数,求证:. 【解析】,故【答案】【巩固】化简:. 【解析】 【答案】2100100x x+n 1111...1335(21)(21)2n n +++<⋅⋅-+1111()(21)(21)22121n n n n =--+-+111111111(1.....)(1)233521212212n n n -+-++-=-<-++1111...1335(21)(21)2n n +++<⋅⋅-+111.....(1)(1)(2)(99)(100)x x x x x x ++++++++111111111.........(1)(1)(2)(99)(100)11299100x x x x x x x x x x x x +++=-+-+-++++++++++211100100100x x x x =-=++【巩固】化简: 【解析】 原式 【答案】255x x+【例4】 化简:. 【解析】同理,,故.【答案】0【巩固】(第11届希望杯试题)已知,,为实数,且,,,求. 【解析】 由已知可知 ,三式相加得,,故. 【答案】16【巩固】化简:. 【解析】同理,, 故 【答案】022222111113256712920x x x x x x x x x x +++++++++++++11111(1)(1)(2)(2)(3)(3)(4)(4)(5)x x x x x x x x x x =+++++++++++++211555x x x x =-=++222()()()()()()a bc b ac c aba b a c b c b a c a c b ---++++++++22()()()()a bc a ac ac bc a ca b a c a b a c a b a c-+--==-++++++2()()b ac b a b c b a b c b a -=-++++2()()c ab c bc a c b c a c b-=-++++2220()()()()()()a bcb ac c aba b a c b c b a c a c b ---++=++++++a b c 13ab a b =+14bc b c =+15ca c a =+abc ab bc ca++113114115a b b cc a ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩1116a b c ++=1111116abc ab bc ca ab bc ca abc a b c===++++++222222a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++--+--+--+221111()()a b c a b a c a ab ac bc a b a c a b a c a b c a---+-==+=---+------2211b c a b ab bc ac b c a b --=---+--2211c a b c ac bc ab c a b c --=---+--2222220a b c b c a c a ba ab ac bc b ab bc ac c ac bc ab ------++=--+--+--+☞分式的恒等变形部分分式【例5】 下面的等式成立:22465()()x y x y x y A x y B -+--=--++,求A 、B . 【解析】2222465()()()()x y x y x y A x y B x y B A x A B y AB -+--=--++=-+--+-, 故有4B A -=,6A B +=,所以1A =,5B =.【答案】1A =5B =【巩固】若代数式(1)(2)(3)x x x x p ++++恰好能分解为两个二次整式的乘积(其中二次项系数均为1,且一次项系数相同),则p 的最大值是 . 【解析】设原式可分解为22()()x ax m x ax n ++++,展开可得:224322()()2()()x ax m x ax n x ax a m n x a m n x mn ++++=+++++++. 比较等号两边的系数可得:32a m n mn p =⎧⎪+=⎨⎪=⎩,,故22(2)21(1)1p m m m m m =-=-=--≤,最大值为1.【答案】1【例8】 若213111a M Na a a -=+--+,求M 、N 的值. 【解析】 2213()()1111a M N M N a M N a a a a -++-=+=--+-,所以31M N M N +=-⎧⎨-=⎩,所以12M N =-⎧⎨=-⎩ 【答案】1,2M N =-=-【巩固】(06年宁波市重点中学提前考试招生试题)已知2a x +与2b x -的和等于244xx -,求a ,b .【解析】 22()2()42244a b a b x a b x x x x x +--+==+--- 所以40a b a b +=⎧⎨-=⎩,解得22a b =⎧⎨=⎩【答案】2,2a b ==分式恒等证明【例9】 求证:()()332222222222a a a ab b a ab b a ab b a ab b a b a b ⎛⎫⎛⎫++--+-=++-+ ⎪⎪-+⎝⎭⎝⎭【解析】 左边()()333333333322a b a b a b a a b a a b a b a b a b a b a b -+--⎛⎫⎛⎫-+=--=⋅ ⎪⎪--++-+⎝⎭⎝⎭ ()()33332222a b a b a ab b a ab b a b a b -+=⋅=++-+=-+右边。
分式专题15.1 分式 (3)知识框架 (3)一、基础知识点 (3)知识点 1 分式的概念 (3)知识点 2 分式的判定 (4)知识点 3 分式的基本性质 (6)知识点 4 分式的约分与通分 (8)二、典型题型 (11)题型 1 分式有意义的条件 (11)题型 2 分式值为0的条件 (12)题型 3 分式值取正或负的判定 (12)题型 4 利用分式的基本性质、改变分子、分母的系数 (13)三、培优题型 (15)题型 1 分式的条件求值 (15)15.2 分式的运算 (18)知识框架 (18)一、基础知识点 (18)知识点 1 分式的乘除法法则 (18)知识点 2 分式的加减法则 (20)知识点 3 两式大小比较 (21)知识点 4 幂的运算的扩大 (23)知识点 5 科学记数法的扩大 (25)二、典型题型 (27)题型 1 分式的混合运算 (27)题型 2 分式的求值 (29)题型 3 分式运算的简单方法 (31)题型 4 根据幂的运算性质化简求值 (33)三、培优题型 (35)题型 1 分式的运算技巧-裂项法 (35)题型 2 含有几个相等分式问题的解法 (36)题型 3 整式指数幂 (37)15.3 分式方程 (40)知识框架 (40)一、基础知识点 (40)知识点 1 分式方程 (40)知识点 2 解分式方程需验根 (42)知识点 3 换元法解分式方程 (44)知识点 4 十字相乘法 (45)二、典型题型 (47)题型 1 列分式方程解应用题 (47)题型 2 根据分式方程解的情况求待定系数值或取值范围 (50)三、培优题型 (52)题型 1 增根的讨论 (52)题型 2 列分式解应用题(复杂) (52)15.1 分式知识框架一、基础知识点知识点 1 分式的概念分式:A、B表示两个整式,且分母B中含有字母,叫作分式。
注:①分式可以理解为两个整式相除的商,分母是除数,分子是被除数,分数线是除号。
第十一讲 分式的运算例1 化简下列各式:⋅-÷--)().())(1(3222a b a b b a⋅-+-a a a 2142)2(2⋅--+÷--)252(423)3(x x x x例2 【常德】先化简,再选一个合适的数代人求值:⋅--++÷---+-)112()131(2222xx x x x x x x x例3 已知,11)1)(1(42++-=+--x Bx A x x x 求A ,B 的值,例4 某玩具工厂有四个车间,某周是质量检查周,现每个车间都原有a (a>0)个成品,且每个车间每天都生产6(6>O)个成品,质检科派出若干名检验员星期一、星期二检验其中两个车间原有的和这两天生产的所有成品,然后,星期三至星期五检验另两个车间原有的和本周生产的所有成品,假定每个检验员每天检验的成品数相同.(3)若一名检验员1天能检验b 54个成品,则质检科至少要派出多少名检验员?例5 阅读下列材料:消元求值作为解决代数式求值时一种常用的方法,在实际解题过程中应用非常广泛,常见的消元方法有代入消元法、加减消元法、比值消元法等方法,下面介绍一种倒数消元法.例:已知ac c b b a 1,11,11+=+=+求的值. 分析:已知条件中是关于a 与b 、b 与c 的关系式,要求关于a ,c 的代数式的值,则需要消去b .解:由11=+b a 得,11a b -= 由11=+c b 得,111c c c b -=-= .1)1(11=-⋅-=⋅∴a cc b b整理得.111,1=+=+∴+=aac a C ac a 请根据材料解答下列问题: (1)已知,11,11-=+-=+c b b a 则=+a c 1___________. (2)已知,93,93x y z x -=-=求证:⋅-=yz 93 (3)已知t ac c b b a =+=+=+222(其中a ,b ,c 互不相等),求t 的值,例 已知!1=abc .求证.11112=++++++++C ca cb bc b a b a拓展训练 A 组1.【江西】计算)1(12aa -÷的结果为( ). a A . a B -. 31.a C - 31.aD2.下列分式中,最简分式是( ).11.22+-x x A 11.2-+x x B xy x y xy x C -+-2222. 12236.2+-x x D 3.【河北】老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简,过程如图,接力中,自己负责的一步出现错误的是( ).(第3题)A.乙 B .甲和丁 C 乙和丙 D .乙和丁4.化简xx x x -+-112的结果是( ). 1.+x A 1.-x B x C -. x D .5.下列计算中,正确的有( ).;111;1484)(422-=++-+++=+++y x y x n m nmn m n m ②①;1).()(b a b a b a b a +=++÷+③ ⋅+-=-+--11112x xx ④ A.1个 B .2个 C .3个 D .4个6.某工厂的锅炉房储存了c 天用的煤m 吨,要使储存的煤比预定多用d 天,则每天应节约煤________ 吨. 7.已知两个分式:,2121,442x x B x A -++=-=其中,2±=/x 则A 与B 的关系是__________.8.记,)()(22b a b a b a --+=*设A 为代数式,若,22164122y x yx yx A +-=-*则=A _______(用含x ,y 的代数式表示). 9.计算:⋅-+-÷--421221)1(2a a a a a ⋅-++---m n n m m n n n m m 22)2(⋅+---÷--)1121(12)3(22x x x x x x10.【舟山】小明解答“先化简,再求值:,12112-++x x 其中.13+=x ”的过程如下,请指出解答过程中错误步骤的序号,并写出正确的解答过程, 解:12112-++x x ①)1(12)1(11222-⋅-+-⋅+=x x x x ②2)1(++=x③.3+=x当13+=x 时, 原式④313++=⑤.43+=11. A 玉米试验田是边长为n(m)的正方形减去一个边长为1m 的正方形蓄水池后的余下部分,B 玉米试验田是边长为(a-l)m 的正方形,两块试验田的玉米都收获了500 kg . (1)哪种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?12.已知分式,19,1522222+-+=+-=a a a B a a a A 方方尝试,当1=a 时,;27,23-=-=B A 当2=a 时, ;53,52-=-=B A 当3=a 时,⋅==103,103B A(1)方方继续尝试,当a-4时,A=___________,B=___________.(2)方方说:“当n 取不同的值时,无法判断A 和B 的大小.”圆圆说:“用特殊值法是判断不出来的,我用学过的分式运算,可以得出不论口为何值,A≥B 成立.”你认为方方和圆圆谁的说法正确?为什么?13.解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“若长方形的长和宽分别为4和3,求长方形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若长方形的周长为14,且它的宽为3,求它的长”;也可以是“若长方形的周长为14,求长方形面积的最大值”等.(1)设,4,2232xx B x x x x A -=+--=求A 与B 的积. (2)提出(1)的一个“逆向”问题,并解答这个问题.B 组14.老师在黑板上写了一个代数式的正确计算结果,随后用手遮住了原代数式的一部分,如图,则被遮住的部分是( ).(第14题)121.+-x x A 112.--x x B 121.--x x C 112.-+x x D 15.设轮船在静水中的速度为u ,水流的速度为u (u<v ).该轮船在流水中从上游A 驶往下游B ,再返回A ,所用的时间为T ;假设u=0,即河流改为静水,该船从上游A 驶往下游B 再返回A ,所用的时间为t ,则( ).t T A =. t T B <. t T C >. D .不能确定T ,t 的大小关系16.已知132112-+=-++x x x B x A (其中A ,B 为常数),则=A _________=B ,____________. 17.规定一种新的运算:B A JX X +∞→其中A 和B 是关于x 的多项式.当A 的次数小于B 的次数时,0=+∞→BAJXX ;当A 的次数等于B 的次数时,BAJX X +∞→的值为A ,B 的最高次项的系数的商;当A 的次数大于B 的次数时,B A JX X +∞→不存在,例如:,012=-+∞→x JX X 21132222=-+++∞→x x x JX X(1)求2323x x xJXX -++∞→的值.(2)若,1104)132(22--÷--=x xx x B A 求B A JX X +∞→的值.18.已知,2,42,212+=-=-=x x C x B x A 将它们组合成C B A ÷-)(或C B A ÷-的形式,请你从中任选一种进行计算,先化简,再求值,其中.3=x19.甲、乙两班同学同时从学校沿同一路线走向距离学校s(km)的军训基地参加训练,甲班有一半路程以走,另一半时间以)/(2h km v 的速度行走.设甲、乙两班同学从学校到军训基地所用的时间分别为).(),(21h t h t(1)试用含21,,v v s 的代数式表示1t 和⋅2t(2)请你判断甲、乙两班中哪一个班的同学先到达军训基地,并说明理由.20.有一列按一定顺序和规律排列的数:第1个数是;211⨯ 第2个数是;321⨯ 第3个数是;431⨯ …对任何正整数n ,第n 个数与第1+n 个数的和等于⋅+)2(2n n(1)经过探究,我们发现:⋅-=⨯-=⨯-=⨯4131431;3121321;2111211 设这列数的第5个数为n ,那么,6151,6151,6151-<-=->a a a 哪个正确?请你直接写出正确的结论.(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第九个数(即用正整数n 表示第n 个数),并证明“第n 个数与第)1(+n 个数的和等于,.,)2(2+n n(3)设M 表示222220201,,31,21,11 这2020个数的和,即,2020131********++++= M 求证:⋅<<2020403202120209M走进重高1.【攀枝花】一辆货车送货上山,并按原路下山.该货车的上山速度为n (km/h),下山速度为6(km/h),则该货车上、下山的平均速度为( ).)/)((21.h km b a A + )/(.h km b a ab B + )/(2.h km ab b a C + )/(2.h km Fba ab D - 2.【河北】如图,若x 为正整数,则表示1144)2(22+-+++x x x x 的值的点落在( ).(第2题)①.A ②.B ③.C ④.D3.【武汉】计算411622---a a a 的结果是_________. 4.【绥化】当2018=a 时,代数式2)1(1)111(+-÷+-+a a a a a 的值是____________. 5.【葫芦岛】先化简,再求值:),112(1222aa a a a a --÷+-+其中.)2()31(01--=-a6.【湘潭】阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下: 立方和公式:);)((2233y xy x y x y x +-+=+ 立方差公式:).)((2233y xy x y x y x ++-=-根据材料和已学知识,先化简,再求值:,84223322-++--x x x x x x 其中.3=x高分夺冠1.已知a ,b 为实数且满足,1,1-=/-=/b a 设,1111,11+++=+++=b a N b b a a M 则下列两个结论( ). ①当1=ab 时,;N M =当1>ab 时,;N M >当1<ab 时,;N M <②若,0=+b a 则.0≤⋅N MA.①②都对B.①对、②错C.①错、②对 D .①②都错2.设,,1,0a c b M c b a a b c +==++<<<,,cb a P bc a N +=+=则M ,N ,P 之间的关系是_______. 3.《见微知著》中谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法.例如:已知,1=ab 求221111ba +++的值. 解:.1,122=∴=b a ab.‘.原式.111111222222222=+++=+++=b b b b a b a b a 波利亚在《怎样解题》中指出:“当你找到第一个藤菇或作出第一个发现后,再四处看看,他们总是成群生长”.请类比以上方法解答:已知,1=ab 则201920191201912019ba +++的结果是___________. 4.如图是一个数值转换器,每次输入三个不为零的数,经转换器转换后输出三个新数,规律如下:当输入的三个数分别为x ,y ,z 时,对应输出的三个新数依次为+++++z x z y z y x 1,11,11⋅+yx 1例如,输入1,2,3,则输出⋅32,43,56那么当输出的三个新数为51,41,31时,输入的三个数依次为___________.(第4题)5.定义:任意两个数a ,b ,按规则b a ba c +-=得到一个新数c ,称所得的新数c 为数a ,b 的“传承数”. (1)若.2,1=-=b a 求a ,b 的“传承数”c.(2)若,,12x b a ==且,31=+xx 求a ,b 的“传承数”c (3)若,1,12-=+=n b n a 且a ,b 的“传承数”c 的值为一个整数,则整数n 的值是多少?6.求证:若,0=++c b a 则.0111222222222=-++-++-+ba c a Cbc b a答案。
讲义———分式姓名:分式知识点一:分式的定义一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。
知识点二:与分式有关的条件 ①分式有意义:分母不为0〔B ≠0〕 ②分式无意义:分母为0〔B=0〕③分式值为0:分子为0且分母不为0〔A=0且B ≠0〕④分式值为正或大于0:分子分母同号〔或〕⑤分式值为负或小于0:分子分母异号〔或〕⑥分式值为1:分子分母值相等〔A=B 〕⑦分式值为-1:分子分母值互为相反数〔A+B=0〕 知识点三:分式的根本性质分式的分子和分母同乘〔或除以〕一个不等于0的整式,分式的值不变。
字母表示:,,其中A 、B 、C 是整式,C 0。
拓展:分式的符号法那么:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即注意:在应用分式的根本性质时,要注意C 0这个限制条件和隐含条件B0。
知识点四:分式的约分定义:根据分式的根本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母假设为多项式,约分时先对分子分母进行因式分解,再约分。
最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
知识点五:分式的通分分式的通分:根据分式的根本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
分式的通分最主要的步骤是最简公分母确实定。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
确定最简公分母的一般步骤:Ⅰ取各分母系数的最小公倍数;Ⅱ单独出现的字母〔或含有字母的式子〕的幂的因式连同它的指数作为一个因式;Ⅲ相同字母〔或含有字母的式子〕的幂的因式取指数最大的。
Ⅳ保证凡出现的字母〔或含有字母的式子〕为底的幂的因式都要取。
讲 义———分式姓名:分式知识点一:分式的定义一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子BA叫做分式,A 为分子,B 为分母。
知识点二:与分式有关的条件 ①分式有意义:分母不为0(B ≠0) ②分式无意义:分母为0(B=0)③分式值为0:分子为0且分母不为0(A=0且B ≠0)④分式值为正或大于0:分子分母同号(或)⑤分式值为负或小于0:分子分母异号(或)⑥分式值为1:分子分母值相等(A=B )⑦分式值为-1:分子分母值互为相反数(A+B=0) 知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。
字母表示:,,其中A 、B 、C 是整式,C 0。
拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即 注意:在应用分式的基本性质时,要注意C 0这个限制条件和隐含条件B0。
知识点四:分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
步骤:把分式分子分母因式分解,然后约去分子与分母的公因。
注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。
②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。
最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。
知识点五:分式的通分分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
分式的通分最主要的步骤是最简公分母的确定。
最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
确定最简公分母的一般步骤:Ⅰ取各分母系数的最小公倍数;Ⅱ单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式;Ⅲ相同字母(或含有字母的式子)的幂的因式取指数最大的。
Ⅳ保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。
注意:分式的分母为多项式时,一般应先因式分解。
知识点六:分式的四则运算与分式的乘方分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
式子表示为:分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。
式子表示为分式的乘方:把分子、分母分别乘方。
式子分式的加减法则:同分母分式加减法:分母不变,把分子相加减。
式子表示为异分母分式加减法:先通分,化为同分母的分式,然后再加减。
式子表示为整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。
分式的加、减、乘、除、乘方的混合运算的运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。
注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。
知识点七:整数指数幂引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。
即★ ★ ★ ★() ★★ () ★ () (任何不等于零的数的零次幂都等于1)m ,n 均为整数。
科学记数法若一个数x 是0<x<1的数,则可以表示为na -10⨯(101<a ≤,即a 的整数部分只有一位,n 为整数)的形式,n 的确定:n=从左边第一个0起到第一个不为0的数为止所有的0的个数的相反数。
如0.000000125=71025.1-⨯若一个数x 是x>10的数则可以表示为na 10⨯(101<a ≤,即a 的整数部分只有一位,n 为整数)的形式,n 的确定:n=比整数部分的数位的个数少1。
如120 000 000=8102.1⨯ 知识点七分式方程的解的步骤⑴去分母,把方程两边同乘以各分母的最简公分母。
(产生增根的过程) ⑵解整式方程,得到整式方程的解。
⑶检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。
产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。
知识点八:列分式方程 基本步骤审:仔细审题,找出等量关系。
设:合理设未知数。
列:根据等量关系列出方程(组)。
解:解出方程(组)。
注意检验 验:检验并答题。
计算专练1、化简211()1122x x x x -÷-+-,然后从2,1,1-中选取一个你认为合适..的数作为x 的值代入求值. 化简求值:212)14(-÷-+-a a a a a ,其中31=a . 化简:y x y y xy x y x y x y x +-++-÷+-29632222. x x x -+-++1111112 ;)9(2316212-+-++x xx x ;x x x x x x x 4126)3(446222--+⋅+÷+-- 112---a a a 22428a a a -+-÷(a 2-4)·2442a a a -+- 22416842a a a a a ++⋅+- x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+--a +b +b a b -22 x y y x y x y x y y x ----+-+2 232323194322---+--+x x x x x (x +1-13-x )÷222-+x x分式典型题1、代数式11,,0,2,4,1222++-++-x x b a b a a y x x 中,是整式的有_____________,是分式的有_____________.2、若M =1)2)(1(2--+x x x ,则当x ________时,M 有意义;当x =________时,M =0;当x =________时,M =4.3、当x ________时,分式xx -52的值为正数.4、在正数范围内定义一种运算*,其规则为a *b =ba 11+,则x *(x +1)=________. 5、不论x 取何值时,下列分式总有意义的是( )A.21xx -B.22)2(+x x C.2+x x D.22+x x6、若x 2-9=0,则分式3652-+-x x x 的值为( )A.1B.-5C.1或-5D.57、若分式mm m --21||的值为零,则m 取值为( )A.m =±1B.m =-1C.m =1D.m 的值不存在 8、每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( )A.yx mynx ++元B.y x my mx ++元 C.yx nm ++元D.21(nym x +)元 9、如果把分式yx x23-中的x 、y 的值都扩大2倍,那么分式的值( )A.扩大2倍B.扩大6倍C.扩大3倍D.不变10、甲、乙两人加工某种机器零件,已知甲每天比乙多做a 个,甲做m 个所用的天数与乙做n 个所用的天数相等(其中m ≠n ),设甲每天做x 个零件,则甲、乙两人每天所做零件的个数分别是( )A.n m am -、n m an - B. n m an -、n m am - C.n m am +、nm an+ D.m n am -、mn an- 11、下列各式中,是分式的是( )A.2-πx B.31x 2C.312-+x x D.21x 12、当a 为任何实数时,下列分式中一定有意义的一个是( )A.21aa +B.11+aC.112++a a D.112++a a 13、当m ______时,关于x 的方程323-+=-x m x x 有增根;若关于x 的方程=无解,则m=14、已知(0)234x y zx ==≠,求分式233233x y z x y z +--+的值。
15、已知311=-y x ,求yxy x yxy x ---+55的值. 16、若方程122-=-+x ax 的解是正数,求a 的取值范围.已知关于x 的分式方程=1的解是非正数,求a 的取值范围.17、已知a 2+3a +1=0,求(1)a +a 1; (2)a 2+21a ; (3)a 4+41a18、已知a 、b 、c 均不为0,且a+2b 32537b c c a --==,求223c bb a -+的值。
19、已知210253a a b ++=--,求代数式()4322222322b a ab a b b a b ab ba b +--÷+-的值 20、若0,0x y z xyz ++=≠,求x y zy z z x x y+++++的值。
21、已知115(),a b a b+=≠求()()a b b a b a a b ---的值 22、化简:43223323322232a a b a b ab a ab a b ab a b a b b +----++-23、计算:(巧算) 24、已知x 为正整数,且222218339x x x x ++++--也为正整数,求所有符合条件的x 的值。
分式培优题一、填空1、若a 、b 满足b a +ab=2,则的值是 。
2、当x _____________时,3-x x 与xx-3互为倒数.则;.3、如果,4、当m= 时,分式233422+-+-m m m m 的值为零.5、已知a 1-b 1=4,则ab b a bab a 722+---= 。
6、若a ∶b ∶c=1∶3∶5,则a cb a +-= ,2222a c b a +-= 。
7、已知:bb a 2-=35,则b a= . 8、已知,则= 。
9、如图,第(1)个多边形由正三角形“扩展”而来,边数记为,第(2)个多边形由正方形“扩展”而来,边数记为,…,依此类推,由正边形“扩展”而来的多边形的边数记为(n ≥3).则的值是 ,当的结果是时,n 的值 .10、先观察下列等式,然后用你发现的规律解答下列问题.(1) 计算.(2)探究.(用含有的式子表示)(3)若 的值为,求的值.二、选择题11、如果m 个人完成一项工作需要d 天,则(m +n )个人完成这项工作需要的天数为( )A .d +nB .d -nC .n m md + D .nm d+ 12、若x+x 1=3,求1242++x x x 的值是( ). A .81 B .101 C .21 D .4113、如果b a =2,则2222b a b ab a ++-=( ) A .54 B .1 C .53D .214、如果满足,那么+2a 21a的值是( ) A .154 B .4 C .174D .14 15、已知分式91862-+-a a 的值是正整数,求整数a 的值。