初二上数学培优专题(9)分式方程
- 格式:doc
- 大小:133.50 KB
- 文档页数:4
人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。
初二数学分式方程精华题(含答案)1.分式方程解:本题考查分式方程的解法,根据题意可列出方程:frac{x}{x+12}=\frac{1}{2}$$化简后得到:2x=x+12$$解得$x=6$,因此选项C正确。
2.若分式方程 $\frac{x}{a}=\frac{2}{x-4}$ 有增根,则a的值为()解:根据题意,可列出方程:frac{x}{a}=\frac{2}{x-4}$$移项化简得到:x^2-4ax-8=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:4a)^2-4\times 1\times (-8)<0$$化简得到 $a^2+2>0$,因此 $a$ 可以取任意实数,选项中没有正确答案。
3.解关于x的方程 $\frac{x-3m}{x-1}=\frac{1}{x-1}$ 产生增根,则常数m的值等于()解:根据题意,可列出方程:frac{x-3m}{x-1}=\frac{1}{x-1}$$移项化简得到:x^2-4mx+3m=0$$由于有增根,因此判别式 $b^2-4ac<0$,即:16m^2-12m<0$$化简得到 $0<m<\frac{3}{4}$,因此选项C正确。
4.求 $\frac{1-x}{2-xx}=3$,去分母后的结果,其中正确的是()解:根据题意,可列出方程:frac{1-x}{2-xx}=3$$移项化简得到:x^2+3x-5=0$$解得$x=1$或$x=-5$,代入原式可知$x=-5$不合法,因此$x=1$是方程的唯一解。
将$x=1$代入原式得到:frac{1-x}{2-xx}=\frac{0}{1}=0$$因此选项A正确。
5.计算:$\frac{b^2+2b+2a}{2b^3-7a^2b}=?$解:根据题意,可将分子分母同时除以$b$,得到:frac{b^2+2b+2a}{2b^3-7a^2b}=\frac{\frac{b^2}{b}+\frac{2b}{b}+\frac{2a}{b}}{\frac{2 b^3}{b}-\frac{7a^2b}{b}}=\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$$因此答案为$\frac{b+2+\frac{2a}{b}}{2b^2-7a^2}$。
第16讲分式方程及其应用考点·方法·破译1.分式方程(组)的解法解分式方程的一般步骤:⑴去分母,将分式方程转化为整式方程;⑵解整式方程;⑶验根.有的分式方程也要依据具体的情况灵活处理.如分式中分子(整式)的次数高于等于分母(整式)的次数时,可利用分拆思想,把分式化为“整式+分式”的形式,化简原方程再解;或将分式方程两边化为分子(或分母)相等的分式,再利用分母(或分子)相等构成整式方程求解;或利用换元法将分式方程化为整式方程,或利用倒数法使方程更简便.2.分式方程增根在解分式方程时,通常将分式方程两边同时乘以最简公分母(化为整式方程),这就扩大了未知数的取值范围,可能产生增根.因此,解分式方程时一定要验根.又如求分式方程的解的取值范围(解是正数,或解是负数)时,要注意剔除正数解或负数解中的增根(因为增根不是分式方程的根).3.列分式方程解应用题列分式方程解应用题同运用整式方程解应用题的方法和步骤是类似的,但要注意分式方程求出的未知数的解要双重检验,①检验是否是增根,②检验解是否符合实际意义.经典·考题·赏析【例1】解下列方程:⑴22xx-+-2164x-=1⑵12x+-2244xx--22x-=4⑶45xx--+89xx--=78xx--+56xx--【变式题组】⑴12xx--=12x--2⑵2xx-+2=3(2)xx-⑵14x--23x-=32x--41x-⑷12x++242xx-+22x-=1【例2】当m 为何值时,分式方程1m x +-21x -=231x -会产生增根?【变式题组】 01.分式方程22x x -+-22x x +-=2164x -的增根是__________. 02.若分式方程()()611x x +--1mx -=1有增根,则它的增根为( ) A .0 B .1 C .-1 D .1,-1 03.若关于x 的方程23x -=1-3m x -无解.则m 的值为___________.04.分式方程1m x +-21x -=232x -无解,则m 的值为___________.【例3】已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围是_________.【变式题组】01.关于x 的方程21x ax +-=1的解是正数,则a 的取值范围是( ) A .a >-1 B . a >-1,且a ≠0 C .a <-1 D . a <-1,且a ≠-202.当m 为何值时,关于x 的方程22m x x --=1x x +-12x x --的解是正数?【例4】某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.⑴该商场两次共购进这种运动服多少套?⑵如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?【变式题组】01.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( )A .160x +()400120%x +=18 B .160x +()400160120%x -+=18 C .160x +40016020%x -=18 D .400x +()400160120%x-+=1802.铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销的2倍.⑴试销时该品种苹果的进货价是每千克多少元?⑵如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?03.由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3:2,两队合做6天可以完成.⑴求两队单独完成此项工程各需多少天?⑵此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?演练巩固·反馈提高01.关于x 的分式方程5mx -=1,下列说法正确的是( ) A .方程的解是x =m +5 B .m >-5时,方程的解是正数 C .m <-5时,方程的解是负数D .无法确定02.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )A .8B .7C .6D .5 03.用换元法解分式方程1x x --31x x -+1=0时,如果设1x x-=y ,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .y 2+y -3=0 B .y 2-3y +1=0 C . 3y 2-y +1=0 D . 3y 2-y -1=004.有两块面积相同的试验田,分别收获蔬菜900㎏和1500㎏.已知第一块试验田每亩收获蔬菜比第二块少300㎏,求第一块试验田每亩收获蔬菜多少千克.设第一块试验田每亩收获蔬菜x ㎏,根据题意,可得方程( )A .900300x +=1500x B .900x =1500300x -C .900x =1500300x + D .900300x -=1500x05.若关于x 的分式方程1x a x ---3x=1无解,则a =___________. 06.方程1x x ++3=21x +的解为___________. 07.若x =1是方程21x a ++22x a-=0的解,则a =___________. 08.若A =1x x -,B =231x -+1,当x =___________时,A =B . 09.若x =3是方程102x ++2k =0的解,则3k k +-269k -÷23k -的值为___________.10.如果关于x 的方程1+2x x -=224m x -的解,也是不等式组1222(3)8xx x x -⎧>-⎪⎨⎪-≤-⎩的一个解,求m 的取值范围.11.关于x的分式方程61x-=()31xx x+--kx有解,求k的取值范围.12.要使关于x、y的二元一次方程组21620x ayx y+=⎧⎨-=⎩有正整数解,求整数a的值.13.某工程准备招标,指挥部接到甲、乙两个工程队的标书,从标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍,该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.⑴求甲、乙两队单独完成这项工程各需要多少天?⑵已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.14.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.⑴乙队单独完成这项工程需要多少天?⑵甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲乙两队全程合作完成该工程省钱?培优升级·奥赛检测01.若实数x 、y 、z 满足方程组:122232xyx y yzy z zxz x ⎧=⎪+⎪⎪=⎨+⎪⎪=⎪+⎩,则有( )A .x +2y +3z =0B . 7x +5y +3z =0C . 9x +6y +3z =0D .10x +7y +z =002.某段公路由上坡、平路、下坡三个等长的路段组成,已知一辆汽车在三个路段上行驶的平均速度分别为V 1、V 2、V 3,则此辆汽车在这段公路上行驶的平均速度为( )A .1233V V V ++B .1231113V V V ++C .1231111V V V ++D .1233111V V V ++03.解分式方程31x ++51x -=21mx -会产生增根,则m =___________. 04.方程()11x x ++()()112x x +++…+()()120102011x x ++=1+1x 的解是___________.05.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车,假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________分钟.06.解下列方程:⑴12x x ++-17x +=23x x ++-16x +⑵432x x +-+324x x -+=207.已知方程组22xy x y +=23,32yz y z -=-9,53xyzxy yz zx-+=157恰好有一组解为x =a ,y =b ,z =C .求a 2+b 2+c 2的值.08.设x、y都是整数,1x-1y=12010.求y的最大正整数的解.09.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买入选产品,政府按原价购买总额的13%给予补贴返还.某村委会组织部分农民到商场购买入选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40000元、电视机总额15000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?⑴设购买电视机x台,依题意填充下列表格:项目家电种类购买数量(台)原价购买总额(元)政府补贴返还比例补贴返还总额(元)每台补贴返还金额(元)冰箱40000 13%电视机x 15000 13%⑵列出方程(组)并解答.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.⑴今年三月份甲种电脑每台售价多少元?⑵为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?⑶如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使⑵中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?。
八年级数学上册15.3《分式方程》分式方程的概念和解法重难点突破素材(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册15.3《分式方程》分式方程的概念和解法重难点突破素材(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册15.3《分式方程》分式方程的概念和解法重难点突破素材(新版)新人教版的全部内容。
分式方程的概念和解法重难点突破一、认识分式方程,探索分式方程的一般解法突破建议:1.观察由章引言得出的方程的特点,给出具有相同特征的几个方程,让学生在观察和思考的过程中,发现并概括出分式方程的本质特征,认识其本质属性—-分母中含有未知数,同时为后续探索解分式方程的基本思路和关键步骤做铺垫.2.学生初次接触分式方程,在对整式方程的认识还不够深入的情况下,就遇到比解整式方程复杂的求解过程,学生对此内容的接受会有较大困难.由实际问题引出分母中含有未知数的方程,让学生了解研究分式方程的必要性,由于已经会求解整式方程,自然想到能否将分式方程化为整式方程再求解,根据学生的知识基础,想到实现这一过程的关键是去分母,根据等式的性质,在分式方程两边乘最简公分母.依托这一分析探索过程,教师总结解分式方程的是先去分母将分式方程化为整式方程,再解整式方程.可以通过以下几个问题明确解分式方程的方法和依据:(1)如何将分式方程化为整式方程?(2)如何去分母?(3)方程两边乘什么式子才能把每一个分母都约去?(4)这样做的依据是什么?师生活动:学生通过独立思考和合作交流,回答问题.【设计意图】通过探究活动,学生探索出解分式方程的基本思路是将分式方程化为整式方程,并知道解决问题的关键是去分母.追问你得到的解一定是分式方程的解吗?师生活动:学生回答问题,相互补充.【设计意图】让学生知道检验分式方程的解的方法——将未知数的值代入原分式方程的两边,看左右两边的值是否相等;学生通过检验,发现这个整式方程的解就是元分式方程的解;说明上述解分式方程的方法是有效的,进而得知:将分式方程去分母化为整式方程是解分式方程必要和有效的步骤.本节教学中,应始终抓住分式方程的特征,让学生根据分式方程的特征认识解分式方程的基本思路.二、分析增根产生的原因突破建议:将分式方程化为整式方程时,需在方程两边乘最简公分母,该整式是否为0是不确定的,如果该整式的值为0,那么对方程的变形就不是同解变形,这样得到的整式方程如果有解,这个解也会导致分式方程中的相应分式没有意义.这样的操作在解整式方程时也出现过,但不需要检验,是因为那时是在方程两边乘同一个具体的数(这个数不等于0),因此所得新方程与原方程同解.这就是为什么解一元一次方程不需要检验,而解分式方程时必须检验的原因.例3解分式方程.师生活动:教师提出问题,学生在独立思考后解此方程,得出去分母后的整式方程的解.有的学生认为是原分式方程的解,有的学生发现,当时,分式,都没有意义,但不能解释原因.【设计意图】(1)让学生积累去分母的经验,去分母的通法是分式两边同乘最简公分母;(2)让学生感受到在去分母解分式方程的过程中已经对原分式方程进行了变形,这种变形可能会使方程的解发生变化.追问2通过对两个分式方程的求解,我们发现同样是去分母将分式方程化为整式方程,为什么整式方程的解是分式方程的解,而整式方程的解却不是分式方程的解呢?师生活动:教师针对上述两个分式方程的解答过程提出问题,学生独立思考,然后小组交流,教师适时点拨.最后达成共识:在去分母的过程中,对原分式方程进行了变形,而这种变形是否会引起分式方程解的变化,主要取决于所乘的最简公分母是否为0;对解进行检验时,主要有两种方式,其一是将整式方程的解代入原分式方程,看左右两边是否相等;其二是将整式方程的解代入最简公分母,看是否为0.【设计意图】让学生了解分式方程产生增根的原因—-—当整式方程的解使得所乘最简公分母不等于0时,相当于方程两边同时乘以非0数,方程的解不发生变化;当整式方程的解使得所乘最简公分母等于0时,相当于方程两边同时乘以0,方程的解发生变化,就出现了分母为0的情况.。
精品文档12、分式方程及其应用【知识精读】 1. 解分式方程的基本思想:把分式方程转化为整式方程。
2. 解分式方程的一般步骤:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程;()解这个整式方程;2)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于3 (零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。
列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得3.的解是否为原方程的根,以及是否符合题意。
下面我们来学习可化为一元一次方程的分式方程的解法及其应用。
【分类解析】2x解方程:例1. 1??11x?x?解首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,分析:完后记着要验根)11)(x??(x,得解:方程两边都乘以2,1)x(x?1)(?1x2?(x?)?22,1??x即x?2x?2?3?x?23经检验:x?是原方程的根。
2精品文档.精品文档5?x?1x?6x?2x解方程例2. ???6x?2x?7x?3x?分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现)x?3?x2)与((x?6)与x?7)、((,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用的值相差1 分式的等值性质求值。
1x?6x?5x?2x?解:原方程变形为:???2?3xx?6x?x?7方程两边通分,得11?)x(x?6)(x?7)(?2)(x?3)6)(x??3?2)(x7)?(x所以(x?36?即8x?9???x29??x经检验:原方程的根是。
219??1032x?3424x?2316x12x例3. 解方程:???5x?98x?74x??4x38可化为一个整数与一个简单的分因此,分析:方程中的每个分式都相当于一个假分数,数式之和。
12213解:由原方程得:???4?3??4?574x????4x38x98x2222即???7x?x?68?108xx8?9811,于是?)x?7)()(8x?108?9(8x?)(8x6所以(8x?9)(8x?6)?(8x?10)(8x?7)解得:x?1经检验:x?1是原方程的根。
分式方程
【例题精讲】
例1:分式通分六大技巧 1、逐步通分2411241111x x x x ----+++ 2、整体通分)22
5
(423---÷--a a a a
3、分组通分:2
m 1
1-m 21m 22-m 1+-
-++ 4、分解简化通分:4x 2x 1x x 1x x x x 22223-+-+-+--
5、裂项相消()()()()
()()10099132121111--+⋅⋅⋅+--+--+-a a a a a a a
6、活用乘法公式:1)x 1)(x x
1
)(x x 1)(x x 1)(x x 1)(x x 1(x 21616884422≠-+++++
()
例2:去分母法解分式方程 1、()()
6
+
1111x x x x =+-- 2、2
2416222-+=--+-x x x x x
3、2
24122
12362x
x x x x x x -+++=++--- 4、64534275--+--=--+--x x x x x x x x
例3:整体换元与倒数型换元: 1、用换元法解分式方程: (1)
6151=+++x x x x (2)1
2221--=
+--x x
x x
变式练习: 用换元法解分式方程
13101x x x x --+=-时,如果设1
x y x
-=,将原方程化为关于y 的整式方程, 那么这个整式方程是( )
A .2
30y y +-=
B .2
310y y -+=
C .2
310y y -+= D .2310y y --=
例4:分式方程的(增)根和无解 1、 若分式方程:
210242
a x
x x x ++=--+有增根,求a 的值。
2、(牡丹江)关于x 的分式方程
13
1=---x
x a x 无解,则a=_________。
变式练习:当m 为 时,分式方程
()
01163=-+--+x x m x x x 有根。
3、解关于x 的方程223
242
ax x x x +=
--+无解,则常数a 的值。
例5:若分式方程212
x a
x +=--的解是正数,求a 的取值范围
【能力提升】
1、(化积为差,裂项相消)解方程()()
()81
2x 12x 12x 1x 1)1x (x 1=-+⋅⋅⋅+++++
变式练习:化简
3
41
6512312
22++++++++x x x x x x
【名校、名书、竞赛、中考在线】
一、填空题:
1、(盐外)关于x 的方程
4
3
32=-+x a ax 的解为x=1, 则._____=a
2、(成外)若关于x 的分式方程3232
-=--x m x x 有增根,则m 的值为__________。
3、(萧山) 若关于x 的分式方程3
131+=
-+x a
x 在实数范围内无解,则实数=a 。
4、(南宁)当x _____ 时,分式
4
2-x x
有意义。
当x= ____时,分式
x
x --112的值为零。
5、(淮安)已知实数x 满足01442
=+-x x ,则代数式x
x 21
2+的值是_________。
6、(成外)如果b a
=2,则2222b a b ab a ++-=________. 若1
=ab ,则221111b a +++的值为 。
7、(培优班)已知:分式9
18
62
---a a 的值为正整数,则整数a 的值为__________。
8、(培优班)已知:1=++c z
b y a x ,0=++z
c y b x a ,则222222c
z b y a x ++的值为______。
9、(实外)m 取_________________整数值时,分式1
7
2-+m m 的值是正整数。
二、解答题:
1、(培优班)已知关于x 的方程3)1(212
2
-=+++
x x x x ,求
11++x x 的值。
2、先化简,再求值:
(1)
2
2
4
2
24
a a
a
a a
⎛⎫
-+÷
⎪
+-
⎝⎭
,在从-2,2,0,4中选一个数代人求值。
(2)
2
15816
1
11
x x
x
x x
-+
⎛⎫
--÷
⎪
--
⎝⎭
,在从-1,1,0,4中选一个数代人求值。
1.某车间接到一批限期(可以提前)完成的零件加工任务,如果每天加工120个,则恰好按期完成,如果每天加工160个,则可提前6天完成.
(1)求这批零件的个数;
(2)车间按每天加工160个零件的速度加工了y个零件后,提高了加工速度,每天加工180个零件,结果比原计划提前7天完成了生产任务,求y的值.
2.某商家预测一种衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,如果两批衬衫全部售完利润率不低于30%(不考虑其它因素),那么每件衬衫的标价至少是多少元?(结果保留整数)。