人教版八年级上册数学复习知识点总结全
- 格式:doc
- 大小:45.00 KB
- 文档页数:20
新人教版八年级数学上册知识点总结(上)(含思维导图)因式分解:1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的最大公约数·相同因式的最低次幂.5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂.13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方2.平方根的性质:(1)正数的平方根是一对相反数;(2)0的平方根还是0;(3)负数没有平方根.8.立方根的性质:(1)正数的立方根是一个正数;(2)0的立方根还是0;(3)负数的立方根是一个负数.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.12.符合“AAA”“SSA”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线. 15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.※18.几何重要图形和辅助线:(1)选取和作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.附思维导图:.谢谢观看! 欢迎您的下载,资料仅供参考,如有雷同纯属意外。
人教版小学八年级上册数学知识点总结一、数与代数(一)二次根式1.二次根式的概念二次根式是指形如√a(a≥0)的数学表达式,其中a被称为被开方数。
当a>0时,二次根式有两个值,分别为正根和负根;当a=0时,二次根式的值为0。
2.二次根式的性质•非负性:对于任意实数a,√a的值总是非负的。
•乘方与开方互逆:对于任意非负实数a,有√(a^2) = a。
•运算性质:√(ab) = √a × √b(a≥0, b≥0);√(a/b) = √a / √b(a≥0, b>0)。
3.二次根式的化简与运算通过合并同类二次根式、利用二次根式的乘法法则进行化简和运算。
(二)一元二次方程1.一元二次方程的概念只含有一个未知数,且未知数的最高次数为2的方程称为一元二次方程。
一般形式为ax^2 + bx + c = 0(a≠0)。
2.一元二次方程的解法•直接开平方法:当一元二次方程可以化为x^2 = p或(x-m)^2 = p的形式时,可以直接开平方求解。
•配方法:通过配方将一元二次方程转化为完全平方的形式,然后开平方求解。
•公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,其解为x = [-b ± √(b^2 - 4ac)] / (2a)。
•因式分解法:将一元二次方程化为两个一次方程的乘积形式,然后分别求解。
3.一元二次方程的应用一元二次方程在实际问题中有广泛应用,如面积、体积、速度、时间等问题。
通过设立未知数,建立一元二次方程,然后求解未知数,可以得到实际问题的解。
(三)分式1.分式的概念一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。
分式是不同于整式的一类代数式。
2.分式的性质•分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
•分式的约分与通分:通过约分可以化简分式,通过通分可以比较分式的大小或进行分式的加减运算。
初二数学上册知识点总结(人教版)初二数学上册知识点总结(人教版)本文档总结了初二数学上册的重要知识点。
以下是每个章节的主要内容概述。
第一章:有理数- 有理数的概念和性质- 有理数的加法、减法、乘法和除法运算- 有理数的大小比较和绝对值- 有理数的混合运算第二章:平方根和立方根- 平方根和立方根的概念和性质- 求平方根和立方根的方法- 平方根和立方根的运算法则第三章:比例与相似- 比例的概念和性质- 求解比例的方法- 相似的概念和性质- 判断两个图形是否相似的方法第四章:代数式- 代数式的概念和表达方法- 代数式的加法、减法、乘法和除法运算- 多项式的概念和运算法则- 代数式的应用问题第五章:一次函数与方程- 一次函数的概念和性质- 一次函数的图像和性质- 解一元一次方程的方法- 一次函数与方程的实际应用第六章:一次不等式和不等式组- 不等式及其解集的概念- 解一元一次不等式的方法- 解不等式组的方法- 不等式和不等式组的应用第七章:平面图形的认识- 平面图形的基本概念和性质- 三角形的分类和性质- 四边形的分类和性质- 平行线和垂直线的判定方法第八章:平面图形的应用- 通过条件画图的方法- 图形的旋转、翻折和滑动变换- 图形的对称性和轴- 图形的符号表示和坐标表示第九章:数据的处理- 数据的收集和整理方法- 数据的统计和分析方法- 数据的图表表示和解读- 数据的应用问题以上是初二数学上册的知识点总结。
希望对你的学习有所帮助!。
人教版八年级数学上册知识点人教版八年级数学上册知识点概述一、实数1. 有理数和无理数的概念- 有理数:整数和分数统称为有理数,包括正有理数、0和负有理数。
- 无理数:无限不循环小数称为无理数,如圆周率π。
2. 实数的运算- 加法、减法、乘法和除法的运算规则。
- 正数和负数的运算。
- 绝对值的概念及运算。
3. 估算和有效数字- 近似数的估算方法。
- 有效数字的计算和应用。
4. 实数的性质和比较大小- 实数的性质。
- 实数大小的比较方法。
二、代数表达式1. 代数式的概念- 单项式和多项式的定义。
- 同类项和合并同类项。
2. 代数式的运算- 整式的加减法。
- 乘法公式,包括平方差公式、完全平方公式等。
- 多项式的乘除法。
3. 因式分解- 提公因式法。
- 公式法。
- 十字相乘法。
三、方程与不等式1. 一元一次方程- 方程的建立和解法。
- 方程的解的检验。
2. 一元一次不等式- 不等式的概念和性质。
- 不等式的解集表示。
- 不等式的解法。
3. 二元一次方程组- 方程组的建立。
- 代入法和消元法解方程组。
四、几何1. 平行线与角- 平行线的判定和性质。
- 角的概念,包括同位角、内错角、同旁内角。
2. 三角形- 三角形的基本性质。
- 等腰三角形和等边三角形的性质。
- 三角形的内角和外角性质。
3. 四边形- 四边形的定义和分类。
- 矩形、菱形、正方形的性质。
4. 圆的基本性质- 圆的定义和圆心、半径、直径的概念。
- 弦、弧、切线的概念和性质。
五、统计与概率1. 统计- 数据的收集和整理。
- 频数和频率的概念。
- 统计图表的绘制,包括条形图、折线图和饼图。
2. 概率- 随机事件的概念。
- 概率的计算方法。
- 等可能事件的概率。
以上是人教版八年级数学上册的主要知识点概述。
在学习过程中,学生应该掌握每个知识点的定义、性质、公式和解题方法,以便能够熟练地解决相关问题。
教师和家长应鼓励学生通过练习题和实际应用来巩固和深化这些概念。
最新人教版八年级数学上册知识点总结归纳【最新整理】复资料、知识分享】新人教版八年级上册数学知识点总结归纳第十一章三角形1.三角形的概念三角形是由不在同一直线上的三条线段首尾顺次相接组成的图形。
组成三角形的线段称为三角形的边,相邻两边的公共端点称为三角形的顶点,相邻两边所组成的角称为三角形的内角,简称三角形的角。
2.三角形中的主要线段1) 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段称为三角形的角平分线。
2) 在三角形中,连接一个顶点和它对边的中点的线段称为三角形的中线。
3) 从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段称为三角形的高线,简称三角形的高。
3.三角形的稳定性三角形的形状是固定的,这个性质称为三角形的稳定性。
在生产生活中,需要稳定的东西一般都制成三角形的形状。
4.三角形的特性与表示三角形有下面三个特性:三角形有三条线段,三条线段不在同一直线上,三角形是封闭图形,首尾顺次相接。
三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
5.三角形的分类按边的关系分类:不等边三角形、三角形底和腰不相等的等腰三角形、等腰三角形、等边三角形。
按角的关系分类:直角三角形、锐角三角形、斜三角形、钝角三角形。
特殊的三角形:等腰直角三角形,两条直角边相等的直角三角形。
6.三角形的三边关系定理及推论1) 三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2) 三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
7.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中,等角对等边,等边对等角,大角对大边,大边对大角。
人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。
人教版八年级上册数学知识点总结归纳一、三角形1. 三角形的概念及分类-由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
-按角分类:锐角三角形、直角三角形、钝角三角形。
-按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。
2. 三角形的三边关系-三角形任意两边之和大于第三边,任意两边之差小于第三边。
3. 三角形的内角和与外角和-三角形内角和为180°。
-三角形的外角等于与它不相邻的两个内角之和。
三角形外角和为360°。
4. 三角形的高、中线、角平分线-从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
-三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
-三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
二、全等三角形1. 全等三角形的概念及性质-能够完全重合的两个三角形叫做全等三角形。
-全等三角形的对应边相等、对应角相等。
2. 全等三角形的判定- “边边边”(SSS):三边对应相等的两个三角形全等。
- “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
- “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
- “角角边”(AAS):两角和其中一个角的对边对应相等的两个三角形全等。
- “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、轴对称1. 轴对称图形和轴对称-如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
-把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
2. 线段的垂直平分线-经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
-线段垂直平分线上的点与这条线段两个端点的距离相等。
人教版初二上册数学知识点汇总人教版初二上册数学知识点一、变量与函数[变量和常量]在一个变化过程中,数值发生变化的量,我们称之为变量,而数值始终保持不变的量,我们称之为常量。
[函数]一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数。
如果当时,那么叫做当自变量的值为时的函数值。
[自变量取值范围的确定方法]1、自变量的取值范围必须使解析式有意义。
当解析式为整式时,自变量的取值范围是全体实数;当解析式为分数形式时,自变量的取值范围是使分母不为0的所有实数;当解析式中含有二次根式时,自变量的取值范围是使被开方数大于等于0的所有实数。
2、自变量的取值范围必须使实际问题有意义。
[函数的图像]一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.[描点法画函数图形的一般步骤]第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
[函数的表示方法]列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
[正比例函数]一般地,•形如y=•kx•(k•是常数, k ≠0 )的函数,•叫做正比例函数(proportional function),其中k叫做比例系数.[正比例函数图象和性质]一般地,正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点和(1,k)的直线.我们称它为直线y=kx.•当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1) 解析式:y=kx(k是常数,k≠0)(2) 必过点:(0,0)、(1,k)(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4) 增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴[正比例函数解析式的确定]——待定系数法1. 设出含有待定系数的函数解析式y=kx(k ≠0)2. 把已知条件(一个点的坐标)代入解析式,得到关于k的一元一次方程3. 解方程,求出系数k4. 将k的值代回解析式二、一次函数[一次函数]一般地,形如y=kx+b(k、b是常数,k 0)函数,叫做一次函数. 当b=0时,y=kx+b即y=kx,所以正比例函数是一种特殊的一次函数.[一次函数的图象及性质]一次函数y=kx+b的图象是经过(0,b)和(- ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)(1)解析式:y=kx+b(k、b是常数,k 0)(2)必过点:(0,b)和(- ,0)(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限直线经过第一、二、三象限直线经过第一、三、四象限直线经过第一、二、四象限直线经过第二、三、四象限(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b 个单位;当b<0时,将直线y=kx的图象向下平移b个单位.[直线y=k1x+b1与y=k2x+b2的位置关系](1)两直线平行:k1=k2且b1 b2(2)两直线相交:k1 k2(3)两直线重合:k1=k2且b1=b2[确定一次函数解析式的方法](1)根据已知条件写出含有待定系数的函数解析式;(2)将x、y的几对值或图象上的几个点的坐标代入上述函数解析式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数解析式中得出结果.[一次函数建模]函数建模的关键是将实际问题数学化,从而解决最佳方案、最佳策略等问题. 建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知识解决实际问题.正比例函数的图象和一次函数的图象在赋予实际意义时,其图象大多为线段或射线. 这是因为在实际问题中,自变量的取值范围是有一定的限制条件的,即自变量必须使实际问题有意义.从图象中获取的信息一般是:(1)从函数图象的形状判定函数的类型;(2)从横、纵轴的实际意义理解图象上点的坐标的实际意义.解决含有多个变量的问题时,可以分析这些变量的关系,选取其中某个变量作为自变量,再根据问题的条件寻求可以反映实际问题的函数.三、用函数观点看方程(组)与不等式[一元一次方程与一次函数的关系]任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.[一次函数与一元一次不等式的关系]任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.[一次函数与二元一次方程组](1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y= 的图象相同.(2)二元一次方程组的解可以看作是两个一次函数y= 和y= 的图象交点.三个重要的`数学思想1.方程的思想。
人教版新编八年级上册数学笔记重点归纳在八年级的数学学习中,学生们将接触到许多新的概念和技能,这些内容不仅为后续的学习打下基础,也为日常生活中的实际应用提供了支持。
本文将对八年级上册数学的重点内容进行归纳总结,帮助学生更好地理解和掌握这些知识。
一、代数基础1. 代数表达式代数表达式是由数字、字母和运算符组成的数学表达式。
学生需要掌握如何简化代数表达式,包括合并同类项和使用分配律。
例子:简化(3x + 5x 2) 得到(8x 2)。
2. 方程与不等式学生需要学习如何解一元一次方程和不等式。
解方程的基本步骤包括移项、合并同类项和系数的处理。
例子:解方程(2x + 3 = 11),步骤为:(2x = 11 3) →(2x = 8) →(x = 4)。
3. 函数概念函数是描述变量之间关系的数学工具。
学生需要理解函数的定义、表示方法(如图像、表格和公式)以及如何判断一个关系是否为函数。
例子:函数(y = 2x + 1) 表示每个(x) 值对应一个(y) 值。
二、几何知识1. 平面几何学生需要掌握基本的几何图形及其性质,包括三角形、四边形、圆等。
特别是三角形的内角和、外角和以及相似三角形的性质。
例子:三角形的内角和为180度。
2. 面积与周长学生需要学习如何计算各种图形的面积和周长。
常见图形的公式包括:矩形:面积= 长×宽,周长= 2(长+ 宽)圆:面积= πr²,周长= 2πr3. 立体几何学生需要了解立体图形的基本性质,包括长方体、正方体、圆柱体等的体积和表面积计算。
例子:长方体的体积公式为(V = 长×宽×高)。
三、统计与概率1. 数据收集与整理学生需要学习如何收集、整理和表示数据,包括使用频数表、条形图和折线图等。
例子:通过频数表整理班级学生的身高数据。
2. 平均数、中位数与众数学生需要掌握如何计算一组数据的平均数、中位数和众数,这些统计量能够帮助我们更好地理解数据的特征。
人教版八年级数学上册知识点归纳总结全册资料目录1. 单元一:有理数2. 单元二:平方根与立方根3. 单元三:一元一次方程4. 单元四:图形的平移与旋转5. 单元五:函数的概念与性质6. 单元六:方程与不等式7. 单元七:统计与概率8. 单元八:相交线与平行线9. 单元九:锐角与三角函数10. 单元十:三角恒等变换单元一:有理数- 有理数的定义与相反数- 有理数的大小比较- 有理数的加减法运算- 有理数的乘法运算- 有理数的除法运算- 近似数和有效数字单元二:平方根与立方根- 平方根的定义与性质- 平方根的计算- 平方根的应用- 立方根的定义与性质- 立方根的计算- 立方根的应用单元三:一元一次方程- 一元一次方程的定义与解的概念- 一元一次方程的解法与检验- 一元一次方程的应用单元四:图形的平移与旋转- 图形的平移与平移变换- 图形的旋转与旋转变换- 图形的轴对称与轴对称变换- 图形的合同与合同变换单元五:函数的概念与性质- 函数的定义与表示- 函数的自变量与因变量- 函数的图像与对应关系- 函数的单调性与奇偶性- 函数的性质与判断单元六:方程与不等式- 一元二次方程- 一元二次方程的解法与应用- 一元二次方程的判别式与根的关系- 一元二次不等式与解的概念- 一元二次不等式的解法与应用单元七:统计与概率- 统计图表的应用与分析- 统计调查与样本估计- 概率的基本概念与计算- 概率的应用与分析单元八:相交线与平行线- 平行线的定义、性质与判定- 平行线的性质与应用- 相交线的性质与应用- 平行线与相交线综合应用单元九:锐角与三角函数- 锐角的概念与性质- 三角函数的定义与计算- 锐角三角函数的应用与计算- 锐角三角函数的图像与性质单元十:三角恒等变换- 三角恒等式的等价性与证明- 三角恒等式的应用与计算- 三角恒等式的证明技巧与方法以上为人教版八年级数学上册的知识点归纳总结,希望对您有所帮助。
需要更详细的内容和解释,请参考教材或向老师咨询。
八年级上册数学知识点总结人教版八年级上册数学知识点总结(人教版)数学是一门基础学科,对于学生的学习能力和逻辑思维有着极大的影响。
在八年级上册数学教材中,包含了许多重要的数学知识点,下面将对其中的重点进行总结。
一、代数运算1. 整数运算:整数的加减乘除运算,主要包括整数加法、减法、乘法和除法的运算法则。
2. 小数运算:小数的加减乘除运算,要掌握小数的进位、退位和与整数的运算。
3. 代数式的加减运算:同类项的合并与系数的分配律,要掌握多项式的加减运算,如将同类项合并并进行运算。
4. 括号的运算:通过运用括号进行运算,要掌握括号的展开与因式分解。
二、图形与几何1. 平面图形:包括直线、线段、射线、角、三角形、四边形等常见平面图形,并要理解其性质和分类。
2. 长度、面积和体积:要掌握常见图形的长度计算、面积计算和体积计算方法,包括直角三角形、矩形、正方形等的周长、面积计算。
3. 相似三角形:了解相似三角形的定义,掌握相似三角形的判定方法和性质。
4. 坐标系与图形的位置关系:了解二维直角坐标系的建立和坐标点的表示,掌握图形在坐标系中的位置关系和平移、旋转、翻转等基本变换。
三、函数与方程1. 函数的概念:了解函数的定义、自变量、因变量和函数值的概念,能够根据给定函数的定义域和值域等信息,求解函数值。
2. 线性函数:了解线性函数的定义,能够根据函数的自变量和因变量之间的关系,确定线性函数的解析式。
3. 一元一次方程:掌握一元一次方程的解法,包括等式的简化、移项和消元法等。
4. 反比例函数:了解反比例函数的概念和性质,能够根据给定条件确定反比例函数的解析式。
四、统计与概率1. 数据的收集和整理:了解数据的收集、整理和表示方法,包括频数表、频率表、折线图、直方图等。
2. 统计指标:掌握常见的统计指标,如平均数、中位数、众数和极差等,能够进行数据的分析和比较。
3. 概率的概念:了解随机事件和概率的概念,能够计算简单事件的概率,并掌握事件的排列组合方法。
人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。
性质:全等三角形的对应边相等,对应角相等。
2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。
SAS(边角边):两边及其夹角对应相等的两个三角形全等。
ASA(角边角):两角及其夹边对应相等的两个三角形全等。
AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。
HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。
例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。
二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。
例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。
三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。
2实数的分类与性质实数可以分为有理数和无理数两大类。
有理数包括整数和分数,而无理数则是无限不循环小数。
实数具有封闭性、有序性和传递性等性质。
例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。
四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。
2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。
例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。
五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。
人教版八年级数学上学期数学知识点归纳八年级数学上册知识点总结第十一章三角形一、知识框架:三角形的分类、三边关系、高、中线、角平分线、内角和、外角和、多边形的内角和。
二、知识清单:1.三角形:由不在同一直线上的三条线段首尾顺次连接所组成的图形叫做三角形。
三角形用符号“△”加顶点字母表示,如“△ABC”(读作“三角形ABC”)。
2.三角形(按边)分类:三边都不相等的三角形腰与底边不相等的等腰三角形等边三角形3.三角形三边关系(定理):三角形任意两边的和大于第三边;(推论)三角形任意两边的差小于第三边。
4.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的连线段叫做三角形的高。
(三角形三条高或高所在直线相交于一点,交点称为三角形的垂心)5.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
(三角形的三条中线交于一点,交点叫三角形的重心)6.三角形的角平分线:三角形一个内角的平分线与这个角的对边相交,顶点和交点之间的连线段叫做三角形的角平分线。
(三角形三条角平分线的交点称为三角形的内心)7.三角形的稳定性:三边长度固定的三角形的形状、大小固定不变,这个性质叫三角形的稳定性。
(在所有的多边形中,只有三角形具有稳定性)8.三角形的内角:三角形中,相邻两边组成的角称为三角形的内角,也称为三角形的角。
三角形内角和(定理):三角形的三个内角和为180°。
直角三角形的两个锐角互余。
9.三角形的外角:由三角形的一条边和相邻边的延长线组成的角称为三角形的外角。
三角形外角和(定理):三角形三个外角的和为360°。
三角形的一个外角等于与它不相邻的两内角的和。
三角形的一个外角大于任何一个与它不相邻的内角。
10.多边形:在平面内,由不在同一条直线上的n条线段首尾顺次连接组成的图形叫做n边形。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
11.多边形的内角:多边形相邻两边组成的角叫做多边形的内角,简称多边形的角。
人教版八年级上册数学各单元知识点归纳总结
第一章:三角形的初步知识
1. 三角形的基本性质:稳定性、内角和定理(三角形内角和为180度)。
2. 三角形的分类:等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
3. 三角形的边与角的关系:边长与角度的关系,如a:b:c=sinA:sinB:sinC。
第二章:全等三角形
1. 全等三角形的定义及性质。
2. 全等三角形的判定方法:SSS(三边全等)、SAS(两边及夹角全等)、ASA(两角及夹边全等)、AAS(两角及非夹边全等)、HL(直角边斜边公理)。
3. 全等三角形的证明方法。
第三章:轴对称与中心对称
1. 轴对称与中心对称的基本性质。
2. 轴对称与中心对称图形的识别与证明。
3. 图形变换的基本方法。
第四章:四边形
1. 四边形的性质:平行四边形、矩形、菱形、正方形、梯形、等腰梯形等的基本性质。
2. 四边形的判定方法。
3. 四边形的面积计算。
第五章:一次函数
1. 函数的基本概念:自变量、因变量、常数。
2. 一次函数的定义及性质。
3. 一次函数的图象表示方法。
4. 一次函数的解析式及求法。
5. 一次函数的应用:求最值、求交点等。
第六章:一元一次不等式
1. 不等式的基本性质。
2. 一元一次不等式的解法:去分母、去括号、移项合并同类项等。
3. 一元一次不等式的应用:比较大小、求解最值等。
新人教版八年级数学上册知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n ·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线,把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:m n m n a a a +⨯=⑵幂的乘方:()n m mn a a = ⑶积的乘方:()nn n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每个项后相加.⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式.⑶多项式÷单项式:用多项式每个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+-②完全平方公式:()2222a ab b a b ±+=±③立方和:3322()()a b a b a ab b +=+-+④立方差:3322()()a b a b a ab b -=-++⑶十字相乘法:()()()2x p q x pq x p x q +++=++⑷拆项法 ⑸添项法第十五章 分式一、知识框架 :二、知识概念:1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n n n a a b b⎛⎫= ⎪⎝⎭ 8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()nm mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸nn n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n a a -=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
(完整版)人教版八年级数学上册知识点总
结
人教版八年级数学上册知识点总结
本文档总结了人教版八年级数学上册的知识点,旨在帮助学生复和掌握这一学期的数学内容。
1. 数与式
- 自然数、整数、有理数、无理数的概念和区别
- 分数与小数的相互转化及其应用
- 相反数和绝对值的概念和计算方法
- 科学记数法和约数、倍数的概念
2. 代数初步
- 代数式的概念和基本性质
- 代数式的运算:加减乘除、合并同类项、提取公因式等
- 一元一次方程的解法和实际应用
- 描述和解决问题中的代数问题
3. 几何初步
- 点、线、面及其相互关系的认识
- 基本图形的性质和计算
- 三角形的分类及其性质
- 直角三角形的勾股定理和应用
4. 相似和全等
- 图形的相似性质和判定方法
- 相似三角形的性质和计算
- 全等图形的性质和判定方法
5. 平面直角坐标系
- 平面直角坐标系的建立和使用
- 点的坐标及其运算
- 点在平面直角坐标系中的位置关系和性质
6. 数据与概率
- 统计图表的表示和读取
- 中心倾向与离散程度的度量
- 概率的基本概念和计算方法
- 利用概率解决问题
以上是人教版八年级数学上册的知识点总结,希望对同学们的学习有所帮助。
1全等三角形的对应边、对应角相等2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等5 边边边公理(SSS) 有三边对应相等的两个三角形全等6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等7 定理1 在角的平分线上的点到这个角的两边的距离相等8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上9 角的平分线是到角的两边距离相等的所有点的集合10 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23 推论3 等边三角形的各角都相等,并且每一个角都等于60°24 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25 推论1 三个角都相等的三角形是等边三角形26 推论2 有一个角等于60°的等腰三角形是等边三角形27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28 直角三角形斜边上的中线等于斜边上的一半29 定理线段垂直平分线上的点和这条线段两个端点的距离相等30 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32 定理1 关于某条直线对称的两个图形是全等形33 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形38定理四边形的内角和等于360°39四边形的外角和等于360°40多边形内角和定理n边形的内角的和等于(n-2)×180°41推论任意多边的外角和等于360°42平行四边形性质定理1 平行四边形的对角相等43平行四边形性质定理2 平行四边形的对边相等44推论夹在两条平行线间的平行线段相等45平行四边形性质定理3 平行四边形的对角线互相平分46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形48平行四边形判定定理3 对角线互相平分的四边形是平行四边形49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形50矩形性质定理1 矩形的四个角都是直角51矩形性质定理2 矩形的对角线相等52矩形判定定理1 有三个角是直角的四边形是矩形53矩形判定定理2 对角线相等的平行四边形是矩形54菱形性质定理1 菱形的四条边都相等55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角56菱形面积=对角线乘积的一半,即S=(a×b)÷257菱形判定定理1 四边都相等的四边形是菱形58菱形判定定理2 对角线互相垂直的平行四边形是菱形59正方形性质定理1 正方形的四个角都是直角,四条边都相等60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角61定理1 关于中心对称的两个图形是全等的62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分63逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称64等腰梯形性质定理等腰梯形在同一底上的两个角相等65等腰梯形的两条对角线相等66等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形67对角线相等的梯形是等腰梯形68平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边71 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半72 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h73 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d74 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d75 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b76 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例77 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例78 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例80 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)84 判定定理3 三边对应成比例,两三角形相似(SSS)85 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比87 性质定理2 相似三角形周长的比等于相似比88 性质定理3 相似三角形面积的比等于相似比的平方89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值91圆是定点的距离等于定长的点的集合92圆的内部可以看作是圆心的距离小于半径的点的集合93圆的外部可以看作是圆心的距离大于半径的点的集合94同圆或等圆的半径相等95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线97到已知角的两边距离相等的点的轨迹,是这个角的平分线98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线99定理不在同一直线上的三点确定一个圆。
100垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧102推论2 圆的两条平行弦所夹的弧相等103圆是以圆心为对称中心的中心对称图形104定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等105推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等106定理一条弧所对的圆周角等于它所对的圆心角的一半107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形110定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角111①直线L和⊙O相交d<r②直线L和⊙O相切d=r③直线L和⊙O相离d>r112切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线113切线的性质定理圆的切线垂直于经过切点的半径114推论1 经过圆心且垂直于切线的直线必经过切点115推论2 经过切点且垂直于切线的直线必经过圆心116切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角117圆的外切四边形的两组对边的和相等118弦切角定理弦切角等于它所夹的弧对的圆周角119推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等120相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等121推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项122切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项123推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等124如果两个圆相切,那么切点一定在连心线上125①两圆外离d>R+r ②两圆外切d=R+r③两圆相交R-r<d<R+r(R>r)④两圆内切d=R-r(R>r) ⑤两圆内含d<R-r(R>r)126定理相交两圆的连心线垂直平分两圆的公共弦127定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形128定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆129正n边形的每个内角都等于(n-2)×180°/n130定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形131正n边形的面积Sn=pnrn/2 p表示正n边形的周长132正三角形面积√3a/4 a表示边长133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4134弧长计算公式:L=n兀R/180135扇形面积公式:S扇形=n兀R^2/360=LR/2136内公切线长= d-(R-r) 外公切线长= d-(R+r)例题:1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b 为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。