材料力学实指导书
- 格式:doc
- 大小:1.12 MB
- 文档页数:24
材料力学实验指导书年级:专业:班级:学号:姓名:实验一 低碳钢(Q235钢)、铸铁的轴向拉伸试验一、实验目的与要求1.观察低碳钢(Q235钢)和铸铁在拉伸试验中的各种现象。
2.测绘低碳钢和铸铁试件的载荷―变形曲线(F ―Δl 曲线)及应力―应变曲线(σ―ε曲线)。
3.测定低碳钢拉伸时的比例极限Pσ,屈服极限s σ、强度极限b σ、伸长率δ、断面收缩率ψ和铸铁拉伸时的强度极限b σ。
4.测定低碳钢的弹性模量E 。
5.观察低碳钢在拉伸强化阶段的卸载规律及冷作硬化现象。
6.比较低碳钢(塑性材料)和铸铁(脆性材料)的拉伸力学性能。
二、实验设备、仪器和试件1.微机控制电子万能试验机。
2.电子式引伸计。
3.游标卡尺。
4.低碳钢、铸铁拉伸试件。
三、实验原理与方法材料的力学性能主要是指材料在外力作用下,在强度和变形方面表现出来的性质,它是通过实验进行研究的。
低碳钢和铸铁是工程中广泛使用的两种材料,而且它们的力学性质也较典型。
试验采用的圆截面短比例试样按国家标准(GB/T 228-2002《金属材料 室温拉伸试验方法》)制成,标距0l 与直径0d 之比为51000或=d l ,如图1-1所示。
这样可以避免因试样尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。
图中:0d 为试样直径,0l 为试样的标距。
国家标准中还规定了其他形状截面的试样。
图 1-1金属拉伸试验在微机控制电子万能试验机上进行,在实验过程中,与电子万能试验机联机的计算机显示屏上实时绘出试样的拉伸曲线(也称为F ―l ∆曲线),如图1-2所示。
低碳钢试样的拉伸曲线(图1-2a)分为弹性阶段,屈服阶段,强化阶段及局部变形阶段。
如果在强化阶段卸载,F ―l ∆曲线会从卸载点开始向下绘出平行于初始加载线弹性阶段直线的一条斜直线,表明它服从弹性规律。
如若重新加载,F ―l ∆曲线将沿此斜直线重新回到卸载点,并从卸载点按原强化阶段曲线继续向前绘制。
实验一材料力学万能试验机的认识一、液压式材料万能试验机图1为油压式万能试验机,利用油压加力,可作拉伸、压缩、剪切、弯曲等实验。
1.构造原理:图1为万能试验机的构造原理图,分为加力、测力、自动绘图三个部分。
(1)加载系统:加载系统由油箱、油缸、工作台、机座等组成。
机座14、光滑立柱7及上横梁6固定不动,开动马达后,油泵将油经过送油阀17和油管③送至工作油缸内,推动活塞5 带动工作台11上升。
若试件放在工作台11上,则受压缩。
试件受力的大小与油压的大小成正比关系。
(2)测力系统:测力为重摆平衡式。
试件受力后,油缸内油压逐渐增加,高压油经油管④ ⑤进入到测力油缸(28) rt,使测力活塞(27)向下移动,通过连杆(26),使摆锤摆起, 推动齿杆(21)带动齿轮(15),即可使指针转动,从而由示力盘上得到相应的载荷。
更换摆锤重量,即可得到不同的测力范围。
(3)绘图系统:记录仪。
图1万能试验机结构原理图L马达2.上支架3.螺杆4.工作油缸5.活塞6.上横梁7.光滑立柱S.压板9.支座10.夹头1L工作台12.夹头1 3 .手柄1 4 .机座1 5 .齿轮1 6 .指针1 7 .送油阀1 S .油泵1 9 .马达2 0 .度盘2 1 .齿杆22.推杆23.回油阀24.摆杆25.平衡锤26.连杆27.测力活塞28.测力油缸29.油箱30.摆锤2.操作方法:① 选择力盘。
根据试件尺寸和实验要求,选择合适的测力范围,加上相应的摆锤。
②选择合适的夹具及其附件。
③调整零点:开启马达,将油打入工作油缸,使工作台稍微升起,以平衡掉工作台自重,然后旋转齿杆21,使示力盘指针指零。
④ 安装试件。
作压缩实验,试件放在工作台的中心:如果作拉伸实验,则将试件夹入上、下夹头12、10中。
⑤调整好自动绘图装置。
⑥加载实验。
加载前检查各油阀是否关闭,然后开动马达,微开送油阀,缓慢加载。
⑦卸载。
实验完毕后,打开回油阀退油,关闭电门。
3.注意事项①开马达前,应将送油阀,回油阀都关闭。
实验1 拉伸实验一、实验目的1、观察拉伸过程中的各种现象(包括屈服、强化、颈缩及断裂)。
2、测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率Ψ。
3、测定铸铁的强度极限σb。
4、比较低碳钢(塑性材料)和铸铁(脆性材料)机械性质的特点。
二、实验设备1、万能材料试验机2、游标卡尺三、试件为了避免试件尺寸和形状对实验结果的影响,且便于各种材料的机械性质间的互相比较,应采用国家标准GB 6228一76所规定的试件,通常采用的是低碳钢和铸铁圆棒试件,其直径d和试验段长度(标距)l满足l/d=10或5,例如:可采用d=10mm的圆棒试件。
四、实验原理材料的力学性能指标屈服极限、强度极限、延伸率、断面收缩率是由拉伸破坏实验来确定的。
实验时,利用试验机的自动绘图器可绘出低碳钢和铸铁的拉伸图。
由自动绘图器绘出的拉伸图中、拉伸变形是整个试件的伸长(不只是标距部分的伸长),并且包括机器本身的弹性变形和试件头部在夹板中的滑动等。
试件开始受力时,头部在夹头内的滑动很大,故绘出的拉伸图最初—般是曲线。
对于低碳钢材料,屈服阶段(B-C)常成锯齿形,上屈服点B受到变形和试件形状等的影响较大,下屈服点B则比较稳定,故工程上均以B点对应的载荷作为材料屈服时的载荷P。
确定屈服载荷Ps时,必须注意观察指针的转动情况,一般规定测力指示首次回转后所指示的最小载荷即为屈服载荷。
试件拉伸达到最大载荷Pb以前,在标距范围内的变形是均匀的.从最大载荷开始,产生局部伸长和颈缩.细颈出现后,横截面面积迅速减少,继续拉伸所需的载荷也变得小了,直至E点断裂为止.最初在对试件加载时,主动针即随载荷的增加向前转动,同时它还推动另外—个指针(副针)前进。
当达到最大载荷P时,主动指针开始后退,而副针则停留在载荷最大值的刻度上,副针给出的读数即为最大载荷。
铸铁试件在承受拉力变形极小时,就达到最大载荷而突然发生断裂.它没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。
材料力学试验指导书一、引言材料力学试验是评估材料力学性能的重要手段,通过对材料进行不同的试验,可以获取材料的力学性能参数,为工程设计和材料选择提供依据。
本指导书旨在提供材料力学试验的详细步骤和操作要点,以确保试验结果的准确性和可靠性。
二、试验设备1. 材料力学试验机:型号XYZ-1000,最大载荷1000kN,精度等级为0.5级。
2. 试样制备设备:包括切割机、砂轮机、磨床等。
3. 试验测量设备:包括应变计、位移计、力传感器等。
三、试验准备1. 材料选择:选择符合试验要求的材料,例如钢材、铝合金等。
2. 样品制备:根据试验要求,制备符合标准尺寸的试样,并进行必要的表面处理。
3. 试验环境:确保试验室环境温度恒定,并消除外部干扰因素。
四、试验步骤1. 弹性模量试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。
b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的应变。
c. 计算弹性模量:根据施加的载荷和应变数据,计算试样的弹性模量。
2. 屈服强度试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。
b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的应变。
c. 确定屈服点:根据载荷-应变曲线,确定试样的屈服点。
3. 拉伸强度试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。
b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的应变。
c. 计算拉伸强度:根据最大载荷和试样的原始横截面积,计算试样的拉伸强度。
4. 断裂韧性试验a. 安装试样:将试样放置在试验机上,确保试样与试验机夹具接触良好。
b. 施加载荷:以恒定速度施加载荷,记录载荷和相应的位移。
c. 计算断裂韧性:根据载荷-位移曲线,计算试样的断裂韧性。
五、数据处理与分析1. 数据记录:将试验过程中的载荷、应变、位移等数据记录下来。
2. 数据处理:对试验数据进行处理,包括计算平均值、标准差等统计参数。
实验一材料在轴向拉伸、压缩时的力学性能一、实验目的1.测定低碳钢在拉伸时的屈服极限σs、强度极限σb、延伸率δ和断面收缩率 。
2.测定铸铁在拉伸以及压缩时的强度极限σb。
3.观察拉压过程中的各种现象,并绘制拉伸图。
4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。
二、设备及仪器1.电子万能材料试验机。
2.游标卡尺。
图1-1 CTM-5000电子万能材料试验机电子万能材料试验机是一种把电子技术和机械传动很好结合的新型加力设备。
它具有准确的加载速度和测力范围,能实现恒载荷、恒应变和恒位移自动控制。
由计算机控制,使得试验机的操作自动化、试验程序化,试验结果和试验曲线由计算机屏幕直接显示。
图示国产CTM -5000系列的试验机为门式框架结构,拉伸试验和压缩试验在两个空间进行。
图1-2 试验机的机械原理图试验机主要由机械加载(主机)、基于DSP的数字闭环控制与测量系统和微机操作系统等部分组成。
(1)机械加载部分试验机机械加载部分的工作原理如图1-2所示。
由试验机底座(底座中装有直流伺服电动机和齿轮箱)、滚珠丝杠、移动横梁和上横梁组成。
上横梁、丝杠、底座组成一框架,移动横梁用螺母和丝杠连接。
当电机转动时经齿轮箱的传递使两丝杠同步旋转,移动横梁便可水平向上或相下移动。
移动横梁向下移动时,在它的上部空间由上夹头和下夹头夹持试样进行拉伸试验;在它的下部空间可进行压缩试验。
(2)基于DSP的数字闭环控制与测量系统是由DSP平台;基于神经元自适应PID算法的全数字、三闭环(力、变形、位移)控制系统;8路高精准24Bit 数据采集系统;USB1.1通讯;专用的多版本应用软件系统等。
(3) 微机操作系统试验机由微机控制全试验过程,采用POWERTEST 软件实时动态显示负荷值、位移值、变形值、试验速度和试验曲线;进行数据处理分析,试验结果可自动保存;试验结束后可重新调出试验曲线,进行曲线比较和放大。
可即时打印出完整的试验报告和试验曲线。
土木工程学院(部)《材料力学》课程实验指导书适用专业:土木工程贵州理工学院2015 年3月目录引言 (3)一、材料力学实验的重要性 (3)二、材料力学实验的内容 (3)三、材料力学实验的要求 (3)实验一拉伸实验 (5)一、实验目的 (5)二、试验内容 (5)三、实验原理、方法和手段 (5)四、试验组织运行要求 (6)五、实验条件 (6)六、实验步骤 (8)七、思考题 (10)八、实验报告 (10)九、其它说明 (10)实验二压缩试验 (11)一、实验目的 (11)二、实验内容 (11)三、实验原理、方法和手段 (11)四、实验组织运行要求 (11)五、实验条件 (12)六、实验步骤 (13)七、思考题 (13)八.实验报告 (13)九.其它说明 (13)试验三扭转试验 (14)一、实验目的 (14)二、实验内容 (14)三、实验原理、方法和手段 (14)四、实验组织运行要求 (17)五、实验条件 (17)六、实验步骤 (18)七、思考题 (19)八、实验报告 (19)九、其它说明 (19)实验四直梁弯曲正应力测定 (20)一、实验目的 (20)二、实验内容 (20)三、实验原理、方法和手段 (20)四、实验组织运行要求 (21)五、实验条件 (21)七、思考题 (25)八、实验报告 (25)九、其它说明 (25)实验五弯扭组合变形主应力测试实验 (26)一、实验目的 (26)二、实验内容 (26)三、实验原理、方法和手段 (27)四、实验组织运行要求 (28)五、实验条件 (28)六、实验步骤 (28)七、思考题 (29)八、实验报告 (29)九、其它说明 (29)实验六压杆稳定实验 (30)引言一、材料力学实验的重要性材料力学是研究工程实际问题中构件的强度、刚度和稳定性的学科。
其研究方法一般是先进行实验,然后根据实验中的现象,做出一些假设并加以简化。
最后再进行理论分析,得出公式和结论。
但所推导出的一般性公式是否正确,还要用实验验证。
第一部分 材料的力学性能测试任何一种材料受力后都有变形产生,变形到一定程度材料就会降低或失去承载能力,即发生破坏,各种材料的受力——变形——破坏是有一定规律的。
材料的力学性能(也称机械性能),是指材料在外力作用下表现出的变形和破坏等方面的性能,如强度、塑性、弹性和韧性等。
为保证工程构件在各种负荷条件下正常工作,必须通过试验测定材料在不同负荷下的力学性能,并规定具体的力学性能指标,以便为构件的强度设计提供可靠的依据。
材料的主要力学性能指标有屈服强度、抗拉强度、材料刚度、延伸率、截面收缩率、冲击韧性、疲劳极限、断裂韧性和裂纹扩展特性等。
金属材料的力学性能取决于材料的化学成分、金相结构、表面和内部缺陷等,此外,测试的方法、环境温度、周围介质及试样形状、尺寸、加工精度等因素对测试结果也有一定的影响。
材料的力学性能测试必修实验为4学时,包括:轴向拉伸实验、轴向压缩实验、扭转实验。
§1-1 轴向拉伸实验一、实验目的1、 测定低碳钢的屈服强度eL R (s σ)、抗拉强度m R (b σ)、断后伸长率A 11.3(δ10)和断面收缩率Z (ψ)。
2、 测定铸铁的抗拉强度m R (b σ)。
3、 比较低碳钢(塑性材料)和铸铁(脆性材料)在拉伸时的力学性能和断口特征。
注:括号内为GB/T228-2002《金属材料 室温拉伸试验方法》发布前的旧标准引用符号。
二、设备及试样1、 液压式万能材料试验机。
2、 0.02mm 游标卡尺。
3、 低碳钢圆形横截面比例长试样一根。
把原始标距段L 0十等分,并刻画出圆周等分线。
4、 铸铁圆形横截面非比例试样一根。
注:GB/T228-2002规定,拉伸试样分比例试样和非比例试样两种。
比例试样的原始标距0L 与原始横截面积0S 的关系满足00S k L =。
比例系数k 取5.65时称为短比例试样,k 取11.3时称为长比例试样,国际上使用的比例系数k 取5.65。
非比例试样0L 与0S 无关。
材料力学试验指导书及报告书专业:年级:组别:姓名:试验一:拉伸试验一、内容和目的1、测定低碳钢的屈服极限s σ、强度极限b σ、延伸率δ和截面收缩率ψ;测定铸铁的强度极限b σ。
2、观察低碳钢、铸铁在拉伸过程中的各种现象,绘制拉伸图(P-△L 图),由此了解试件变形过程中变形随荷载的变化规律,以及有关的破坏现象。
3、观察断口,比较低碳钢和铸铁两种材料的拉伸性能。
二、试验设备和量具1、试验设备万能试验机、游标卡尺、小直尺、低碳钢和铸铁标准试件2、标准试件尺寸:1)圆形截面试件长度L 0与截面积A 0的关系:长试件:L 0/d 0=10,以10δ表示; 短试件:L 0/d 0=5,以5δ表示;2)矩形截面试件长度L 0与截面积A 0的关系: 000065.53.11A L A L ==或 其中, L0—初始长度, d0—初始直径, A0—初始截面面积。
试件形状如图5:三、实验原理材料的机械性能指标s σ、b σ、δ、ψ是由拉伸破坏实验来确定的,实验时万能材料试验机自动给出载荷与变形关系的拉伸图(P-△L 图)如图2所示,观察试样和拉伸图可以看到下列变形过程。
1、弹性阶段—OA2、屈服分阶段—BC3、强化阶段—CD4、颈缩阶段—DE图2 载荷与变形关系的拉伸图(P-△L 图)由实验可知弹性阶段卸荷后,试样变形立即消失,这种变形是弹性变形。
当负荷增加到一定值时,测力度盘的指针停止转动或来回摆动,拉伸图上出现了锯齿平台,即荷载不增加的情况下,试样继续伸长,材料处在屈服阶段。
此吁可记录下屈服点Ps 。
当屈服到一定程度后,材料又重新具有了抵抗变形的能力,材料处在强化阶段。
此阶段:强化后的材料就产生了残余应变,卸载后再重新加载,具有和原材料不同的性质,材料的强度提高了。
但是断裂后的残余变形比原来降低了。
这种常温下经塑性变形后,材料强度提高,塑性降低的现象知名人士为冷作硬化。
当荷载达到最大值Pb 后,试样的某一部位载面开始急剧缩小致使载荷下降。
材料力学实验指导书实验一 拉伸实验拉伸实验是测定材料力学性能的最基本最重要的实验之一。
由本实验所测得的结果,可以说明材料在静拉伸下的一些性能,诸如材料对载荷的抵抗能力的变化规律、材料的弹性、塑性、强度等重要机械性能,这些性能是工程上合理地选用材料和进行强度计算的重要依据。
一、实验目的要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。
2.碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。
3.较低碳钢和铸铁两种材料的拉伸性能和断口情况。
二、实验设备和仪器材料试验机、游标卡尺、两脚标规等三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。
图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。
为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5=或d l 10=。
对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。
其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。
四、实验方法与步骤1、低碳钢的拉伸实验:1)试件的准备:在试件中段取标距d l 10=或d l 5=在标距两端用脚标规打上冲眼作为标志,用游标卡尺在试件标距范围内测量中间和两端三处直径d (在每处的两个互相垂直的方向各测一次取其平均值)取最小值作为计算试件横截面面积用。
2)机的准备;首先了解材料试验机的基本构造原理和操作方法,学习试验机的操作规程。
根据低碳钢的强度极限b σ及试件的横截面积,初步估计拉伸试件所需最大载荷,选择合适的测力度盘,并配置相应的摆锤,开动机器,将测力指针调到“零点”,然后调整试验机下夹头位置,将试件夹装在夹头内。
3)进行实验:试件夹紧后,给试件缓慢均匀加载,用试验机上自动绘图装置,绘出外力F 和变形L ∆的关系曲线(L F ∆-曲线)如图所示。
材料力学实验指导书班级:姓名:学号:指导教师:土木学院力学实验室二00六年十月目录前言实验一金属拉伸试验 (1)实验二金属压缩试验 (6)实验三金属扭转试验 (9)实验四测定弹性模量E (12)电测应力分析 (15)实验五纯弯曲梁正应力的测定 (19)实验六弯扭组合变形主应力的测定 (23)附录一万能材料试验机简介 (28)附录二扭转试验机简介 (33)附录三WJ-3KN型拉伸测E值测试仪 (36)附录四材料力学实验装置 (37)附录五DH3818 静态电阻应变仪 (38)附录六常用工程材料的力学性质和物理性质前言材料力学实验是材料力学课程的重要组成部分,是理论研究和解决工程实际问题的手段。
材料力学的基本任务是对各类型的构件作强度,刚度及稳定的计算和分析(包括用实验方法)。
这些计算和分析是工程技术人员在保证安全和最经济的使用材料前提下,为构建选择材料和尺寸的必要基础。
材料力学实验包括以下三方面的内容:第一、研究和检验材料的力学性能(机械性能),就是材料必须具有的抵抗外力作用而不超过允许变形或不破坏的能力,这种能力表现为材料的强度、刚度、韧性、弹性及塑性等。
第二、验证材料力学的理论和定律,材料力学的理论,往往到一定的简单假设为基础,这些假设多来自实验观察,而所建立的理论的正确性也必须经过实验的检验,因此验证理论的正确性也是材料力学实验的重要内容之一。
第三、实验应力分析,即采用电测法,初步掌握电测法的基本原理和方法,验证梁弯曲时正应力的分布和电测主应力实验学习用电测法定平面应力状态下的主应力大小和方向。
根据生产实际的需要和课程的特点安排了一些典型的实验项目,以期达到开发学生智力、分析问题和解决实际的能力。
材料力学实验包括学习实验原理、方法和技术、机器设备的原理和使用方法。
材料力学性能测定,验证材料力学理论和实验应力分析。
结合不同实验,让学生亲自动手,学会运用不同的设备,以培养学生的实验能力,为以后从事实际工作和科学研究打下坚实的基础。
材料力学实验指导书目录序言0 实验一金属材料拉伸实验 2 实验二金属材料扭转实验9 实验三纯弯曲梁正应力电测实验16 附件:1、实验报告册封面2、材料力学实验要求3、实验报告要求序言材料力学实验是材料力学的重要支柱之一。
材料力学从理论上研究工程结构构件的应力分析和计算,并对构件的强度、刚度和稳定性进行设计或校核其可靠性。
材料力学实验从实验角度为材料力学理论和应用提供实验支持。
一、材料力学实验由三部分组成:1、材料的力学性能测定。
材料的力学性能是指在力的作用下,材料的变形、强度等方面表现出的一些特征,如弹性模量、弹性极限、屈服极限、强度极限、疲劳极限、冲击韧度等。
这些强度指标或参数是构件强度、刚度和稳定性计算的依据,而他们一般通过实验来测定。
此外,材料的力学性能测定又是检验材质、评定材料热处理工艺、焊接工艺的重要手段。
随着材料科学的发展,各种新型材料不断涌现,力学性能测定是研究新型材料的重要手段。
材料的力学性能测定一般是通过对标准试样加载至破坏,记录其应力-应变关系曲线(扭转破坏时记录其扭矩-扭转角或剪应力-剪应变曲线),测定材料的一些力学性能特征指标,如弹性模量、弹性极限、屈服极限、强度极限、冲击韧度等;因此,学会记录材料的应力-应变关系曲线成为材料力学性能实验的一项重要任务。
2、验证已建立的理论。
材料力学的一些理论是以某些假设为基础的,例如杆件的弯曲理论是以平面假设为基础。
用实验验证这些理论的正确性和适用范围,有助于加深对理论的认识和理解。
实验是验证、修正、发展理论的必要手段,是揭示材料受力、变形过程本质的重要方法。
3、应力分析实验。
某些情况下,如因构件形状不规则、受力复杂或精确地边界条件难以确定等,应力分析计算难以获得准确结果。
这时,采用如电测实验应力分析方法可以直接测定构件的应力。
应力分析实验主要是对构件形状不规则、受力复杂或边界条件很难确定、计算法难以得到准确结果的情况,用实验方法测定构件的应力。
材料力学实验指导书湖北工业大学目录实验一低碳钢和铸铁的拉伸实验 (8)一、实验目的要求 (8)二、实验设备和仪器 (8)三、拉伸试件 (9)四、实验原理和方法 (10)五、实验方法与步骤 (13)六、实验结果处理 (14)七、思考题 (15)八、实验报告格式(仅供参考) (15)实验二低碳钢和铸铁的压缩实验 (17)一、实验目的 (17)实验仪器和设备 (17)三、试件介绍 (17)四、实验原理及方法 (19)五、实验步骤 (19)六、实验结果 (19)七、思考题 (20)实验三低碳钢和铸铁的扭转实验 (21)一、实验目的 (21)二、实验设备 (21)三、实验试样 (21)四、实验原理与方法 (23)五、实验方法与步骤 (28)六、实验注意事项 (28)七、实验报告要求:参考下表并回答思考题 (29)实验一 低碳钢和铸铁的拉伸实验一、实验目的要求1.测定低碳钢的流动极限S σ、强度极限b σ、延伸率δ、截面收缩率ψ和铸铁的强度极限b σ。
2.低碳钢和铸铁在拉伸过程中表现的现象,绘出外力和变形间的关系曲线(L F ∆-曲线)。
3.比较低碳钢和铸铁两种材料的拉伸性能和断口情况。
二、实验设备和仪器CMT5504/5105电子万能试验机、游标卡尺等三、拉伸试件金属材料拉伸实验常用的试件形状如图所示。
图中工作段长度l 称为标距,试件的拉伸变形量一般由这一段的变形来测定,两端较粗部分是为了便于装入试验机的夹头内。
为了使实验测得的结果可以互相比较,试件必须按国家标准做成标准试件,即d l 5或图1-1 CMT5504/5105电子万能试验机图1-2 拉伸试件d l 10=。
对于一般板的材料拉伸实验,也应按国家标准做成矩形截面试件。
其截面面积和试件标距关系为A l 3.11=或A l 65.5=,A 为标距段内的截面积。
低碳钢拉伸铸铁拉伸四、实验原理和方法1.低碳钢拉伸实验低碳钢试件在静拉伸试验中,通常可直接得到拉伸曲线,如图1—3所示。
材料力学实验指导书工程力学教研中心编前言材料力学实验是材料力学课程的重要组成部分。
科学史上许多重大发明是依靠科学实验而得到的,材料力学中的一些理论和公式也是建立在实验、观察、推理、假设的基础上,它们的正确性还必须由实验来验证。
学生通过做实验,用理论来解释、分析实验结果,又以实验结果来证明理论,互相印证,以达到巩固理论知识和学会实验方法的双重目的。
材料力学实验包括以下三个方面的内容。
一、测定材料的力学性质。
材料的力学性质通常是通过拉伸、压缩、扭转、断裂韧性测试等试验来测定的。
通过这些试验,学会测量材料力学性能的基本方法。
在工程上,各种材料的力学性能是设计构件时不可缺少的依据。
二、验证理论公式的正确性。
在理论分析中,将实际问题抽象为理想模型,并做出某些科学假设(如弯曲中的平截面假定等),使问题简化,从而推出一般性结论和公式,这是理论研究中常用的方法。
但是这些假设和结论是否正确,理论公式能否应用于实际之中,必须通过实验来验证。
三、实验应力分析。
在工程实践中,很多构件的形状和受载情况比较复杂,单纯依靠理论计算不易得到正确的结果,必须用实验的方法来了解构件的应力分布规律,从而解决强度问题,这种办法称为实验应力分析。
目前实验应力分析的方法很多,这里只介绍应用较广的电测法。
实验须知1.实验前必须预习实验指导书中相关的内容,了解本次实验的目的、要求及注意事项。
2.按预约实验时间准时进入实验室,不得无故迟到、早退、缺席。
3.进入实验室后,不得高声喧哗和擅自乱动仪器设备,损坏仪器要赔偿。
4.保持实验室整洁,不准在机器、仪器及桌面上涂写,不准乱丢纸屑,不准随地吐痰。
5.实验时应严格遵守操作步骤和注意事项。
实验中,若遇仪器设备发生故障,应立即向教师报告,及时检查,排除故障后,方能继续实验。
6.实验过程中,若未按操作规程操作仪器,导致仪器损坏者,将按学校有关规定进行处理。
7.实验过程中,同组同学要相互配合,认真测取和记录实验数据;8.实验结束后,将仪器、工具清理摆正。
材料力学实验指导书福建工程学院土木工程系目 录 第一章 绪论§1—1 材料力学实验的作用§1—2 实验须知§1—3 实验报告的书写第二章 基本实验§2—1 钢材拉伸与压缩实验§2—2 弹性模量E和泊松比υ测定实验§2—3 材料扭转实验§2—4 纯弯曲正应力实验§2—5 弯扭组合变形实验§2—6 压杆稳定实验第一章 绪 论§1—1 材料力学实验的作用材料力学实验是材料力学课程的组成部分之一,材料的力学性能测定,材料力学的结论和理论公式的验证,都有赖于实验手段。
工程上,有很多实际构件的形状和受载荷情况较为复杂,此时,应力分析在理论上难以解决,也需通过实验手段来解决。
材料力学的发展历史就是理论和实验两者最好的融合。
材料力学实验课的目的是:1.熟悉了解常用机器、仪器的工作原理和使用方法,掌握基本的力学测试技术;2.测定材料的力学性能,观察受力全过程中的变形现象和破坏特征,以加深对建立强度破坏准则的认识;3.验证理论公式,巩固和深刻理解课堂中所学的概念;4.对实验应力分析方法有一个初步的了解。
§1—2 实验须知1.实验前,必须认真预习,了解本次实验的目的、内容、实验步骤和所使用的机器、仪器的基本原理以及对课堂讲授的理论应理解透彻。
2.要按课程表指定的时间进入实验室,完成规定的实验项目,因故不能参加者应取得教师同意后安排补做。
3.在实验室内,应自觉地遵守实验室规则及机器仪器的操作规程,非指定使用之机器、仪器,不能任意乱动。
4.实验时要严肃认真,相互配合,密切注意观察实验现象,记录下全部所需测量的数据.5.按规定日期,携同原始记录,每人交实验报告一份。
字迹要求整齐、清晰,数据书写要求用印刷体,问题回答要独立思考完成,不允许抄袭。
§1—3 实验报告的书写实验报告是实验者最后交出的成果,是实验资料的总结。
材料力学实验指导书黑龙江工程学院2007年3月实验一低碳钢和铸铁的拉伸拉伸实验是检查金属材料力学性能普遍采用的一种极为重要的基本实验。
一低碳钢的拉伸实验一、实验目的1、观察低碳钢在拉伸过程中的各种现象,了解试件变形随荷载的变化规律。
2、测试低碳钢在拉伸过程中的几个力学性能指标:屈服极限、强度极限、延伸率和断面收缩率。
3、了解拉伸实验的原理和方法,掌握万能试验机的操作要领。
二、实验设备、量具及试件实验设备1、液压式万能试验机1.主动针2.从动针3.摆杆架4.描绘筒5.缓冲阀6.测力活塞7.测力油缸8.摆砣9.高压油蹦10.油箱11.丝杆12.放大器13.测力油管14.高压油管15.控制阀16.上横梁17.上夹具18.试件19.下夹具20.动横梁21.试抬22.机座23.工作活塞24.工作油缸25.光杆加力部分(试验机主机)开动电机带动高压油泵工作,通过控制阀将油压入工作油缸,推动活塞带动上横梁及工作台上升,此时如果试件安装在上下夹头中,则试件受拉伸;如果试件安放在工作台及横梁中,则由于工作台上升而使试件受压缩或弯曲。
其工作台及上横梁的上升速度有控制阀掌握,动横梁的位置可由控制台上的按纽来调节。
实验完毕,将控制阀开至卸载位置。
测力部分(即荷载测量机构)工作油通过高压油管与测力油缸相通。
测件受力后,工作油缸的压力传到测力油缸,是测力活塞连杆上移,从而带动摆杆摆砣转动,其转动角度与测力活塞受压成一定比例,并通过机械运动,转换成指针转动,使表盘中指示出试件所受载荷F的数值。
同时,由于工作台的上升,通过放大器带动自动绘图装置而与表盘内齿杆相连的记录笔,也向右移动,从而在记录纸上画出试验过程的“荷载——变形”曲线。
2、电子式万能试验机1.立柱;2.拉伸夹具;3.拉伸试件;4.移动横梁;5.测力传感器;6.压缩夹具;7.弯曲夹具;8.下横梁;9.同步齿形传动带;10.带轮;11.光电编码器;12.伺服电机;13.上横梁;14.滚珠丝杠;15.引伸计;16.手控键盘;17.减速机电子万能试验机是双空间式的,其移动横梁与上横梁之间的空间为拉伸实验空间,移动横梁与下横梁之间的空间为压缩实验空间。
在拉伸空间安装有拉伸夹具,在压缩空间安装有压缩夹具和弯曲夹具。
测力传感器、引申计、光电编码器、数据采集电路(与控制系统集成在一起)组成测量系统,测力传感器用于测量实验载荷,引伸计用于测量试件的变形,光电编码器用于测量横梁移动的位移。
各个测量信号均经过数据采集电路送入计算机存储、处理和显示。
伺服电机的输出功率经减速器、同步齿形传动带传递给滚珠丝杠,然后滚珠丝杠带动移动横梁升降将实验载荷施加到试件上。
伺服控制器与伺服电机和光电编码器组成闭环控制系统,控制移动横梁的运动。
伺服控制器向上经过控制电路与计算机联系,最终由计算机实现对可移动横梁的运动进行控制,包括位置、速度等。
由于电子万能试验机采用了闭环控制,加载过程和数据采集都是在计算机的控制下完成的,因此可以选择不同的参数控制方式进行实验。
参数控制方式是指以应力(或载荷)、位移、应变等诸实验参数中的某一个作为加载控制因素。
例如,位移控制就是设定的横梁的运动速度(通常是恒定速率的),让试验机按照设定的横梁速度和方向对试件进行加载。
3、量具:游标卡尺4、试件为了使实验数据可以相互比较,应按国标GB228-2002的规定作成标准试件,如因材料尺寸限制等原因不能做成标准试时,应按规定作成比例试件。
图1-3L0—标距d0—试验前圆截面试件标距部分的直径A0—试验前试件标距部分的截面面积三、实验原理图1-4在做低碳钢拉伸实验时,试验机能自动绘出表示荷载与变形关系的拉伸图,如图1-4,整个过程包括弹性变形阶段(OA)、塑性屈服阶段(BC)、强化阶段(CD)、局部颈缩阶段(DE)。
在实验的过程中可看到几个现象:(1)弹性现象;(2)屈服现象;(3)颈缩现象。
由实验可知,图中OA部分当卸载后,试件立即恢复原状,变形与载荷成正比,只就是虎克定律所表示的直线关系,这种变形是弹性变形。
当载荷增加到一定值,即图BC段锯齿型平台处,测力计刻度盘指针停止转动或来回摆动,此时载荷不增加或减少,而试件还继续伸长,这种现象叫屈服现象。
若试件表面经过抛光处理,则可观察到试件表面上出现与轴线约成45°角的倾斜条纹,是由于金属材料内部晶格之间之间产生相对滑移而形成的,使材料产生相对滑移而形成的,使材料产生塑性变形。
国际规定,首次下降最小载荷处为下屈服点F s。
过了屈服阶段后,材料强化,载荷继续上升,为了观察冷作现象,可以在某点A处停止加载,则曲线沿O1A′DE规律变化。
载荷继续升到最大值即图D点时,试件截面的某一位置,开始急剧缩小致使负荷下降,即为材料的颈缩现象,F b为最大载荷。
四、实验步骤1、测量试件尺寸1)测量试件直径d0,对于圆试件在计算长度内在两端及中部三处用游标卡尺测量,每一处都要在两个相互垂直的方向上量出直径,取其平均直径最小截面处的平均直径作为试件的直径。
2)确定计算长度L0。
在试件中间等粗的细长部分内,量取计算长度L0 (按10倍或者5倍试件确定)。
然后,用刻线机或笔把计算长度L0分成若干等分(通常是以5mm或10mm为一等分)。
以便当试件断裂不在中间时进行换算,从而求得比较正确的伸长率。
但刻、划线时应尽量轻微。
2、调整试验机1)液压式万能试验机试件的最大载荷选择相应的测力度盘,配好相应的摆陀,把缓冲阀转到相应位置,指针归零,检查和安装好自动绘图结构。
2)电子式万能试验机根据试件的材料和尺寸、估计试件大致能承受的载荷,从而选定好相应的拉力传感器,进行试件的参数设定和调零,检查数据记录及打印输出装置是否连接。
3安装试件1)将试件装入夹具。
2)注意避免试件放斜或歪曲。
4进行实验注意观察试件在拉伸过程中的形状变化和曲线的变化情况,试件拉断后,立即停机存盘、打印所得拉伸图和记录最大荷载并观察颈缩现象。
5实验结束1)关机2)测量试件后标距长度L1和颈缩处的最小直径d1。
测量时将试件的两半对接在一起,使其尽量紧贴。
二铸铁拉伸试验一、实验目的。
1、测定铸铁拉伸强度极限b2、比较低碳钢与铸铁的拉伸机械性能和破坏形式。
二、实验设备及量具1、万能试验机。
2、游标卡尺。
三、实验的内容与原理铸铁是脆性料,其拉伸图如图1-5,在拉伸过程中不产生屈服和颈缩现象,很快达到最大载荷F b而突然断裂。
其值远小于低碳钢的强度极限。
整个拉伸过程中变形极小,伸长量不中试件原长时0.5%,而延伸率则更小。
四、实验方法和步骤参考低碳钢拉伸实验。
F图1-5三实验结果处理1、根据低碳钢拉伸实验记录的F s和F b;可按下面公式得出材料强度方面的性能:0屈服极限σs=F s/A0强度极限σb=F b/A02、根据低碳钢拉伸前后的d0、L0、d1、L1,求出材料塑性方面的性能:延伸率 δ=%100001⨯-L L L 断面收缩率 ψ=%100010⨯-A A A 3、由铸铁拉伸记录F b ,求出其强度极限σb =F b /A 0五 、实验结果分析讨论1、从材料的强度指标、塑性指标和破坏断口等方面比较低碳钢和铸铁的拉伸机械性质。
2、从拉伸图F —ΔL 曲线上看,低碳钢试件在最大载荷D 点时不断裂而载荷降至E 点时反而断裂,为什么?实验二 低碳钢和铸铁压缩一 、实验目的1、测定压缩时低碳钢的屈服极限和铸铁的强度极限。
2、观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比较。
二 、实验设备1、万能试验机2、游标卡尺三 、试件压缩试件为圆柱形,如图2-1所示,不宜太高,否则,容易压弯,也不宜太短,否则试件上下端面与实验机承压座之间产生摩擦力,对试件的承压力产生影响,一般试件规定为001h b 3≤≤,通常脆性材料00h b 2=,端面光洁度为▽7-▽9。
图2-1四 、实验原理FΔLF图2-2 图2-31、低碳钢低碳钢为塑性材料,其压缩图如图2-2所示,开始时遵守胡克定律沿直线上升,比例极限以后变形加快,但无明显屈服阶段。
相反的,图形逐渐向上弯曲。
这是因为在过了比例极限后,随着塑性变形的迅速增长,而试件的横截面积逐渐增大,而承受的载荷也随着增大。
从实验知道,低碳钢试件可以被压成极薄的平板而不被破坏。
因此,其强度极限一般是不能确定的。
只能确定的是压缩的屈服极限应力(图2-2)σs=F s/A2、铸铁铸铁为脆性材料,其压缩曲线在开始时接近于直线,与纵轴之夹角很小,以后曲率逐渐增大,最后至破坏,因此只能确定其强度极限(图2-3)σb=Fb/A0铸铁试件受压力而缩短,表明有很少的塑性变形的存在。
当载荷达到最大值时,试件即破坏,并在其表面上出现了倾斜的裂缝,铸铁受压后的破坏是突然发生的,是脆性材料的特性。
从实验的结果与以前的拉伸实验结果作一比较,可以看出,铸铁承受压缩的能力远远大于承受拉伸的能力。
抗压强度远远大于抗拉强度,这是脆性材料的一般属性。
五、实验步骤1、用游标卡尺测量试件的高度h0和直径d0取互相垂直方向直径的平均值作为试件的直径。
2、将试件置于试验机承压部位。
3、在试件没有受力时进行调整。
4、开机进行实验,一直到试件破坏(注意低碳钢不能压到破坏,压到45KN时即停止实验)。
5、低碳钢记录屈服荷载F,铸铁记录最大荷载F b。
6、卸去载荷,取出破坏试件。
7、打印出实验曲线。
8、关机。
六、实验结果处理1、根据低碳钢压缩时记录的F s,求出其屈服极限σs=F s/A2、根据铸铁压缩时记录的F b求出其强度极限σb=Fb/A0七、实验结果分析与讨论1、低碳钢为什么不能得到抗压极限强度?2、低碳钢和铸铁在压缩时的力学性能有什么区别?实验三圆轴扭转实验低碳钢和铸铁在扭转试验中也充分体系现了它们的特点。
低碳钢在发生大量塑性变形之后被剪坏,此破坏是由横截面上的剪应力造成。
而铸铁在很小的变形情况下即破坏,是由45O斜截面上的拉应力造成的。
一低碳钢的扭转实验一、实验目的1、测定低碳钢在扭转时的剪切屈服极限τS和剪切强度极限τb。
2、观察低碳钢扭转破坏过程及破坏形式。
二、实验设备及量具1、电子式扭转试验机图3-1 主机结构图试验机由加载机构,测力单元、显示器、试验机附件(标定装置)等组成。
加载机构,安装在导轨上的加载机构,由松下伺服电机带动,通过减速器使夹头旋转,对试件施加扭矩。
试验机的正反加栽和停车,可按显示器的标志按扭。
为了适应各种材料扭力的需要,试验机具有较宽的调速范围。
无级调速0°—360°任意角度可调。
测力单元,通过夹头传来的力矩经传感器处理输出,在液晶显示器和计算机上同步显示出来,根据满意程度选择保存或打印。
2、游标卡尺三、实验原理圆截面直杆试件在受扭转时,横截面上产生剪应力。
在试验机自动绘图装置上得到扭矩和转角的关系图。