金属材料强化的途径
- 格式:doc
- 大小:14.50 KB
- 文档页数:3
金属材料的强化方法
金属材料的强化方法主要有以下几种:
1. 固溶强化:通过合金元素的固溶作用,改变金属原子的排列方式和力学性能,提高金属的强度和硬度。
常用的合金元素有锰、镍、铬等。
2. 相变强化:通过改变金属的晶体结构,使得金属具有不同的力学性能。
常见的相变强化方法包括质变(如奥氏体-马氏体相变)、回火(如淬火、时效回火等)等。
3. 冷变形强化:通过金属的塑性变形来提高其强度和硬度。
冷变形包括冷轧、冷拔、冷挤压等方法,可以使金属材料的晶粒细化、位错增加,从而提高金属的强度。
4. 细化晶粒强化:通过控制金属的凝固过程或者通过退火过程来使金属晶粒尺寸变小,从而提高金属的强度和硬度。
常见的方法有快速凝固、低温退火等。
5. 晶界强化:通过控制金属晶界的结构和性质,提高金属的强度和硬度。
方法包括控制晶界角度、晶界清晰化等。
6. 精细化析出物强化:通过控制金属合金中的析出物的形成和分布,使其成为有效的强化相,提高金属的强度和硬度。
这些强化方法可以单独应用,也可以组合应用,以达到最佳的强化效果。
同时,不同的金属材料和合金体系适用的强化方法也略有不同,需要根据具体情况进行选择和调整。
金属的五种强化机制及实例溶强化⑴纯金属加入合金组元变为固溶体,其强度、硬度将升高而塑性将降低,这个现象称为固溶强化.(2)固溶强化的机制是:金属材料的变形主要是依靠位错滑移完成的故凡是可以增大位错滑移阻力的因素都将使变形抗力增大,从而使材料强化。
合金组元溶入基体金属的晶格形成固溶体后,不仅使晶格发生畸变,同时使位错密度增加.畸变产生的应力场与位错周围的弹性应力场交互作用,使合金组元的原子聚集在位错线周围形成"气团"。
位错滑移时必须克服气团的钉扎作用,带着气团一起滑移或从气团里挣脱出来使位错滑移所需的切应力增大.(3)实例:表1列出了几种普通黄铜的强度值,它们的显微组织都是单相固溶体,但含锌量不同,强度有很大差异。
在以固溶强化作为主要强化方法时,应选择在基体金属中溶解度较大的组元作为合金元素,例如在铝合金中加入铜、镁;在镁合金中加入铝、锌;在铜合金中加入锌、铝、锡、镍;在钛合金中加入铝、钒等。
表1 几种普通黄铜的强度(退火状态)表1儿种普通黄铜的强度(退火状态)对同一种固溶体,强度随浓度增加呈曲线关系升高见图1。
在浓度较低时,强度升高较快,以后渐趋平缓,大约在原子分数为50 %时达到极大值。
以普通黄铜为例:H96的含锌量为4 % , ob为240MPa ,与纯铜相比其强度增加911 %;H90的含锌量为10 % , ob为260MPa ,与H96相比强度仅提高813 %.2 细晶强化素都对位错滑移产生很大的阻碍作用,从而使强度升高.晶粒越细小,晶界总面积就越大,强度越高,这一现象称为细晶强化。
(2)细晶强化机制:通常金属是由许多晶粒组成的多晶体晶粒的大小可以用单位体积内晶粒的数目来表示数目越多,晶粒越细。
实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。
这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展.⑶实例:ZG35CrMnSi钢强化工艺工件铸造后经过完全退火,正火,再进行亚温淬火加高温回火热处理.该工艺处理的主要好处在于提高了本工件的强度和韧性。
金属材料的四大强化机制金属材料的强化机制可真是个让人惊奇的领域,大家有没有想过,金属为什么有的坚固得像铁桶一样,而有的却软得像泥巴?今天就来聊聊这四大强化机制,轻松一下,顺便长长见识。
首先说说固溶强化,这东西听起来挺高大上的,实际上就是把不同的原子混在一起,让金属更坚固。
想象一下,一个本来单打独斗的铁小子,突然被一群不同的小伙伴包围,变得威风凛凛。
这就是固溶强化的魅力,杂质原子进入金属的晶格中,打乱了原本的规律,使得金属的位移变得困难,强度自然就上来了,嘿,这就是一招不错的组合拳。
要知道,金属的晶格就像是一座座房子,杂质原子就像是搬进来的新住户,虽然一开始可能有点不和谐,但久而久之,大家就能和谐共处,形成一种新的平衡。
接下来要说的是第二种,叫做强化相,听起来是不是也很神秘?其实它的原理也不复杂。
想象一下,如果金属的内部长出了“贵族”般的强化相,那就意味着这金属在碰到外力时,不容易被击垮。
强化相就像是战士们在金属的内部组成的小团队,它们能有效阻挡外部的侵袭,像是给金属穿上了一层厚厚的铠甲,让它看起来更强大。
这种机制通常在合金中比较常见,金属与金属之间相互作用,形成不同的相,增强了整体的强度。
这样的金属材料,仿佛就像是一个披着迷彩的超级英雄,随时准备迎接挑战。
再说说第三种机制,叫做析出强化,听上去是不是有点像古代的军队在战斗?其实就是在金属中让一些小颗粒析出来,形成一种“埋伏”,这些颗粒就像是潜伏在战场上的小兵,外力一来,它们就会瞬间出击,增加金属的强度。
这样一来,金属的内部就形成了一个坚固的网络,极大地提升了抗拉强度,嘿,有点像是给金属增添了几分底气。
析出强化的好处在于,不需要太高的温度就能达到预期效果,真是个省事儿的好办法。
最后一个就是叫做晶粒细化,听着是不是像是一道菜的做法?其实这也是强化金属的重要手段。
想象一下,如果金属的晶粒变得更小,就像是把一个大蛋糕切成很多小块,这样一来,每一块蛋糕都更坚韧。
金属材料强化方法金属材料的强化是指通过制造工艺、合金化、热处理等手段,使金属材料的力学性能显著提高的方法。
金属材料的强化可以分为几种方式,包括晶粒细化、位错增多、相变强化、析出相强化等。
下面将详细介绍这几种金属材料强化方法。
首先,晶粒细化是金属材料强化中最常用的方法之一。
通过减小材料的晶粒尺寸,可以显著提高材料的强度和硬度。
晶粒细化可以通过加热和快速冷却等热处理工艺实现,例如快速冷却可以使晶粒尺寸减小,从而提高材料的力学性能。
其次,位错增多也是一种重要的金属材料强化方法。
位错是金属材料中的一种缺陷,位错的增多会增加材料的强度和硬度。
而通过冷变形等加工工艺,可以在材料中引入更多的位错,从而实现强化。
此外,相变强化也可以在金属材料中实现强化。
相变是指材料中的晶体结构由一种类型转变为另一种类型的过程。
不同晶体结构具有不同的力学性能,通过控制相变可以实现材料的强化。
例如,淬火是一种常用的相变强化方法,它可以通过快速冷却使材料的晶体结构发生变化,从而提高材料的强度和硬度。
最后,析出相强化也是一种常用的金属材料强化方法。
析出相是指在合金中形成的一种新的晶体结构,其在晶界和位错附近起到了强化的作用。
通过调整材料中的合金元素含量和热处理工艺,可以促使析出相的形成,从而实现材料的强化。
例如,通过添加适量的合金元素,可以在金属材料中形成均匀分布的析出相,从而提高材料的强度和硬度。
总结起来,金属材料的强化可以通过晶粒细化、位错增多、相变强化和析出相强化等方法实现。
这些方法在工程实践中得到了广泛的应用,可以显著提高金属材料的力学性能,满足不同工程需求。
此外,不同的强化方法可以组合应用,以进一步提高金属材料的性能。
金属材料强化机制金属材料在力学上有许多优异的性能,如强度、硬度、韧性、耐磨性和耐腐蚀性等。
然而,这些性能并非所有金属都具备,因此需要通过强化机制来提高金属材料的性能。
强化机制主要有以下几种:一、细晶强化细晶强化是通过细化晶粒来提高金属材料的强度和韧性。
晶界是阻碍位错运动的重要因素,晶粒越细小,晶界就越多,阻碍位错运动的能力就越强,材料的强度和韧性就越好。
细晶强化是金属材料强化的一种重要手段,除了提高强度和韧性外,还可以提高材料的耐腐蚀性和高温性能。
二、固溶强化固溶强化是通过添加合金元素来提高金属材料的强度和硬度。
合金元素溶入基体金属中形成固溶体,这些元素会阻碍位错运动,从而提高材料的强度和硬度。
固溶强化在提高材料强度的同时,对材料的韧性影响较小,因此固溶强化材料通常具有较好的综合性能。
三、形变强化形变强化是通过塑性变形来提高金属材料的强度和硬度。
塑性变形会使位错密度增加,位错之间的相互作用增强,从而提高材料的强度和硬度。
形变强化可以提高材料的强度和硬度,但同时也会降低材料的韧性。
因此,形变强化需要在保证材料强度的同时,尽可能减小对材料韧性的影响。
四、相变强化相变强化是通过相变来提高金属材料的强度和硬度。
一些金属材料在相变过程中,会伴随着体积的变化和晶格结构的改变,这些变化会阻碍位错运动,从而提高材料的强度和硬度。
相变强化通常会伴随着材料质量的降低和韧性的下降,因此需要在保证材料强度的同时,尽可能减小对材料韧性的影响。
五、复合强化复合强化是通过结合两种或多种强化机制来提高金属材料的强度和韧性。
例如,可以将细晶强化和固溶强化结合起来,通过细化晶粒和添加合金元素来同时提高材料的强度和韧性。
复合强化可以充分发挥不同强化机制的优势,达到更好的强化效果。
总之,金属材料的强化机制有多种,可以根据不同的需求选择合适的强化方法。
细晶强化、固溶强化、形变强化、相变强化和复合强化是常用的强化方法,可以单独使用或组合使用。
简述金属材料的四种强化机制
以《简述金属材料的四种强化机制》为标题,现在金属材料已成为工业生产过程中不可或缺的材料,因而如何有效提高金属材料的力学性能,使其具有高的强度,经久的耐久性以及足够的可塑性,一直是金属材料科学家们努力加以研究的课题。
目前,金属材料的强化机制具有四种:晶内扩散、晶间复合、晶粒细化和塑性变形强化。
第一种金属材料的强化机制是晶内扩散。
在金属材料的制备过程中,要添加一定数量的元素原子,随着材料的温度升高,原子会到达晶粒的表面,然后通过晶界驱动力渗入晶粒内部,产生一种强化效果。
此外,在晶内扩散过程中,可以增加材料的塑性变形,并减少材料的硬度和抗拉强度,因此可以提高材料的延展性,以及增加材料的韧性。
第二种金属材料的强化机制是晶间复合。
此强化机制主要是利用微小量碎陶粒组合成新的晶粒,以改变材料的形状和组成,进而改善材料的力学性能。
碎陶粒的共混物和部分原子可以进一步改变材料的力学性能,使其具有更好的耐磨性和抗拉强度。
第三种金属材料的强化机制是晶粒细化。
主要是通过改变材料的晶粒结构,使晶粒尺寸变得更小,以增加晶粒密度,进而改变晶粒之间的相互作用,改善材料的力学性能。
最后一种金属材料的强化机制是塑性变形强化,是在晶内扩散的基础上,通过塑性变形来改变晶粒的形状,达到改善材料力学性能的目的。
塑性变形强化的主要作用是增加材料的抗拉强度、抗压强度和抗弯曲强度。
总之,金属材料的四种强化机制分别是晶内扩散、晶间复合、晶粒细化和塑性变形强化,各自在工业生产中发挥了重要作用,研究者们还将持续努力,以进一步提升金属材料的力学性能。
金属强化的四种机理金属强化是指通过一系列的工艺和技术手段,使金属材料的力学性能得到提高的过程。
金属强化的机理可以分为四种:晶粒细化、位错增多、析出硬化和变形诱导强化。
一、晶粒细化晶粒细化是指通过控制金属材料的晶粒尺寸,使其变得更小,从而提高材料的强度和硬度。
晶粒细化的机理主要是通过加工变形来实现的。
在加工变形过程中,金属材料的晶粒会被拉伸和压缩,从而发生变形和细化。
此外,还可以通过热处理来实现晶粒细化,例如退火和等温退火等。
二、位错增多位错是指金属材料中的晶格缺陷,它们可以通过加工变形来增多。
位错增多的机理是通过加工变形使晶体中的位错密度增加,从而提高材料的强度和硬度。
位错增多还可以通过热处理来实现,例如冷变形和等温退火等。
三、析出硬化析出硬化是指通过在金属材料中形成固溶体和析出相,从而提高材料的强度和硬度。
析出硬化的机理是通过在金属材料中形成固溶体和析出相,从而限制晶体的滑移和扩散,从而提高材料的强度和硬度。
析出硬化还可以通过热处理来实现,例如固溶处理和时效处理等。
四、变形诱导强化变形诱导强化是指通过加工变形来引起金属材料中的位错和晶界移动,从而提高材料的强度和硬度。
变形诱导强化的机理是通过加工变形来引起金属材料中的位错和晶界移动,从而限制晶体的滑移和扩散,从而提高材料的强度和硬度。
变形诱导强化还可以通过热处理来实现,例如等温退火和时效处理等。
综上所述,金属强化的机理可以分为晶粒细化、位错增多、析出硬化和变形诱导强化四种。
这些机理可以通过加工变形和热处理等工艺手段来实现,从而提高金属材料的力学性能。
有色金属的强度一般较低。
例如常用的有色金属铝、铜、钛在退火状态的强度极限分别只有80100MPa 、220MPa 和450600MPa 。
因此设法提高有色金属的强度一直是有色冶金工作者的一个重要课题。
目前工业上主要采用以下几种强化有色金属的方法。
1 固溶强化纯金属由于强度低很少用作结构材料在工业上合金的应用远比纯金属广泛。
合金组元溶入基体金属的晶格形成的均匀相称为固溶体。
形成固溶体后基体金属的晶格将发生程度不等的畸变但晶体结构的基本类型不变。
固溶体按合金组元原子的位置可分为替代固溶体和间隙固溶体按溶解度可分为有限固溶体和无限固溶体按合金组元和基体金属的原子分布方式可分为有序固溶体和无序固溶体。
绝大多数固溶体都属于替代固溶体、有限固溶体和无序固溶体。
替代固溶体的溶解度取决于合金组元和基体金属的晶体结构差异、原子大小差异、电化学性差异和电子浓度因素。
间隙固溶体的溶解度则取决于基体金属的晶体结构类型、晶体间隙的大小和形状以及合金组元的原子尺寸。
纯金属一旦加入合金组元变为固溶体其强度、硬度将升高而塑性将降低这个现象称为固溶强化。
固溶强化的机制是: 金属材料的变形主要是依靠位错滑移完成的故凡是可以增大位错滑移阻力的因素都将使变形抗力增大从而使材料强化。
合金组元溶入基体金属的晶格形成固溶体后不仅使晶格发生畸变同时使位错密度增加。
畸变产生的应力场与位错周围的弹性应力场交互作用使合金组元的原子聚集在位错线周围形成“气团”。
位错滑移时必须克服气团的钉扎作用带着气团一起滑移或从气团里挣脱出来使位错滑移所需的切应力增大。
此外合金组元的溶入还将改变基体金属的弹性模量、扩散系数、内聚力和晶体缺陷使位错线弯曲从而使位错滑移的阻力增大。
在合金组元的原子和位错之间还会产生电交互作用和化学交互作用也是固溶强化的原因之一。
固溶强化遵循下列规律: 第一对同一合金系固溶体浓度越大则强化效果越好。
表1 列出了几种普通黄铜的强度值它们的显微组织都是单相固溶体但含锌量不同强度有很大差异。
金属材料强化的途径
作者:刘书麟
来源:《科技与创新》2016年第09期
摘要:论述了常用金属材料强化的途径,并对各种强化的原理进行了分析。
关键词:强化原理;金属材料;塑性变形;组织结构
中图分类号:TG113 文献标识码:A DOI:10.15913/ki.kjycx.2016.09.072
金属材料进行合金化、塑性变形和热处理等的目的是提高金属材料的强度。
强度的种类有很多,比如屈服强度、抗拉强度、抗压强度、抗弯强度、疲劳强度、持久强度等。
每一种强度都有其特殊的物理属性,因此,金属的强化不是笼统的概念,而是具体地反映在某个强度指标上。
一种方法对提高某一强度指标可能是有效的,而用于提高另一种强度指标未必有效。
影响强度的因素有很多,主要有材料的成分、组织结构和表面状态等,因此,金属的强化机制和方法与这些因素有着必然的联系,在生产中应根据实际情况采取具体的强化方法。
1 固溶强化
合金元素固溶到基体金属中形成固溶体,进而使金属强度和硬度提高的现象称为固溶强化。
固溶强化的原理为:向基体中溶入溶质合金化元素,溶质原子的溶入会导致固溶体的晶格发生畸变,进而增大位错运动的阻力,塑性变形的抗力随之增大,最终提高合金的强度和硬度。
2 细晶强化
细晶强化主要是指通过人工干预,比如人工形核和电磁振动等方法细化晶粒,从而提高材料的强度、塑性和韧性。
细晶强化的原理为:多晶体金属晶界处晶格畸变严重,当位错运动到晶界附近时,易受到晶界的阻碍,使塑性变形抗力增大。
晶粒越细化,晶界数量越多,变形抗力越大,金属的强度越高。
3 沉淀强化和弥散强化
沉淀强化是指金属材料中的过饱和固溶体因温度的下降或长时间处于保温过程而分解,析出一些细小的沉淀物分散于基体之中,进而阻碍位错运动而产生强化作用的现象;弥散强化是指在金属材料中人为地加入或产生一些坚硬的细质点并弥散于基体中,进而阻碍位错运动而产生强化作用的现象。
从利用基体相之外第二相弥散质点引起强化这一机理看,沉淀强化与弥散强化并没有较大的区别,因此,其可统称为第二相强化。
在时效前期,沉淀相与基体之间往往保持共格或半格关系,在每个细小沉淀物附近存在一个范围较大的应力场,与位错发生交互作用,进而产生十分明星的强化作用。
而在基体中散布的第二相质点会对位错产生阻碍作用,进而增大变形抗力,使材料的强度得以提高。
4 形变强化
形变强化是指通过压力加工,使材料发生塑性变形,从而提高其强度和硬度,又称为加工硬化。
形变强化的原理为:在塑变过程中产生大量的新位错,造成晶格严重畸变,位错密度增大,位错间的交互作用增强,位错运动阻力增大,增强塑性变形抗力增强,加之亚晶界数量的增多,最终提高材料强度。
5 相变强化
相变强化是指通过一定的工艺使金属材料中的相或组织发生转变,进而产生强化效应的现象。
金属材料中的相主要分为固溶体和金属化合物两种类型,重要的机械零件在生产过程中都要进行热处理,这是因为其在热处理过程中会发生很多变化:①固溶体时的固溶强化效应;②不同金属化合物沉淀时的沉淀强化效应;②细小相或组织的细晶强化效应;③不同位错密度相或组织的位错强化效应。
因此,相变不仅能产生强化效应,还能综合多种强化效应。
钢的淬火热处理就是相变强化的典型应用。
淬火形成的马氏体是一种过饱和的固溶体,可产生强烈的固溶强化效应。
马氏体中的位错密度较高,会产生位错强化效应,比如低碳马氏体的位错密度与经过大量冷加工变形的位错密度相似,因此,其屈服强度较高。
此外,形成的马氏体束取向不同,且较为细小,因此,起着细晶强化的作用,比如高碳马氏体具有明显的细晶强化效应。
将淬火马氏体再回火,可析出大量细小弥散分布的碳化物,产生第二相强化。
因此,淬火与回火是钢最经济、最有效的综合强化方法,被广泛应用于各种重要机械零件和工具的强化中。
6 结束语
本文论述了金属材料多种强化途径。
在实际中,金属材料可根据不同的条件和要求采用不同的强化方法,也可采用综合多种强化方法的方式。
比如,不可进行热处理强化的低碳钢、不锈钢和有色金属可采用固溶强化和形变强化,无法形变强化的铸铁可采用细晶强化和相变强化,性能要求较高的钢和有色金属合金一般采用热处理相变强化。
参考文献
[1]赵峰.工程材料[M].北京:中国人民大学出版社,2011.
[2]雷廷权,赵连成.钢的组织转变[M].北京:机械工业出版社,1985.
[3]张琳,王仙萌.航空工程材料及应用[M].北京:国防工业出版社,2013.
〔编辑:张思楠〕。