钢桁梁桥综述
- 格式:doc
- 大小:34.00 KB
- 文档页数:5
浅谈铁路钢桁梁桥摘要:本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。
关键字:铁路钢桁梁桥发展情况整体式节点正交异性板一、前言钢桥由于其材料高强度、高弹性模量而构件相对较轻, 施工比预应力混凝土桥轻盈和方便等特点,大量使用在大中跨度的桥梁上。
其中,钢桁梁桥由桁架杆件组成,尽管整体上看钢桁梁桥以受弯和受剪为主,但具体到每根桁架杆件则主要承受轴向力。
与实腹梁相比是用稀疏的腹杆代替整体的腹板,从而节省钢材和减轻结构自重,又由于腹杆钢材用量比实腹梁的腹板有所减少,钢桁梁可做成较大高度,从而具有较大的刚度及更大的跨越能力。
本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。
二、钢桁梁桥的特点钢桁梁桥综合了钢材和桁架结构的特点:(1)跨越能力大。
由于钢材强度大,在相同的承载能力条件下,与混凝土桥梁相比,钢桥构件的截面较小,所以钢桥自重轻,加大桥梁的跨越能力。
(2)易于修复和更换。
(3)钢桁梁的杆件和节点较多,构造较为复杂,制造较为费工。
(4)钢材易锈蚀,需要定期检查和维护,故养护费用高。
(5)造价较高。
(6)抗压能力强,整体性好。
三、钢桁梁桥的发展情况1894年,我国第一次主持修建钢桁梁桥——滦河大桥,由我国工程师詹天佑主持完成。
其上部结构由多孔钢桁梁和钢板梁组成。
建国以前所建的钢桁梁桥跨度较小,所用的钢材都是进口的,结构都采用铆钉,工艺简陋,建国后,钢桁梁桥技术发展很快。
20世纪60年代中期,为加快铁路建设,在成昆铁路修建中,系统地研究了栓焊钢桁梁桥新技术,一举建成各种不同结构型式的栓焊钢桁梁桥四十几座,结束了在我国使用了近100年的铆接钢桁梁桥的历史,这在我国钢桁梁桥发展史上是一个很大的进步。
其中1966年建成的饮水河大桥主跨112米,为中国第一座栓焊钢桥。
我认识的钢桁梁桥摘要介绍钢桁梁桥的组成、构造、计算等内容,以及本人对钢桁梁桥的浅见1 概述钢桁梁桥可以看作是将实腹的钢板梁桥按照一定规则空腹化的结构形式,结构整体上为梁的受力方式,即主要承受弯矩和剪力的结构。
1.1基本组成钢桁梁桥可以看作是将实腹的钢板梁桥按照一定规则空腹化的结构形式,结构整体上为梁的受力方式,即主要承受弯矩和剪力的结构。
下图1.1-1为下承式钢桁梁桥的基本组成情况。
图1下承式钢桁梁桥的基本组成情况1.主桁主桁是钢桁梁桥的主要承重结构,最常采用的是平面桁架,在竖向荷载作用下其受力实质是格构式的梁。
主桁由上弦杆、下弦杆和腹杆组成。
2.联结系1)分类:纵向联结系和横向联结系2)作用:联结主桁架,使桥跨结构成为稳定的空间结构,能承受各种横向荷载3)纵向联结系分上部水平纵向联结系和下部水平纵向联结系;主要作用为承受作用于桥跨结构上的横向水平荷载、横向风力、车上横向摇摆力及离心力。
另外是横向支撑弦杆,减少其平面以外的自由长度。
4)横向联结系分桥门架和中横联;主要作用为是增加钢桁梁的抗扭刚度。
适当调节两片主桁或两片纵联的受力不均。
3.桥面系1)组成:由纵梁、横梁及纵梁之间的联结系2)传力途径:荷载先作用于纵梁,再由纵梁传至横梁,然后由横梁传至主桁架节点。
4.制动联结系制动联结系也称为制动撑架,设置在于桥面系相邻的平纵联的中部,通常由四根杆件组成。
作用是将纵梁上的纵向水平制动力传至主桁,以减小制动力对横梁的不利影响。
5.桥面、支座及墩台与其它桥梁相似。
1.2 主桁架的图式及特点1.主桁架的常用类型2)节间长度铁路钢桥:中、小跨径的桁架,上承式桁架的节间长度一般为3~6m,下承式桁架的节间长度一般为6~10m,跨径较大的下承式桁架节间可达12~15m。
公路钢桥:节间长度可适当增大。
3)斜杆倾角斜杆倾角由主桁高度与节间长度的比值决定,有竖杆的桁架的合理倾角为50°左右;无竖杆的桁架的合理倾角为60°左右。
钢桥施工技术——钢桁梁桥钢桁梁(图6.3.1)的出现来自钢板梁的演变,人们根据梁的截面在中性轴附近应力最小的理论,研究从板梁的腹板中挖掉若干方格以节省钢料和减轻梁的自重的办法,并逐步演变为用三角形组成的桁架来代替板梁。
钢桁梁和板梁的主要区别是:桁架以腹杆(斜杆和竖杆)代替板梁,在竖向荷载作用下,桁架中的所有杆件都顺着杆件轴向承受压力或拉力,杆件截面上的材料都发挥相同的效能。
与板梁相比,桁梁的主要优点:一是跨越能力较大;二是当跨度较大时,自重也较轻,节省钢材,一般使用跨度都大于30 m。
钢桁梁主要类型有上承式简支钢桁梁、下承式简支钢桁梁、下承式连续钢桁梁等。
其主要由桥面、桥面系、主桁、连接系及支座等 5 个部分组成。
列车作用于钢桁梁的荷载,首先通过桥面的基本轨传送给桥枕,桥枕传给桥面系的纵梁,纵梁传给横梁,横梁传给主桁,主桁传给支座,支座传给墩台。
一、主桁主桁(图6.3.2)是钢桁梁桥的主要承重结构。
钢桁梁桥有两片主桁架,每片桁架一般由上弦杆、下弦杆、斜杆及竖杆等组成,斜杆和竖杆统称为腹杆。
两片主桁架的作用相当于板梁的两片主梁。
铁路钢桁梁桥一般采用下承式。
图6.3.1 钢桁梁图6.3.2 下承式钢桁梁组成示意图1. 主桁形式我国中等跨度(48~80 m)的下承式桁梁桥,其主桁结构常采用图6.3.3(a)中的几何图示,而不采用图6.3.3(b)。
二者的斜杆方向不同,基于此,在竖向荷载作用下,图式6.3.3(a)的竖杆较图式(b)受力较小,受压斜杆的数量也较少,而且图式6.3.3(a)的弦杆内力不像图式6.3.3(b)那样在每个节间都得变化一次,因而图式 6.3.3(a)的弦杆截面,易于选择得较为经济合理。
由于这些原因,使图式6.3.3(a)比图式6.3.3(b)更为节省钢料。
具有图6.3.3(a)这种形式的桁梁桥,其构造简单,部件类型较少,适应设计定型化,有利于制造与安装,宜于选作标准设计桁梁桥的主桁图式。
钢桁梁桥综述浅谈铁路钢桁梁桥摘要:本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。
关键字:铁路钢桁梁桥发展情况整体式节点正交异性板一、前言钢桥由于其材料高强度、高弹性模量而构件相对较轻, 施工比预应力混凝土桥轻盈和方便等特点,大量使用在大中跨度的桥梁上。
其中,钢桁梁桥由桁架杆件组成,尽管整体上看钢桁梁桥以受弯和受剪为主,但具体到每根桁架杆件则主要承受轴向力。
与实腹梁相比是用稀疏的腹杆代替整体的腹板,从而节省钢材和减轻结构自重,又由于腹杆钢材用量比实腹梁的腹板有所减少,钢桁梁可做成较大高度,从而具有较大的刚度及更大的跨越能力。
本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。
二、钢桁梁桥的特点钢桁梁桥综合了钢材和桁架结构的特点:(1)跨越能力大。
由于钢材强度大,在相同的承载能力条件下,与混凝土桥梁相比,钢桥构件的截面较小,所以钢桥自重轻,加大桥梁的跨越能力。
(2)易于修复和更换。
(3)钢桁梁的杆件和节点较多,构造较为复杂,制造较为费工。
(4)钢材易锈蚀,需要定期检查和维护,故养护费用高。
(5)造价较高。
(6)抗压能力强,整体性好。
三、钢桁梁桥的发展情况1894年,我国第一次主持修建钢桁梁桥——滦河大桥,由我国工程师詹天佑主持完成。
其上部结构由多孔钢桁梁和钢板梁组成。
建国以前所建的钢桁梁桥跨度较小,所用的钢材都是进口的,结构都采用铆钉,工艺简陋,建国后,钢桁梁桥技术发展很快。
20世纪60年代中期,为加快铁路建设,在成昆铁路修建中,系统地研究了栓焊钢桁梁桥新技术,一举建成各种不同结构型式的栓焊钢桁梁桥四十几座,结束了在我国使用了近100年的铆接钢桁梁桥的历史,这在我国钢桁梁桥发展史上是一个很大的进步。
其中1966年建成的饮水河大桥主跨112米,为中国第一座栓焊钢桥。
中国中铁大桥工程局集团有限公司二00九年十二月目录连续(简支)钢桁梁桥、钢桁梁柔性加劲拱桥、钢桁拱桥、钢桁梁斜拉桥及钢桁梁悬索桥南京长江大桥天兴洲长江大桥芜湖长江大桥九江长江大桥大胜关长江大桥一、典型钢桁梁(拱)桥介绍11.254铁6公Q370qE 20092004.9504天兴洲大桥8.09.605.686.652.14钢材(万t)4铁2地铁2铁4公2铁4公2铁4公2铁4公运营荷载Q370qE Q420qE 14锰铌桥15锰钒氮16锰桥A3桥钢材种类20102000.91996.091968.121957.10通车日期2006.71997.31973.121960.11955.9开工日期336312216160128主跨(m )大胜关大桥芜湖大桥九江大桥南京大桥武汉大桥桥名一、典型钢桁梁(拱)桥介绍二、钢桁梁(拱)桥主要架设施工方法综述膺架法悬臂拼装架设法浮吊架设法顶推架设法拖拉架设法浮运架设法浮运拖拉架设法整体架设法等二、钢桁梁(拱)桥主要架设施工方法综述膺架法全悬臂拼装半悬臂拼装中间合龙悬臂拼装对称悬臂平衡拼装二、钢桁梁(拱)桥主要架设施工方法综述悬臂拼装架设法二、钢桁梁(拱)桥主要架设施工方法综述浮吊架设法二、钢桁梁(拱)桥主要架设施工方法综述顶推架设法二、钢桁梁(拱)桥主要架设施工方法综述拖拉架设法二、钢桁梁(拱)桥主要架设施工方法综述浮运架设法二、钢桁梁(拱)桥主要架设施工方法综述浮运拖拉架设法二、钢桁梁(拱)桥主要架设施工方法综述整体架设法二、钢桁梁(拱)桥主要架设施工方法综述2、支架和临时墩•4、提升站和预拼场龙门吊机•5、吊索塔架•6、墩顶设施1、概述无应力状态下合龙在加力状态下合龙节点铰式合龙节间拉杆式合龙2、跨中合龙的必要条件:3、合龙前的准备工作注:以上位移量中,x为顺桥向位移,以从北往南为正,y为竖直位移,以往上为正;z为横桥向位移,以从上游往下游为正,θ为杆件转角,以顺时针向为正。
钢桁梁引言钢桁梁是一种常见于桥梁工程中的结构形式。
它的主要组成部分是由钢材制成的桁架结构,通过连接件将其连接在一起形成横跨河道或道路的桥面。
钢桁梁在桥梁工程中广泛使用,其具有优异的强度、刚性和耐久性,使其成为现代桥梁设计的重要组成部分之一。
组成结构钢桁梁由上弦杆、下弦杆和网格构件组成。
其中,上下弦杆是承受桥梁荷载的主要构件,而网格构件则起到加固和支撑的作用。
上下弦杆通常是采用横向排列的钢板或钢桁架构成,而网格构件则由钢材或钢管组成。
材料选择钢桁梁的材料选择是设计中的重要环节,直接影响到钢桁梁的强度和耐久性。
常见的钢材包括普通碳素结构钢、低合金高强度钢和耐候钢等。
在选择材料时,需要考虑桥梁所处环境的气候条件、荷载要求以及使用年限等因素。
设计与计算钢桁梁的设计和计算是桥梁工程中的重要部分。
在设计过程中,需要根据桥梁的跨度、荷载要求和使用要求等因素进行合理的设计。
计算则包括对钢桁梁的自重、荷载和风载等进行力学计算,以确定结构的安全性和合理性。
制造与安装钢桁梁的制造和安装是保证桥梁工程顺利进行的关键环节。
制造过程中,需要对钢材进行加工、焊接和热处理等工艺,以确保钢桁梁的质量和强度。
安装过程中,则需要考虑桥梁的拆解、起吊和连接等步骤,以保证钢桁梁的准确安装和牢固连接。
维护与保养钢桁梁的维护和保养对于延长桥梁的使用寿命和保证交通安全非常重要。
常见的维护工作包括清洁、喷涂防锈剂和检查焊缝等。
另外,还需要定期检测和评估钢桁梁的结构安全性和使用性能,若有损坏或疲劳现象,需要及时修复或更换。
应用范围钢桁梁在桥梁工程中有广泛的应用范围。
它可以用于公路桥、铁路桥、高架桥以及跨越河道、峡谷等特殊地理环境的桥梁。
钢桁梁的设计和制造也常用于各类临时性桥梁和施工工程中,为交通运输和工程建设提供了重要的支持。
结论钢桁梁作为桥梁工程中常见的结构形式,具有优异的强度、刚性和耐久性,成为现代桥梁设计的重要组成部分。
在钢桁梁的设计、制造和安装过程中,需要充分考虑材料选择、力学计算和工艺操作等因素,以确保钢桁梁的质量和安全性。
浅谈铁路钢桁梁桥摘要:本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。
关键字:铁路钢桁梁桥发展情况整体式节点正交异性板一、前言钢桥由于其材料高强度、高弹性模量而构件相对较轻, 施工比预应力混凝土桥轻盈和方便等特点,大量使用在大中跨度的桥梁上。
其中,钢桁梁桥由桁架杆件组成,尽管整体上看钢桁梁桥以受弯和受剪为主,但具体到每根桁架杆件则主要承受轴向力。
与实腹梁相比是用稀疏的腹杆代替整体的腹板,从而节省钢材和减轻结构自重,又由于腹杆钢材用量比实腹梁的腹板有所减少,钢桁梁可做成较大高度,从而具有较大的刚度及更大的跨越能力。
本文通过查阅整理国内外相关资料,总结阐述了钢桁梁桥的特点、发展情况、施工方法及未来发展趋势,并对现今用在钢桁梁桥中的整体式节点和正交异性板进行了探索。
二、钢桁梁桥的特点钢桁梁桥综合了钢材和桁架结构的特点:(1)跨越能力大。
由于钢材强度大,在相同的承载能力条件下,与混凝土桥梁相比,钢桥构件的截面较小,所以钢桥自重轻,加大桥梁的跨越能力。
(2)易于修复和更换。
(3)钢桁梁的杆件和节点较多,构造较为复杂,制造较为费工。
(4)钢材易锈蚀,需要定期检查和维护,故养护费用高。
(5)造价较高。
(6)抗压能力强,整体性好。
三、钢桁梁桥的发展情况1894年,我国第一次主持修建钢桁梁桥——滦河大桥,由我国工程师詹天佑主持完成。
其上部结构由多孔钢桁梁和钢板梁组成。
建国以前所建的钢桁梁桥跨度较小,所用的钢材都是进口的,结构都采用铆钉,工艺简陋,建国后,钢桁梁桥技术发展很快。
20世纪60年代中期,为加快铁路建设,在成昆铁路修建中,系统地研究了栓焊钢桁梁桥新技术,一举建成各种不同结构型式的栓焊钢桁梁桥四十几座,结束了在我国使用了近100年的铆接钢桁梁桥的历史,这在我国钢桁梁桥发展史上是一个很大的进步。
其中1966年建成的饮水河大桥主跨112米,为中国第一座栓焊钢桥。
1995年建成通车的孙口黄河大桥位于京九铁路线上,是一座跨越黄河的双线铁路桥,正桥为下承式连续钢桁梁桥,主桁采用三角形钢桁架,标准节间常12m,桁高13.6m,桁宽10m;上、下弦杆和支点处斜杆采用箱型截面,其余腹杆为工字型截面;主桁与节点板焊接成整体在预制厂进行,该桥系中国首次采用整体节点构造。
在建成孙口黄河大桥的基础上,与1999年在长东铁路一桥上游(南)30m处,平行建成了长东铁路二桥,该桥采用三角桁架整体节点栓焊结构,从设计和建造技术上较一桥都有很大改进。
2000年竣工通车的芜湖长江大桥为公铁两用桁架低塔斜拉桥,其主梁首次大规模采用预应力钢筋混凝土桥面板和钢桁架共同受力的板桁组合结构。
芜湖长江大桥以其大规模,新技术和一流的质量,成为中国桥梁史上继武汉、南京、九江长江大桥之后的第四座里程碑。
以上几座桥在我国的经济建设中发挥着巨大作用,在新中国桥梁建设中具有里程碑式的作用。
近年来,为满足铁路运输的需求,有时要求新建铁路桥梁通行能力从双线发展到四线甚至六线。
在我国一些大跨度钢桁体系中开始应用四线三桁或四线双桁的结构形式。
加之空间有限元分析技术的不断完善和施工水平不断提高,也使设计值对大跨度结构的空间受力特性有了明确的认识。
四、钢桁梁桥的施工方法1、钢桁梁桥的传统施工方法和特点1.1走行吊机施工法将主梁部分在工厂或工地附近整孔拼装, 完成工地连接后, 用走行吊机将主梁逐孔起吊, 架设在桥台桥墩之间, 然后再依次安装桥面系、平纵联等。
这个方法在城市高架桥的架设中得到广泛应用, 而且在高水位的河面上架桥, 使用这种方法也很适宜。
1.2门吊施工法在桥梁上方设置门吊, 将组装好的整孔主梁逐孔起吊, 放置在桥墩、台间, 然后依次安装桥面系和平纵联。
1.3浮吊施工法在工厂岸边或桥梁工地附近岸边将整孔桥梁组拼好, 然后用浮吊将其吊起, 并将浮吊拖曳航运至桥位, 将梁在桥台、桥墩上架设就位。
这是在河上或海上架设长大桥时经常使用的一种施工方法。
1.4悬臂施工法用移动式刚腿转臂起重机, 一面拼装, 一面逐渐向前推进。
悬臂法架设钢梁是在桥位上不用临时脚手架支撑, 而是将杆件依次悬拼至另一墩(台)上。
悬拼一孔中未设临时支墩的叫全悬臂拼装。
若在桥孔中设置一个或一个以上的临时支墩的叫半悬臂拼装。
近年来, 悬臂拼装工艺逐步完善。
其特点是不受桥渡水文条件、通航、流水、墩高和季节的限制, 而且其专用辅助结构和辅助设备费用较少。
在悬臂拼装期间, 桥梁施工人员对桥渡区段自然环境的干扰也较少。
以下情况适宜采用悬臂法架设钢梁:跨径大, 桥高, 通航河流水深流急;有流冰或有较多木排的河流;钢梁的结构图式有利于悬臂架设的, 如连续桁梁、悬臂桁梁以及多孔简支桁梁等。
2、传统钢桁梁架设方法在桥梁施工中的应用改进与发展在实际的钢桁梁架设过程中, 仅仅采用以上所介绍的施工方法中的一种是很少见的, 大多数钢桁梁的架设至少同时采用2 种或2 种以上的施工方法。
并且在施工工艺上进行了更符合实际情况的创新与改进, 进而使得社会、经济效益显著。
2.1悬臂施工法目前, 悬臂拼装、半悬臂拼装和双向对称平衡拼装仍是钢桁桥建造的主要方法之一。
近几十年来,国内外许多特大桥都采用这种方法建造。
随着钢桥结构的发展, 悬臂拼装工艺也在逐步完善。
钢桁梁在悬臂架设中, 随着悬臂长度的增大, 伸臂端的下挠度和悬臂支撑处附近的杆件应力将达到最大值, 甚至超过允许范围, 所以降低钢梁架设应力和伸臂端挠度, 保证钢梁架设时的稳定性, 是悬臂架设法中的主要问题。
为了减少桁架内力和伸臂端挠度, 在伸臂前方桥墩处伸出支撑托架(或称墩旁托架),使伸臂接近前方桥墩时, 提前得到支撑。
2.2浮托施工法半浮半拖的架设方法, 此法取浮运施工法和纵向拖拉施工法2 种施工方法的优点, 针对工程实际情况, 经过变通的行之有效的施工方法。
半浮半拖施工法是在浮船上建立临时支墩, 用卷扬机和导链牵引拖拉架梁, 主要适合水深速缓、通航情况一般的情形, 并且可以避免钢梁悬臂太长和危险性大。
与拖拉架设相比, 浮拖架设只需增加1 个浮墩, 使钢梁两支点受力既保证钢梁的稳定性, 又易控制挠度和应力变化, 而浮拖所用的器材易拼装、易控制、占用河道面积小、时间短、操作起来安全便捷。
在钢桁梁桥架设过程中, 越来越多的架设方法可供人们选择。
通过查阅参考国内外有关文献, 对钢桁梁架设施工方法及其发展情况做以总结, 可以预见,现代钢桁梁桥的施工, 在传统施工方法的基础上, 力求新工艺和新技术, 不断进行优化改进, 使得钢桁梁桥的架设施工方法不断进步发展。
五、整体节点5.1整体节点在钢桥中的应用钢桥整体节点作为近年来出现的新型构造,在大跨度桥梁中得到了广泛的应用。
整体节点是以栓为主向以焊为主,继而向全焊接发展的重要技术过渡,它一改从前利用大量螺栓连接钢梁的做法,而是改用焊接技术来连接钢节点,提高了钢梁工业化制造过程,方便了工地安装,改善了工地工作条件。
它有整体性好,节省钢材和高强度、造型美观、方便工地安装、提高钢梁工厂化制造程度等优点,在我国近年来修建的很多大桥中得到了应用。
据统计,采用整体节点较普通栓焊结构钢梁节省高强度螺栓达34%,从而获得了较好的经济效益,使我国的钢桥建造技术提高到一个新的水平。
因此,采用整体节点已成为大跨度钢桁梁桥的发展趋势。
5.2钢桥整体节点的强度问题钢桥的整体节点汇交的杆件众多、构造复杂、受力很大,处于典型的空间复杂受力状态,节点的承载安全性是桥梁结构整体安全性的关键。
目前常规的钢桥节点设计规范对于这种大型复杂的整体节点并不适用,对于这种大型节点的疲劳和静力承载力分析设计规范也没有规定。
更重要的是,钢桥的整体节点为焊接结构,焊缝密集,既有对接焊缝,又有棱角焊缝和角焊缝。
对于采用整体节点的大跨度钢桁梁桥,因其承受较大的动荷载作用,与整体节点密切相关的焊接材料、焊接工艺、各种焊接接头、交叉焊缝、杆件节点外拼接接头等细节的疲劳强度,以及整体节点的疲劳强度控制结构设计。
对于它的疲劳性能的研究目前还处于起步阶段,由于引起节点疲劳破坏的因素很多,而空间有限元等理论分析难以准确把握节点的实际受力情况和它的疲劳承载力。
故目前在工程中,为了保证大桥运营安全可靠,结构设计经济合理,对于这种整体节点大多都要结合实际情况进行验证性的静载和疲劳性能的试验研究。
此外,对这一新型构造的静载和疲劳性能也有必要做深入的研究。
5.3整体节点的静力承载力和疲劳承载力国内对整体节点的静力和疲劳承载力正处于发展阶段,从目前的试验研究来看,只要整体节点的构造设计地合理,一般能满足静力和疲劳承载力要求。
六、正交异性板6.1正交异性板的发展近年来,由于高速铁路发展的需要,出现了多种新桥型,如斜拉桥、钢桁拱桥、钢箱系杆拱桥,出于减震、降噪、结构受力和耐久性的需要,钢桥桥面系也开始采用混凝土面板、正交异性板方案。
其中,正交异性板钢桥面具有整体性能好、结构高度低、自重轻、承载能力大、施工周期短、行车舒适性能好等优点,半个多世纪以来渐渐地被广泛地应用于日本、欧洲各国及美国等国家中大跨度及超大跨度钢结构桥梁的建设。
6.2正交异性板的受力问题正交异性板越来越多地应用于我国高速铁路桥梁上,一系列的问题也渐渐涌现出来。
正交异性板纵梁的设置及其与横梁的连接构造细节目前业界有较大的争议。
部分设计人员认为轨下设置纵梁对桥面整体受力有帮助。
部分专家认为纵梁宜小不宜大,甚至可不设纵梁,以免纵、横梁交界处横梁腹板产生应力集中,引起疲劳开裂。
国内为许多科研机构和学者都对正交性板的受力特点、计算方法、结构形式等做了许多的研究,但绝大多都集中在公路桥梁上了。
高速铁路桥梁不管是行驶速度、列车荷载,还是对桥梁桥面的冲击力等均远远超过了公路桥梁。
因此,对于正交异性板的各种性能,高速铁路桥梁有了更多更高的要求。
尽管今年来已建和在建或正在设计中的正交异性板整体桥面的铁路桥梁较多,但总体来说,还缺少系统的研究,缺少时间的考研,桥面系的结构体系总类较多,构造细节差异较大,目前尚无标准。
七、结语钢桁梁桥结合了钢材和桁架结构的优点,广泛应用于大中跨桥梁及超大跨桥梁中。
且在钢桁梁桥架设过程中, 越来越多的架设方法可供人们选择。
通过查阅参考国内外有关文献, 对钢桁梁架设施工方法及其发展情况做以总结, 可以预见, 现代钢桁梁桥的施工, 在传统施工方法的基础上, 力求新工艺和新技术, 不断进行优化改进, 使得钢桁梁桥的架设施工方法不断进步发展。
并且,整体节点和正交异性板整体桥面的应用,提高了钢桁梁桥整体性、承载能力,减轻了桥梁自重。
然而整体节点和正交异性板的研究正处于发展阶段,对于它们的受力特点、计算方法等尚无统一标准。