兰州地下综合管廊基坑监测方案(修改分解
- 格式:doc
- 大小:147.24 KB
- 文档页数:17
地下综合管廊监控工程方案一、项目背景地下综合管廊是为了满足城市基础设施建设和城市管理需要而建设的地下建筑。
它是由生活供水管网、消防供水管网、城市燃气管网、城市电力供应管网、城市通信网络等基础设施技术设施组成,是城市在建设中和运营管理中一项非常重要的基础设施。
地下综合管廊不仅可以有效地整合城市基础设施,降低建设成本,减少占地面积,而且可以减少各种地面工程对城市交通和环境的影响。
然而,地下综合管廊建设和运营管理中还存在着一系列问题,比如:隧道内部温度和湿度监测、火灾监测和报警、污水管网监测等。
在这些问题中,管廊监控系统是一项非常重要的内容。
地下综合管廊监控工程是一项非常大的工程,它需要对地下综合管廊的各个方面进行全方位的监控,以保障地下综合管廊的安全和稳定运行。
二、项目目标地下综合管廊监控工程旨在实现以下目标:1. 实现地下综合管廊的实时监测和远程控制,提高管廊的安全性和可靠性;2. 构建符合地下综合管廊工程要求的监控系统,保障管廊建设和运营管理的需要;3. 提高地下综合管廊的管理效率,减少人工监测成本;4. 加强地下综合管廊的应急管理能力,及时处理各种突发事件。
三、技术方案1. 监控系统架构地下综合管廊监控系统采用分布式架构,由监控中心、控制层和数据采集层组成。
监控中心用于实时监测地下综合管廊的运行状态,控制层用于远程控制地下综合管廊的设备,数据采集层用于采集地下综合管廊的各种数据。
监控系统还包括通信网络、数据库和服务器等设备。
2. 监控系统功能(1)实时监测和数据采集:监控系统可以对地下综合管廊的各种数据进行实时监测和采集,包括温度、湿度、烟雾浓度、氧气浓度、水压、水位、电流等。
(2)故障诊断和报警:监控系统可以对地下综合管廊的设备进行故障诊断,及时发出报警信息,进行故障处理。
(3)远程控制和运行管理:监控系统可以对地下综合管廊的设备进行远程控制,实现设备的开关和调整,对地下综合管廊的运行进行管理。
城市综合管廊工程技术规范之检测与监测措施城市综合管廊工程是指在城市地下进行综合管线、设备及相关设施的建设和运营管理的工程项目,它起到了连接城市各个重要功能区域的作用。
然而,由于城市地下空间狭小且复杂,工程施工及后期管理过程中存在一定的风险和难度。
为了确保城市综合管廊工程的质量和安全,一套完善的检测与监测措施是必不可少的。
一、地质勘察与地下管线调查在进行城市综合管廊工程之前,需要进行详尽的地质勘察,了解地下的土质、地层结构、地下水位等信息。
同时,需要对已有的地下管线进行调查,包括位置、类型、规格、材质等,以便在工程施工过程中避免对其造成损坏。
二、基本监测要求城市综合管廊工程的施工和运营过程中,需要进行基本的监测工作。
例如,安装沉降仪、测斜仪等仪器设备,对工程区域的地表沉降、变形情况进行实时监测;利用激光测量技术对地下管线进行变形监测,及时发现并处理管线变形问题。
三、环境监测城市综合管廊工程对周围环境的影响是不可避免的,因此需要进行环境监测。
例如,在施工过程中,要对噪声、震动等环境指标进行监测,确保施工活动不会对周边居民及建筑物造成过大的影响。
同时,在工程完成后,还需要对周围环境进行长期监测,及时发现并解决潜在的环境问题。
四、安全监测城市综合管廊工程的安全性是至关重要的。
在施工过程中,要进行地下空间的安全监测,避免因施工活动导致地层破坏、塌陷等问题。
同时,在工程使用期间,要对关键节点进行安全监测,确保管廊工程的正常运行。
五、设备监测城市综合管廊工程中存在许多设备,例如供水设备、通风设备等,对这些设备的运行状态进行监测是必要的。
只有及时发现并解决设备故障,才能保证城市综合管廊工程的正常运行,并提供良好的服务。
六、数据监测与分析城市综合管廊工程的检测与监测工作产生的数据是庞大而重要的。
需要建立完善的数据管理系统,对数据进行存储、分析和利用。
通过数据的监测和分析,可以及时发现工程存在的问题,为工程质量的提升和安全的运营提供支持。
基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。
为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。
本文将就基坑监测方案进行详细介绍。
二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。
监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。
2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。
3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。
4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。
三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。
本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。
(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。
(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。
(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。
2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。
(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。
四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。
管廊工程施工监测方案一、前言管廊工程是一项涉及土木工程与交通工程的重要项目,其施工过程及施工质量的监测对工程的安全、质量和进度具有重要意义。
因此,编制一份科学、合理的管廊工程施工监测方案具有至关重要的作用。
该方案确保监测数据准确、及时,为工程施工提供科学、精准的监测数据支撑,提升工程施工的质量和安全管理水平。
二、施工监测主要内容1. 监测目标:监测主要包括管廊工程施工期间的地表位移、管道变形、沉降以及检验施工工艺的质量等内容。
2. 监测范围:监测范围包括工程建设区域及周边区域,需确定监测点位和监测网格。
3. 监测方法:监测方法主要包括全站仪监测、GPS监测、地下管道检测等。
4. 监测周期:监测周期需根据施工进度、工况变化和地质条件确定,对特定监测点可实时监测。
5. 监测标准:监测标准应符合国家相关标准,对监测数据进行定量分析,并与预定标准进行对比判断。
三、监测方法和技术1. 全站仪监测:全站仪是施工监测中常用的一种高精度测量仪器,主要用于地表变形、沉降等监测。
全站仪监测的点位需布设在地面附近,通过对比前后坐标测量数据的差异来判断地表变形的情况。
2. GPS监测:GPS监测主要用于对广范围的地表沉降、位移等监测,通过GPS测量系统来获得地表运动的准确数据,对工程区域的变形情况进行快速监测。
3. 地下管道检测:地下管道检测主要用于对地下管道在施工过程中的变形、破坏情况进行监测。
采用地下雷达探测、非接触式管道测量等技术,对地下管道的运行状态进行实时监测。
四、监测方案具体实施步骤1. 制定监测计划:确定监测目标、监测范围、监测方法和监测周期等,并编制监测实施计划。
2. 确定监测点位:根据管廊工程的特点,确定监测点位布设,并制定监测点位图。
3. 布设监测设备:按照监测点位图,布设全站仪、GPS、地下管道检测设备等监测设备。
4. 监测数据采集:定期对监测点位进行数据采集,并进行数据预处理和分析。
5. 数据处理和分析:对监测数据进行处理,生成监测报告,并根据监测数据的变化情况,采取相应的对策。
地下综合管廊基坑监测方案一、项目背景和目的:地下综合管廊工程是现代城市建设的重要组成部分,保障城市各项基础设施的正常运行和发展。
然而,在地下综合管廊的施工过程中,基坑的稳定与安全性是一项重要的监测任务。
本方案旨在制定地下综合管廊基坑的监测方案,确保施工过程的安全性和监测数据的准确性。
二、监测目标:1.监测基坑的沉降情况,及时发现和处理地面沉降引起的安全隐患;2.监测地下水位的变化,确保基坑施工过程中的排水能力和稳定性;3.监测基坑周边建筑物和管道的变形情况,防止施工引起的损坏和事故;4.监测基坑施工过程中的土体位移情况,及时采取相关措施。
三、监测方案1.预设监测点:根据基坑的尺寸和地质环境,在基坑周边预设一定数量的监测点,包括地表沉降监测点、基坑内沉降监测点、地下水位监测点、建筑物内部变形监测点和管道变形监测点。
2.监测设备:选择合适的监测设备,包括全站仪、水位计、倾斜计、挠度计、应变计等,并确保设备的准确性和可靠性。
3.监测频率:根据基坑施工的不同阶段和施工地质环境的变化,制定不同的监测频率。
通常情况下,施工前需进行基础监测,施工过程中进行定期监测,施工后进行收尾监测。
4.数据处理与分析:监测数据需要及时传输到监测中心进行处理和分析,以评估基坑施工的安全性和稳定性。
同时,也需要比对历史数据进行对比分析,并及时反馈监测数据给相关人员。
四、监测方案的实施:1.制定监测计划:在施工前,制定详细的监测计划,包括监测点设置、监测设备选型和布置、监测频率等。
2.安装监测设备:根据监测计划的要求,安装监测设备,并确保设备的准确性和可靠性。
3.监测数据采集:按照监测频率要求,定期采集监测点的数据,并确保数据的准确性和完整性。
4.数据处理和分析:及时传输监测数据到监测中心进行处理和分析,对数据进行比对和对比分析。
5.监测报告和反馈:根据数据处理和分析结果,编制监测报告,并及时反馈给相关的施工人员和监理单位,确保施工安全。
基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。
在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。
本文将针对基坑工程的监测检测方案进行详细的介绍。
二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。
三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。
可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。
2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。
可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。
3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。
可以采用应变计、位移计等仪器进行实时监测。
4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。
可以通过长期监测和数据分析,掌握地下水位的变化规律。
5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。
可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。
四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。
这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。
2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。
可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。
3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。
可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。
基坑监测方案为了确保基坑施工过程的安全与有效进行,我们需要制定一套基坑监测方案。
本方案将综合考虑基坑施工的特点和需求,采用合适的监测技术与手段,以确保工程的安全性和顺利进行。
一、监测目标本次基坑监测的主要目标是:1. 确保基坑开挖过程中的地面稳定性,避免因挖土引起的地面沉降、塌陷等问题;2. 监测周边建筑物、结构物在基坑施工过程中的变形情况,避免对其产生不可逆的影响;3. 提前掌握基坑周边地下水位的变动情况,及时采取防水措施,避免水压过大造成基坑失稳;4. 监测基坑支护体系的变形情况,确保其稳定性;5. 及时发现和预防基坑施工过程中可能出现的安全隐患,保障工人的人身安全。
二、监测方法与手段1. 地面沉降监测:采用精密水准仪和全站仪对监测点进行测量,并结合GNSS(全球导航卫星系统)技术,实现地面沉降的快速、准确测量。
监测点布设应遵循等距离、等密度的原则,包括基坑四周、周边建筑物、支护体系中。
2. 变形监测:通过安装测斜孔或倾斜计等仪器,监测周边建筑物、结构物及支护体系的变形情况。
定期测量并记录数据,及时发现异常情况,并根据情况采取相应的处理和补强措施。
3. 地下水位监测:安装水位计或压力传感器等仪器,对基坑周边地下水位的变动进行自动化实时监测。
监测数据通过数据接收器传输到监测中心并进行分析,一旦超出设定的安全范围,及时采取相应的排水和防水措施。
4. 基坑支护体系监测:利用应变计和位移计等仪器,对基坑支护体系的变形情况进行监测。
监测包括支撑结构的变形、地下连续墙的变形等。
通过定期测量和数据分析,以确保支护系统的稳定性和安全性。
5. 安全隐患监测:通过定期巡视和现场检查,及时发现和处理基坑施工过程中可能存在的安全隐患。
对现场工人的安全进行严格管理,确保施工过程的安全性。
三、监测频率与报告1. 监测频率:对于地面沉降、变形和地下水位的监测,建议在基坑开挖过程中每周进行一次监测,以及在特定施工环节进行重点监测。
基坑监测方案一、工程概述本工程位于具体地点,基坑占地面积约为面积数值平方米,开挖深度为深度数值米。
周边环境较为复杂,临近周边建筑物或道路等。
为确保基坑施工过程中的安全稳定,保障周边环境不受影响,特制定本基坑监测方案。
二、监测目的1、及时掌握基坑围护结构和周边环境的变形情况,为施工提供及时、可靠的信息,以便调整施工参数,优化施工方案。
2、预测基坑及周边环境的变形趋势,提前采取防范措施,避免事故的发生。
3、对基坑施工过程进行监控,验证设计方案和施工工艺的合理性,为后续类似工程提供经验参考。
三、监测内容1、围护结构水平位移监测在围护结构顶部设置水平位移监测点,采用全站仪或经纬仪进行观测,监测点间距一般为间距数值米。
2、围护结构竖向位移监测在围护结构顶部设置竖向位移监测点,与水平位移监测点共用,采用水准仪进行观测。
3、深层水平位移监测在围护结构内埋设测斜管,深度达到基坑底部以下深度数值米,采用测斜仪定期测量围护结构的深层水平位移。
4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化情况。
5、地下水位监测在基坑周边设置地下水位观测井,采用水位计测量地下水位的变化。
6、周边建筑物沉降和倾斜监测在周边建筑物的角点和重要部位设置沉降和倾斜监测点,采用水准仪和全站仪进行观测。
7、周边道路和管线沉降监测在周边道路和管线上设置沉降监测点,采用水准仪进行观测。
四、监测点布置1、水平位移和竖向位移监测点沿基坑周边每隔间距数值米布置一个监测点,在阳角、阴角等变形较大的部位适当加密。
2、深层水平位移监测点在基坑的长边和短边中部各布置一个测斜管,在地质条件较差或变形较大的部位增设测斜管。
3、支撑轴力监测点选择受力较大的支撑构件进行监测,每个监测断面布置数量个轴力计。
4、地下水位监测点在基坑周边每隔间距数值米布置一个地下水位观测井。
5、周边建筑物沉降和倾斜监测点在建筑物的四角、长边中点和每隔间距数值米的位置设置沉降监测点,在建筑物的两个对角方向设置倾斜监测点。
地下综合管廊监测方案本文档旨在介绍地下综合管廊监测方案的目的和重要性。
地下综合管廊是现代城市基础设施的重要组成部分,它承载了各种公用设施和管线网络,如电力、通信、给水排水等。
为确保地下综合管廊的正常运行和安全性,监测方案的制定和实施至关重要。
地下综合管廊监测方案的目的是:实时监测地下综合管廊结构和设备的运行状况,及时发现潜在问题和故障;提供数据支持和参考,以便进行管廊维护、维修和改造;预防事故发生,保障地下综合管廊的可靠性和安全性。
地下综合管廊监测方案的重要性体现在以下几个方面:提前发现和解决潜在问题:通过监测各项指标,可以及时发现管廊结构的变形、沉降、渗漏等问题,从而采取相应措施进行维修和改善,避免事故的发生。
保证公共设施的正常运行:地下综合管廊承载了诸多重要的公用设施,如电力、通信、供水等,监测方案的实施可以确保这些设施的正常运行和供应,维护城市基础设施的稳定性和连续性。
提高应急响应能力:监测方案中的报警系统和自动监测设备可以快速响应并报警,当发生突发情况时,能够及时采取措施,降低事故影响和损失。
提供科学依据和参考数据:监测方案中的数据采集和分析可以为管廊维护和改造提供科学依据,通过对数据的分析,可以制定合理的计划和策略,提高工作效率和质量。
综上所述,地下综合管廊监测方案的制定和实施对于保障城市基础设施的正常运行和安全性具有重要意义,有助于提升城市的可持续发展和居民的生活质量。
本文档旨在详细说明地下综合管廊监测的目标和所遵循的原则。
监测目标目标1:确保地下综合管廊的安全运行和使用。
目标2:及时发现并排除地下综合管廊存在的潜在安全隐患和故障。
目标3:提供准确的数据和信息,支持地下综合管廊的规划、设计和维护工作。
监测原则原则1:全面性。
监测工作应涵盖地下综合管廊所有关键部位和关键参数,确保监测结果准确全面。
原则2:实时性。
监测系统应具备实时数据采集和传输功能,以便及时发现管廊的异常情况并做出相应的应对措施。
综合管廊安全监测方案引言综合管廊是一个用于集中布置各类管线和设施的地下建筑物,为城市基础设施的运行提供了便利。
然而,随着综合管廊的建设规模扩大和使用频率增加,对其安全监测的需求也越来越迫切。
本文将针对综合管廊的安全监测需求,提出一种综合管廊安全监测方案,以保障综合管廊的安全运行。
监测内容综合管廊的安全监测内容主要包括以下几个方面:结构监测综合管廊的结构监测是指对综合管廊的建筑结构进行连续监测和评估,以确保其结构的稳定性和安全性。
结构监测包括对综合管廊的地基、墙体、顶板等部位进行监测,主要监测指标包括裂缝、变形、位移等。
环境监测综合管廊的环境监测是指对综合管廊周围环境的监测,以及与管廊运行相关的环境因素的监测。
环境监测主要包括大气污染、温度、湿度、噪音等指标的监测,以保证综合管廊环境的安全性。
设备设施监测综合管廊内的各种设备设施是综合管廊运行的关键,对其进行定期监测可以及早发现故障,并采取相应的修复措施。
设备设施监测主要包括电力设备、通信设备、供水设备等的运行状态监测。
安全巡检安全巡检是保证综合管廊安全运行的重要环节,通过定期巡检,及时发现管廊内存在的安全隐患,并采取相应的预防措施。
安全巡检主要包括巡视综合管廊的内外部环境、巡查设备设施等。
监测方法为了实现综合管廊的安全监测,需要采取一系列的监测方法。
根据监测内容的不同,可以采用以下几种监测方法:结构监测方法•传感器监测:通过在综合管廊的重点部位安装传感器,实时监测结构的裂缝、变形等指标。
•摄像监测:通过安装摄像头监测综合管廊的墙体、顶板等结构的变化情况。
•激光扫描监测:利用激光扫描仪对综合管廊的结构进行三维扫描,获取结构的几何形状和变形情况。
环境监测方法•传感器监测:在综合管廊周围布置大气污染、温度、湿度、噪音等传感器,实时监测环境指标的变化情况。
•无人机监测:利用无人机飞行在综合管廊周围,获取周围环境的图像和数据,在地面进行进一步分析和评估。
设备设施监测方法•数据采集仪监测:通过安装数据采集仪,实时采集设备设施的运行状态数据,包括电力设备的电流、通信设备的信号强度等。
兰州新区地下综合管廊一期工程文曲西路基坑监测方案中国十九冶集团有限公司2016年8月7日目录第一章工程概况 (3)1.1 工程概况 (3)1.2 工程名称及地点 (3)第二章主要技术要求 (4)2.1 依据的有关技术标准 (4)2.1 主要技术要求 (4)第三章实施技术方案 (8)3.1 基坑沉降观测 (8)3.2 基坑水平位移观测 (9)第四章提交的成果内容 (12)第五章技术保证措施 (13)5.1 仪器设备 (13)5.2 仪器、人员配置技术措施 (13)5.3安全文明措施 (13)5.4 现场资料记录技术措施 (14)5.5 数据整理技术措施 (15)5.6 质量保证措施 (15)5.7 应急措施 (16)5.8 监测注意事项 (16)第一章工程概况1.1 工程概况文曲西路地下综合管廊南起创智中路,北至北快速路,总长2484米,管廊类型:干支线混合型管廊,舱室数:单舱,入廊管线:电力、通信、给水。
文曲西路地下综合管廊线路沿道路西侧绿化带布置。
管廊截面尺寸(m)3.3*3.2,基地埋深-5.7m,管廊基坑开挖深度约6.3m(相对地面高度),与管线和其道路管廊交叉口位置深度为6.391m~9.937m(相对地面高度)。
管廊交叉口共计5个,过街支廊2个。
本图坐标系统采用1996中川城建坐标系统,高程系统为1985年国家高程系统。
1.2 工程名称及地点1、工程名称:兰州新区地下综合管廊一期工程25条管廊项目文曲西路项目2、建设单位:兰州新区铁路投资建设有限责任公司3、设计单位:中冶赛迪工程技术股份有限公司4、工程总承包:中冶赛迪工程技术股份有限公司5、监理单位:上海建科工程咨询有限公司6、施工总承包:中国十九冶集团有限公司7、工程地点:甘肃省兰州市永登县8、工程规模:文曲西路地下综合管廊南起创智中路,北至北快速路,总长2484米第二章主要技术要求2.1 依据的有关技术标准1、《工程测量规范》(GB50026-2007)2、《建筑变形测量规范》(JGJ8-2007、J719-2007)3、《国家一、二等水准测量规范》(GB12897-2006)4、《建筑边坡工程技术规范》(GB50330-2013)5、《建筑基坑支护技术规程》(JGJ120-2012)6、《建筑基坑工程监测技术规范》GB50497-20097、《建筑地基基础设计规范》GB50007-20118、《建筑地基处理技术规范》JGJ79-20129、《建筑地基基础设计规范》GB50007-201110、业主、设计提供相关资料、现行相关规定、规范及规程2.1 主要技术要求1、基坑沉降观测按《建筑变形测量规范》JGJ8-2007、《国家一、二等水准测量规范》(GB12897-2006)及《工程测量规范》(GB50026-2007)第一等级的要求,采用精密水准测量的方法进行。
2、基坑变形监测按《建筑边坡工程技术规范》(GB50330-2013)、《建筑基坑支护技术规程》(JGJ120-2012)、《建筑变形观测规范》(JGJ8-2007、J719-2007)及《工程测量规范》(GB50026-2007)的有关规定和相应第一等级的要求,采用极坐标的方法进行监测,控制按平面一级导线,基坑变形监测按二级导线精度监测。
3、监测项目:基坑顶沉降和位移、基坑周边地面及基坑西侧山体位移等。
4、监测频率:各项目在基坑开挖前测初值;在开挖急剧卸载阶段,每天进行测量。
当变形超过有关标准或场地条件变化较大时,应加密观测;当大雨、暴雨或基坑边载条件改变时应及时监测;当有危险事故征兆时,应连续观测。
5、监测网点布设(1)基准点水准、平面基点是整个观测工作的基准,为保证观测值的高可靠性,根据有关规范,在管廊施工区附近(变形范围外)共布设供沉降、平面位移观测使用的六个控制基点,同时也是水准基准点。
编号分别为BM1、BM2、BM3、BM4、BM5、BM6为坚实稳固深埋水准点,均具有很好的稳定性。
(2)工作基点根据现场情况遮挡物情况设立工作基点,以便在观测过程中实现观测点的覆盖。
在一周期位移监测过程中应保持稳定,可选在比较稳定且方便使用的位置。
设立在工程施工区域的水平位移监测工作基点采用观测墩,水平位移工作基点亦作为沉降观测工作基点。
(3)变形观测点1)水平位移观测点根据《工程测量规范》GB50026-2007、《建筑变形测量规范》(JGJ8-2007、J719-2007)标准进行埋点。
基坑监测点布设原则:监测点间距按每20m设置一组,双侧布点,设置在距离边坡外侧1m 处。
在支护结构顶部钻孔,孔深100mm,在孔内埋设Φ20钢筋,并浇筑混凝土观测墩,测点端头加工成半球形,并刻十字丝(或加铜芯),在墩的四周增加维护盖板,不使用点时将盖板扣上,以保护测点不受破坏。
2)沉降观测点根据《工程测量规范》GB50026-2007和《建筑变形测量规程》(JGJ8-2007、J719-2007)标准进行埋点。
沉降观测点采取和水平位移监测点合二为一的方式,将点位做的既能进行水平位移观测,又能用于沉降观测。
6、观测周期安排及工作量统计(1)基坑施工前应测得稳定的初始值,且不少于两次。
(2)基坑沉降、水平位移监测:基坑水平及垂直位移观测在施工期间根据施工进度原则上每天观测1次,遇有特殊情况,如开挖速度较快、降雨量较大等应增加观测次数。
在基坑非开挖期间为2-5天观测一次.7、稳定标准(1)基坑沉降根据《建筑变形测量规程》JGJ8-2007规范要求:“沉降速度小于0.01~~0.04mm/天,可认为已进入稳定阶段,具体取值根据地基土的压缩性确定,”本工程拟取“0.02mm/天”为稳定停测标准。
(2)基坑水平位移根据《建筑变形测量规程》JGJ8-2007规范要求:“位移速度小于0.01~~0.04mm/天,可认为已进入稳定阶段,具体取值根据地基土的压缩性确定,”本工程拟取“0.02mm/天”为稳定停测标准。
8、本工程基坑变形观测等级采用:二级,垂直位移监测变形观测点高程中误差为±0.5mm,相邻变形观测点的高差中误差为±0.5mm,水平位移监测变形观测点的点位中误差为±3.0mm。
9、每次观测时需详细记录天气情况、施工条件变化情况(如停工、降水、雷雨等)等情况,以作为资料整理、分析的一种依据。
10、首次观测前,由工程负责人编制“实测纲要”,并经项目技术负责人审定,然后向作业人员进行技术交底,做到全体作业人员了解各项内容及要求,其后整个工程严格按照规范要求进行监控和作业。
另外在首次初始观测时,应适当增加观测量以提高初始值的可靠性。
简要分析说明。
如有异常,及时通知有关方面,以便及时采取相应措施。
工程结束后,及时提交总的工程技术报告书。
第三章实施技术方案3.1 基坑沉降观测整个观测工作将严格按照前述有关技术标准中“沉降观测”的二等水准要求执行观测。
水准测量采用精密电子水准仪配合钢尺进行观测。
1、水准基点的高程测量和限差(1)水准环线闭合差&h≤±4√L(L为两水准点间之线路长以公里为单位)。
(2)为确保各水准基点的高程精度,规定各测站的视线长度小于50米视线高度0.55≦h≤2.8。
(3)为了确保沉降量有较高的置信度,对已设水准基点的稳定性应定期检测,拟每两个月进行一次。
检测时若相邻水准基点间的高差较差小于&h≤±6√R(R为检测测段两点间距离,单位为KM,小于1KM时以1KM计算),则认为水准基点是稳定的,否则需再次复查,若复查结果证明水准基点确有变动,这时需用统计检验的方法来判定其变动情况及原因,在查明原因后处理之。
2、沉降观测的观测措施和限差以沉降量观测中误差mδ≤±0.5mm来推算沉降观测点的水准测量的各项限差,具体如下:(1)水准线路闭合差定为:mδ≤±0.3mm√n毫米(n为测站数),高程中误差mh≤±0.15mm。
(2)各测站视线长度小于20米,前后视距差小于1米,前后视距累积差小于3米。
(3)为确保精度,要求水准尺读数区间应该在0.50米到2.80米之间,超出此范围不得读数,规定要求采用奇数测站方法进行观测。
奇数站观测顺序为:1)后视标尺;2)前视标尺;3)前视标尺;4)后视标尺。
(4)测站按如下程序观测:1)首先将仪器整平;(望远镜绕垂直轴旋转,圆气泡始终位于指标中央)。
2)将望远镜对准后视标尺(此时,标尺应按圆水准器整置于指标环中央),用垂直丝照准条码中央,精确调焦至条码影像清晰,按测量键。
3)显示读数后,旋转望远镜照准前视标尺条码中央,精确调焦至条码影像清晰,按测量键。
4)显示读数后,重新照准前视标尺,按测量键。
5)显示读数后,旋转望远镜照准后视标尺条码中央,精确调焦至条码影像清晰,按测量键,显示测站成果,测站检核合格后迁站。
3、观测值的平差计算和成果整理分析对观测记录进行全部复核确系无误,并检核有关限差均、满足要求后,用计算机专业平差软件进行数据处理以计算各观测点之高程和精度。
将各观测点之高程汇总在已编定的统计表格中,并据此计算分次核累计沉降量,同时注明日期及荷载情况,由此形成临时监测资料,正常情况下,在下次观测时将资料送交有关方面。
若发现有明显的异常沉降,则在两日内告之委托单位,以便查明原因并及时采取补救措施。
3.2 基坑水平位移观测1、根据测区情况采用独立坐标系,运用极坐标法进行基坑位移观测。
2、变形监测网应同时顾忌精度、可靠性、灵敏度及费用准则的优化设计。
3、观测要求(各观测周期)。
(1)在较短的时间内完成;(2)采用相同的观测路线和观测方法;(3)使用同一仪器和设备;(4)观测人员相对固定;(5)记录相关的环境因素,包括荷载、温度、降水、水位等;(6)采用统一基准处理数据。
4、观测误差:5、预警要求本工程为局部为一级基坑,大部分是二级基坑,根据建筑基坑工程检测技术规范,基坑及支护结构监测预警值:(1)水平位移累计值50-60mm,相对基坑深度控制值0.6%-0.8%,变化速率10-15mm/d。
(2)竖向位移累计值50-60mm,相对基坑深度控制值0.6%-0.8%,变化速率5-8mm/d。
每次观测结束后,应及时处理观测数据,当数据处理结果出现下列情况之一时,必须即刻采取相应措施:(1)变形量达到预警值或接近允许值;(2)变形量出现异常变化;(3)建筑物裂缝或地表的裂缝快速扩大。
6、变形分析要求(1)观测成果的可靠性分析;(2)变形体的累积变形量和两相邻观测周期的相对变形量分析;(3)相关影响因素的作用分析;(4)回归分析;(5)有限元分析。
第四章提交的成果内容1、观测成果分为监测中间资料和监测报告。
当次监测资料在下次监测时提交,向监理、总包报送,工程结束时提交完整的监测报告。