2016-2017年上海市新竹园中学八上期中数学
- 格式:docx
- 大小:225.63 KB
- 文档页数:5
沪教版(上海)八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案)1.下列二次根式中,是最简二次根式的是( )A B C D2 ).A B C D 3.化简√−xy 2(y <0)的结果是( )A .y √xB .y √−xC .﹣y √xD .﹣y √−x 4.下列方程一定是一元二次方程的是( )A .xy+x=yB .x 2=﹣1C .ax 2+bx=0D .(x ﹣5)x=x 2﹣2x ﹣15.下列方程中,无实数解的是( )A .14x 2﹣3x+9=0 B .3x 2﹣5x ﹣2=0C .y 2﹣2y+9=0D (1﹣y 2)=y 6.反比例函数k y x=的图象与函数2y x =的图象没有交点,若点()12,y -、()21,y -、()31,y 在这个反比例函数k y x=的图象上,则下列结论中正确的是( ) A ..123y y y >>B .213 y y y >>C .312 y y y >>D .321 y y y >>二、填空题7.写出√a −3的一个有理化因式_____.8=_____.9=______.103-<的解集是______.11.方程22x x =-的根是_____.12.方程x 2﹣5x=4的根是_____.13.在实数范围内因式分解:2221x x --=______.14.2016年11月11日,某网站销售额1207亿人民币. 2018年,销售额增长到2135亿人民币,设这两年销售额的平均增长率为x ,则根据题意可列出方程______.15.函数y=√2x+1的定义域是_____. 16.已知反比例函数1m y x -=的图象如图所示,则实数m 的取值范围是______.17.已知f (x )=31x x ++,如果f (a ),那么a=_____. 18.正比例函数的图像和反比例函数的图像相交于A 、B 两点,点A 在第二象限,点A 的横坐标为1-,作AD x ⊥轴,垂足为D ,O 为坐标原点,1AOD S =. 若x 轴上有点C ,且4ABC S =,则C 点坐标为______.三、解答题19.20.解方程:()223212x x --=.21.已知,求x 2﹣4x ﹣4的值.22.关于x 的方程(k ﹣1)x 2+2kx+k+3=0有两个不相等的实数根,求k 的取值范围.23.如图,已知正比例函数的图象与反比例函数的图象都经过点P(2,3),点D是正比例函数图象上的一点,过点D作y轴的垂线,垂足分别Q,DQ交反比例函数的图象于点A,过点A作x轴的垂线,垂足为B,AB交正比例函数的图于点E.(1)求正比例函数解析式、反比例函数解析式.(2)当点D的纵坐标为9时,求:点E的坐标.24.如图所示,已知墙的长度是20米,利用墙的一边,用篱笆围成一个面积为96平方米的长方形ABCD,中间用篱笆分隔出两个小长方形,总共用去36米长的篱笆,求AB的长度?25.如图,已知直线y=12x与反比例函数y=kx(k>0)的图象交于A,B两点,且点A的横坐标为4. (1)求k的值.(2)若反比例函数y=kx的图象上一点C的纵坐标为8,求△AOC的面积.(3)若过原点O的另一条直线l交反比例函数y=kx(k>0)的图象于P,Q两点(点P在第一象限),以A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.参考答案1.A【解析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,判断各选项即可得出答案.【详解】A、B、.C、3,故本选项错误.D ,故本选项错误.故选A.【点睛】此题考查了最简二次根式的定义及特点,属于基础题,解答本题的关键是掌握最简二次根式满足的两个条件,注意两个条件一定要同时满足才是最简二次根式.2.C【分析】根据同类二次根式的定义(几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式)将各选项进行化简判断即可【详解】ABCD2a故答案为C选项【点睛】本题主要考查了同类二次根式的定义,掌握其定义是关键3.D【解析】【分析】根据二次根式的概念求出x的符号,根据二次根式的性质化简即可.【详解】由二次根式的概念可知, −xy2≥0,又y<0,∴−x≥0,∴化简√−xy2(y<0)的结果是−y√−x,所以D选项是正确的.【点睛】本题考查的是二次根式的性质与化简,掌握二次根式的性质是解题的关键,注意二次根式的被开方数是非负数.4.B【解析】【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】A、该方程中含有两个未知数,它属于二元二次方程,故本选项错误;B、该方程符合一元二次方程的定义,故本选项正确;C、当a=0时,该方程不是一元二次方程,故本选项错误;D、由已知方程得到:3x-1=0,该方程属于一元一次方程,故本选项错误;所以B选项是正确的.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.5.C【分析】判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.【详解】A. a= 14,b=−3,c=9,∵△=9−9=0,∴方程有两个相等的实数根,本选项不合题意;B. a=3,b=−5,c=−2,∵△=25+24=49>0,∴方程有两个相等的实数根,本选项不合题意;C. a =1,b =−2,c =9,∵△=4−36=−32<0,∴方程没有实数根,本选项符合题意;D. a b =1,c ,∵△=1+24=25>0,∴方程有两个不相等的实数根,本选项不合题意.故选C.【点睛】此题考查一元二次方程根的情况与判别式∆的关系:(1) ∆>0⇔方程有两个不相等的实数根;(2) ∆=0⇔方程有两个相等的实数根;(3) ∆<0⇔方程没有实数根.6.A【分析】先根据题意求得函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∵直线y =2x 经过一、三象限,反比例函数k y x =的图象与函数y =2x 的图象没有交点, ∴反比例函数k y x=的图象在二、四象限, ∵点()12,y -、()21,y -、()31,y 在这个反比例函数k y x =的图象上, ∴点()12,y -、()21,y -在第二象限,点()31,y 在第四象限,∵−2<−1,∴.12y y >>0,∴1>0,∴3y <0,∴.123y y y >>,故选:A.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.√a +3【解析】【分析】一般二次根式的有理化因式是符合平方差公式的特点的式子.据此作答.【详解】.(√a −3)(√a +3)=a -9.故答案为√a +3.【点睛】本题主要考查分母有理化的方法,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.8 【分析】.【详解】6. 【点睛】本题考查的是分母有理化,熟知分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式是解答此题的关键.9.3π-【分析】根据算术平方根的定义即可得.【详解】33ππ=-=-,故答案为:3π-.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题关键.10.x >-【分析】按照解一元一次不等式步骤移项求解即可,最后需要进行分母有理化【详解】移项得:3x <,即:x >33-=-故答案为x >-【点睛】本题主要考查了解不等式以及分母有理化,熟练掌握分母有理化的方法是关键11.10x =,22x =-.【解析】方程变形得:x 2+2x=0,即x (x+2)=0,可得x=0或x+2=0,解得:x 1=0,x 2=﹣2. 故答案是:x 1=0,x 2=﹣2.12.x 12x =【分析】先把给出的方程进行整理,找出a,b,c 的值,再代入求根公式进行计算即可.【详解】x 2﹣5x=4,∴ x 2﹣5x-4=0,1,5,4a b c ==-=-,x ∴===1x ∴=, 2x =故答案为 1x =2x =【点睛】此题考查了公式法解一元二次方程,熟练掌握求根据公式x =是本题的关键.13.2x x ⎛ ⎝⎭⎝⎭【分析】 先在实数范围内提公因式得:2122x x ⎛⎫-- ⎪⎝⎭,然后利用配方法以及平方差公式将括号里的进行因式分解变形得出答案【详解】22122122x x x x ⎛⎫--=-- ⎪⎝⎭=21111222442x x ⎛⎫-⋅+-- ⎪⎝⎭=213224x ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=22122x ⎡⎤⎛⎫⎢⎥-- ⎪⎢⎥⎝⎭⎝⎭⎣⎦=11222x x ⎛-- ⎝⎭⎝⎭=2x x ⎛ ⎝⎭⎝⎭故答案为2x x ⎛ ⎝⎭⎝⎭【点睛】本题主要考查了因式分解的基本方法,熟练掌握相关方法是关键14.()2120712135x +=【分析】2016年,某网站销售额1207亿人民币,又因为两年销售额的平均增长率为x ,所以2017年销售额为()12071x +,以此类推得出2018年的销售额的代数式,然后根据等量关系列方程即可【详解】由题意得:2017年销售额为()12071x +,则其2018年销售额为()212071x +,又因为20118年销售额为2135亿,所以:()2120712135x +=故答案为()2120712135x +=【点睛】本题主要考查了列方程,根据题意找到并列出等量关系中相对应的代数式是关键 15.x >﹣12【解析】【分析】根据被开方数大于等于零,分母不等于零列式计算即可得解.【详解】由题意得,2x+1>0,解得x>﹣12.故答案为:x>﹣12.【点睛】本题考查的是定义域,熟练掌握被开方数大于等于零,分母不等于零是解题的关键. 16.m>1【详解】试题分析:由图像可知,函数经过一、三象限,即m-1>0,所以m>1.考点:反比例函数的图像与性质点评:反比例函数的参数与图像的联系,函数若经过一、三象限,即k>0;若经过二、四象限,即k<0.17.【分析】根据函数值的概念得到关于a 的分式方程,解方程即可得到答案.【详解】由题意得31a a ++解得检验:当a+1≠0,∴是原方程的解,故答案为【点睛】本题考查的是函数,熟练掌握概念是解题的关键.18.()2,0或()2,0-【分析】利用正比例函数与反比例函数图像关于原点对称求得A 与B 的坐标,然后根据4ABC s ∆=即可求得C 的坐标【详解】设反比例函数为:()0k y k x=≠,正比例函数为:()0y ax a =≠ ∵二者图像关于原点对称∴A 与B 这两点亦关于原点对称如图通过图像关系可以得知:AD 就是A 的纵坐标y ,而AD 边的高就是A 与B 两点横坐标的距离2∴A 的坐标为(﹣1,2),B 的坐标为(1,﹣2)设C 的坐标为(m ,0)∵4ABC s ∆= ∴1122422m m ⋅+⋅= 解得m=2∴C 的坐标为(2,0)或(﹣2,0)【点睛】本题主要考查了反比例函数与正比例函数图像关于原点的对称性,掌握其对称性的特点以及合理的求出各点坐标是关键19【分析】先将二次根式化为最简,然后合并同类二次根式即可.【详解】解:原式=【点睛】本题考查的是二次根式的加减法,熟练掌握化简的方法是解题的关键.20.14x =-,22x =【分析】先去掉括号,移项合并同类项得:224160x x +-=,化简得:2280x x +-=,左边进行因式分解再求解即可【详解】整理得:224160x x +-=两边同时除以2得:2280x x +-=,因式分解得:()()240x x -+=所以2040x x -=+=或所以14x =-,22x =【点睛】本题主要考查了一元二次方程的求解,掌握求解方法是关键21.﹣5【分析】首先化简【详解】∵=2 ∴x 2﹣4x ﹣4=(x ﹣2)2﹣8=3﹣8=﹣5.【点睛】本题考查的是二次根式的化简求值,熟练掌握完全平方公式因式分解是解题的关键.22.k<32且k≠1 【分析】由“关于x 的方程(k-1)x 2+2kx+k+3=0有两个不相等的实数根”,可知一元二次方程的二次项系数不为0,且判别式△>0,从而可得出结论.【详解】∵关于x 的方程(k ﹣1)x 2+2kx+k+3=0有两个不相等的实数根,∴有2k 10(2k)4(k 1)(k 3)0-≠⎧⎨∆=--+>⎩,即k 1128k 0≠⎧⎨->⎩, 解得:k 32<且k≠1. 答:k 的取值范围为k<32且k≠1. 【点睛】本题考查的是根的判别式,熟练掌握有两个不等根的要求是解题的关键.23.(1)y=6x ;(2)E (23,1) 【分析】(1)根据待定系数法求得即可;(2)把y=9代入反比例函数的解析式即可求得A 的坐标,把A 点的横坐标代入正比例函数的解析式即可求得E 的坐标.【详解】(1)设正比例函数解析式为y=mx ,反比例函数解析式y=(m≠0,k≠0),把P (2,3)代入y=mx 得3=2m ,解得m=,∴正比例函数解析式为y=x ,把P (2,3)代入y=得,3=,解得k=6,∴反比例函数解析式为y=;(2)把y=9代入y=,得9=,解得x=,∴A (,9),把x=代入y=x,得y=×=1,∴E(23,1).【点睛】本题考查的是反比例函数与一次函数的交点问题,熟练掌握待定系数法和二者的性质是解题的关键.24.AB的长度是8米【解析】【分析】设AB为x米,然后表示出BC的长为(36-3x)米,利用矩形的面积计算方法列出方程求解即可.【详解】设AB=x米,依题意得x(36﹣3x)=96解得:x1=4,x2=8.当x1=4,36﹣3x=24>20(不合题意,舍去)当x2=8时,36﹣3x=12<20,符合题意,答:AB的长度是8米.【点睛】本题考查的是一元二次方程的应用,正确列出关系式是解题的关键.25.(1)8(2)15(3) (2,4)或(8,1)【详解】分析:(1)先根据直线的解析式求出A点的坐标,然后将A点坐标代入双曲线的解析式中即可求出k的值;(2)由(1)得出的双曲线的解析式,可求出C点的坐标,由于△AOC的面积无法直接求出,因此可通过作辅助线,通过其他图形面积的和差关系来求得.(解法不唯一);(3)由于双曲线是关于原点的中心对称图形,因此以A、B、P、Q为顶点的四边形应该是平行四边形,那么△POA的面积就应该是四边形面积的四分之一即6.可根据双曲线的解析式设出P点的坐标,然后参照(2)的三角形面积的求法表示出△POA的面积,由于△POA 的面积为6,由此可得出关于P点横坐标的方程,即可求出P点的坐标.详解:(1)∵点A横坐标为4,把x=4代入y=12x中得y=2,∴A(4,2),∵点A是直线y=12x与双曲线y=kx(k>0)的交点,∴k=4×2=8;(2)如图,∵点C在双曲线上,当y=8时,x=1,∴点C的坐标为(1,8).过点A、C分别做x轴、y轴的垂线,垂足为M、N,得矩形DMON.∵S矩形ONDM=32,S△ONC=4,S△CDA=9,S△OAM=4.∴S△AOC=S矩形ONDM-S△ONC-S△CDA-S△OAM=32-4-9-4=15;(3)∵反比例函数图象是关于原点O的中心对称图形,∴OP=OQ,OA=OB,∴四边形APBQ是平行四边形,∴S△POA=S平行四边形APBQ×14=14×24=6,设点P的横坐标为m(m>0且m≠4),得P(m,8m ),过点P、A分别做x轴的垂线,垂足为E、F,∵点P、A在双曲线上,∴S△POE=S△AOF=4,若0<m<4,如图,∵S△POE+S梯形PEFA=S△POA+S△AOF,∴S梯形PEFA=S△POA=6.∴12(2+8m)•(4-m)=6.∴m1=2,m2=-8(舍去),∴P(2,4);若m>4,如图,∵S△AOF+S梯形AFEP=S△AOP+S△POE,∴S梯形PEFA=S△POA=6.∴12(2+8m)•(m-4)=6,解得m1=8,m2=-2(舍去),∴P(8,1).∴点P的坐标是P(2,4)或P(8,1).点睛:本题考查反比例解析式的确定和性质、图形的面积求法、函数图象交点等知识及综合应用知识、解决问题的能力.难点是不规则图形的面积通常转化为规则图形的面积的和差来求解.。
八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.因式分解x2﹣9的结果是()A.(x+9)(x﹣9)B.(x+3)(x﹣3)C.(3+x)(3﹣x)D.(x﹣3)22.有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B. C.2 D.3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是()A.3个B.4个C.5个D.6个4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<55.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣710.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;2211.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= .14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= .15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于.三、解答题19.(16分)计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC25.探究题:.(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)26.在正方形ABCD中,AB=4,E为BC的中点,F在CD上,DF=3CF,连结AF、AE、EF.(1)如图1,求出△AEF的三条边的长度;(2)判断△AEF的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分) 1.因式分解x 2﹣9的结果是( )A .(x+9)(x ﹣9)B .(x+3)(x ﹣3)C .(3+x )(3﹣x )D .(x ﹣3)2 【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案. 【解答】解:x 2﹣9=(x+3)(x ﹣3). 故选:B .【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.2.有一组数据如下:3,5,4,6,7,那么这组数据的方差是( )A .10B .C .2D .【考点】方差.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【解答】解: =(3+5+4+6=7)=5,S 2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2, 故选:C .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是( )A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣π,,2.010101…(相邻两个1之间0的个数逐个加1)是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<5【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得1<2,3+1<3+<2+3,故选:D.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.5.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的性质求解即可.【解答】解:A、﹣4是16的平方根,故A正确;B、=4,4的算术平方根是2,故B错误;C、0的算术平方根是0,故C错误;D、2的平方根是±.故选:A.【点评】本题主要考查的是算术平方根和平方根,掌握相关定义和性质是解题的关键.6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: =;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故选C.【点评】此题主要考查的是勾股定理,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=【考点】勾股定理的逆定理.【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【解答】解:A、因为32+32=(3)2,所以能组成直角三角形;B、因为72+242=252,所以能组成直角三角形;C、因为82+152=172,所以能组成直角三角形;D、因为()2+()2≠()2,所以不能组成直角三角形;故选D.【点评】本题考查了直角三角形的判定,运用勾股定理的逆定理判定是解答此题的关键.8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,然后根据中点公式列式求解即可.【解答】解:设点C表示的数是x,∵A,B两点表示的数分别为﹣1和,C,B两点关于点A对称,∴=﹣1,解得x=﹣2﹣.故选:A.【点评】本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣7【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵ +(y+3)2=0,∴=0,(y+3)2=0,∴x+y﹣1=0,y+3=0,解得x=4,y=﹣3,故x+y=4+(﹣3)=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;22【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为,最中间的数是第15、16个数的平均数,则中位数是: =22;∵22出现了8次,出现的次数最多,∴众数在22.故选D.【点评】此题考查了中位数和众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.11.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题a2﹣2ab+b2是完全平方,再可利用平方差公式分解.【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故选B.【点评】本题考查了分组分解法分解因式.注意难点是采用两两分组还是三一分组.12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】因式分解的应用.【分析】将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:∵a4﹣b4=a2c2﹣b2c2,∴a4﹣b4﹣a2c2+b2c2=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)[(a2+b2)﹣c2]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是等腰三角形或直角三角形.故选D.【点评】此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= ﹣5 .【考点】因式分解-十字相乘法等.【分析】由题意二次三项式x2+3x﹣10分解因式的结果为(x﹣2)(x﹣b),将整式(x﹣b)(x﹣2)相乘,然后根据系数相等求出b.【解答】解:∵关于x的二次三项式x2+3x﹣10分解因式的结果为(x﹣b)(x﹣2),∴(x﹣b)(x﹣2)=x2﹣(b+2)x+2b=x2+3x﹣10,∴2b=﹣10,∴b=﹣5.故答案为﹣5.【点评】本题考查了因式分解的意义,紧扣因式分解的定义,是一道基础题.14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= 8或﹣4 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,∴m﹣2=±6,解得:m=8或﹣4.故答案为:8或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=4,CB=4.∴AC==4.故答案为:4.【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是17 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积,由此即可解决问题.【解答】解:如图记图中两个正方形分别为P、Q.根据勾股定理得到:C与D的面积的和是Q的面积;A与B的面积的和是P的面积;而P,Q的面积的和是E的面积,即A、B、C、D的面积之和为E的面积,∴正方形E的面积=4+6+3+4=17,故答案为:17.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为48 .【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,构造直角三角形.运用等腰三角形性质及三角形的面积公式求解.【解答】解:如图,作AD⊥BC于点D,则BD=BC=6.在Rt△ABD,∵AD2=AB2﹣BD2,∴AD=8,∴△ABC的面积=BC•AD=×12×8=48.故答案为:48.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于 4.8 .【考点】因式分解的应用.【分析】根据a2+b2+c2+200=12a+16b+20c,可以求得a、b、c的值,从而可以判断△ABC的形状,从而可以求得最长边上的高.【解答】解:∵a2+b2+c2+200=12a+16b+20c,∴a2+b2+c2+200﹣12a﹣16b﹣20c=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得,a=6,b=8,c=10,∵62+82=102,∴△ABC是直角三角形,∴斜边上的高是: =4.8,故答案为:4.8.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要.三、解答题19.计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的性质化简求出答案;(2)直接利用二次根式的性质化简,进而合并求出答案;(3)直接利用二次根式的乘法运算法则化简,进而求出答案;(4)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)﹣=2﹣5=﹣3;(2)﹣(﹣2+)=3﹣(4﹣8+3)=﹣7+11;(3)×﹣5=6﹣5=1;(4)()2==1+.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.【考点】因式分解-分组分解法;提公因式法与公式法的综合运用.【分析】(1)此多项式有公因式,应提取公因式5a,然后再整理即可.(2)先提取公因式x3,再利用平方差公式继续进行因式分解.(3)先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.(4)用分组分解法,前两项一组,后两项一组,提取公因式,两组之间提取提取公因式,再用平方差公式分解,即可.【解答】解:(1)原式=5a(3a+1);(2)原式=x3(x2﹣1)=x3(x+1)(x﹣1);(3)原式=ab(a2﹣4ab+4b2)=ab(a﹣2b)2.(4)原式=(1﹣x2)﹣(y2﹣x2y2)=(1﹣x2)﹣y2(1﹣x2)=(1﹣x2)(1﹣y2)=(1+x)(1﹣x)(1+y)(1﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(4)用分组分解法,分组是解本小题的难点.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)【考点】二次根式的化简求值.【分析】①根据二次根式的乘法法则计算;②根据平方差公式计算;③根据完全平方公式把原式变形,代入计算;④把已知数据代入,根据二次根式的混合运算法则计算.【解答】解:①x+y=+=﹣1;②xy=×=﹣2;③x2+y2=(x+y)2﹣2xy=1+4=5;④(x2+x+2)(y2+y﹣2)=(++2)(+﹣2)=3×(﹣1)=﹣3.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.【考点】立方根;平方根.【分析】根据平方根、立方根,即可解答.【解答】解:①x2=9x=±3,②(x﹣2)2=4x﹣2=±2x=4或0.③(2x+1)2=12(2x+1)2=362x+1=±6x=或﹣.④(x+1)3=﹣2(x+1)3=﹣8x+1=﹣2x=﹣3.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:【考点】扇形面积的计算.【专题】计算题.【分析】要求阴影部分的面积,只需求CD,由于AD已知,只需求AC即可.【解答】解:∵AB⊥BC,AB=4,BC=3,∴AC=5.∵AC⊥CD,AC=5,AD=13,∴CD=12,=π×()2=18π,∴S阴影∴阴影部分的面积为18πcm2.【点评】本题主要考查了勾股定理、扇形的面积公式等知识,属于基础题.24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC【考点】勾股定理.【专题】作图题.【分析】直接利用勾股定理结合网格得出A,B,C的位置,进而利用△ABC所在矩形减去周围三角形面积求出答案.【解答】解:如图所示:S△ABC=12﹣×1×3﹣×1×4﹣×2×3=5.5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出A,B,C的位置是解题关键.25.探究题:(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC.(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)【考点】等边三角形的性质.【分析】(1)由AD为边长为2的等边三角形ABC的高,利用三线合一得到D为BC的中点,求出BD的长,利用勾股定理求出AD的长,进而求出S,(2)根据(1)同理求出C2、S2,C3、S3依此类推,得到Cn、Sn.【解答】解:(1)在正△ABC 中,AB=2,AD ⊥BC 于D ,∴BD=1,∴AD==,∴S △ABC =BC •AD=×=; (2)由(1)可知AB 2=,∴C 1=3×2×()0,S 1=×2×2×;∵等边三角形AB 2C 2的边长为,AB 3⊥B 2C 2, ∴AB 3=,∴C 2=2×3×()1,S 2=×2××2××=×22×()3,∵等边三角形AB 3C 3的边长为,AB 4⊥B 3C 3,∴AB 4=,∴C 3=3×2×()2,S 3=×2×××2×××=×22×()5 依此类推,C n =6()n ﹣1S n =2()2n ﹣1.故第n 个正三角形的周长为6()n ﹣1,第n 个正三角形的面积是2()2n ﹣1. 【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.26.在正方形ABCD 中,AB=4,E 为BC 的中点,F 在CD 上,DF=3CF ,连结AF 、AE 、EF .(1)如图1,求出△AEF 的三条边的长度;(2)判断△AEF 的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.【考点】四边形综合题.【分析】(1)先求得EC、FC、DF、BE、AD的长,然后依据勾股定理可求得EF、EB、AE的长;(2)由勾股定理的逆定理可证明△EFA为直角三角形;(3)依据三角形的面积公式分别求得△AEF、△ECF、△ABE的面积,从而可得出问题的答案;(4)①依据三角形的面积公式可知S△AEF=AF•GE=5,从而可求得EG的长,然后再依据勾股定理可求得FG的长,然后可得到AG的长;②求得EG2、GF•AG的结果,从而可得到它们之间的关系.【解答】解:(1)∵ABCD为正方形,AB=4,∴AB=BC=DC=AD=4.∵E是BC的中点,∴BE=CE=2.∵CD=4,DF=3CF,∴FC=1,DF=3.依据勾股定理可知:EF==,AE==2,AF==5.(2)∵AF2=25,EF2=5,AE2=20,∴AF 2=EF 2+AE 2.∴△AEF 为直角三角形.(3)S △AEF =S △ECF +S △ABE .理由:∵S △ECF =FC •CE=×1×2=1,S △ABE =AB •BE=×4×2=4,S △AEF =EF •AE=××2=5,∴S △AEF =S △ECF +S △ABE .(4)①∵S △AEF =AF •GE=5,∴×5×EG=5.∴EG=2.在△EFG 中,由勾股定理可知:FG===1. AG=AF ﹣GF=5﹣1=4.②∵EG 2=22=4,GF •AG=1×4=4,∴EG 2=GF •AG .【点评】本题主要考查的是正方形的性质、勾股定理的应用、勾股定理的逆定理的应用、三角形的面积公式的应用,依据勾股定理的逆定理判断出△AEF 为直角三角形是解题的关键.。
初二数学2016-2017学年度第一学期期中质量检测班级 姓名 学号1. 下列各式中,从左到右的变形是因式分解的是( )A. 224)2)(2(y x y x y x -=-+ B. 1)(122--=--y x xy xy y x C. a 2-4ab+4b 2=(a -2b )2 D. ax+ay+a=a (x+y ) 2.计算24-的结果是( )A .8-B .18-C .116-D .1163. 月球的平均亮度只有太阳的0.00000215倍。
0.00000215用科学记数法可表示为( ) A .52.1510-⨯ B . 62.1510-⨯ C .72.1510-⨯ D .621.510-⨯4.下列各式中,正确的是( ).A . 1a b b ab b ++=B .22x y x y -++=- C.23193x x x -=-- D .222()x y x y x y x y --=++ 5. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠6.下列多项式能分解因式的有( )个2249y x +-; 2244b a ab +--; 296x x --; 1196422-+-y xy x A.0 B.1 C.2 D.37.若分式22xx -+的值是零,则x 的值是( )A .0x =B .2±=xC .2-=xD .2=x 8. 到三角形三条边距离相等的点是( )ABCDA.三条高线的交点B.三条中线的交点C.三个内角平分线的交点D.三边垂直平分线的交点 9.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AC , 下列结论正确的是( )A .CD CB AD AB ->- B .CD CB AD AB -=-C .CD CB AD AB -<- D .AD AB -与CD CB -的大小关系不确定 10.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是( )A B CD二、填空题(本题共20分,每小题2分) 11.当x __________时,分式11x-有意义. 12. 如果7,0-==+xy y x ,则22xy y x += . 13. 若92++mx x 是一个完全平方式,则m = .14. 计算:a aa -+-111的结果是 . 15. 若b a b a -=+111,则 的值是 .16. 如图,△ABC ≌△ADE ,∠CAD=10°,∠B=25°,∠EAB=120°,则∠DFB=____________. 17. 如图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .18. 如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.C D A B ABDC3,111--+=-ba ab b a b a 则右下折沿虚线剪开剩余部分上折右折A(16) (17) (18)19. 已知b a 、满足等式2022++=b a x ,)2(4a b y -=,则y x 、的大小关系是 . 20.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 . 三、计算题(共27分,20-21每小题3分,22-23每小题4分)21.分解因式:(1) y xy y x 442+- (2) ()()2233y x y x ---22.计算: (1) 11(1)1a a a a -++⋅- (2) x y x yyx x ⎛⎫+-÷ ⎪⎝⎭(3)()32227812393x x yy x y --⎡⎤⋅÷⎢⎥⎣⎦23.先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中(m+3)(m+2)=0. 24.解方程: (1)512552x x x+=-- (2)四、作图题. (本题3分)25.某地区要在区域..S .内. (即∠COD 内部..) 建一个超市M ,如图,按照要求,超市M 到两个新建的居民小区A ,B 的距离相等, 到两条公路OC ,OD 的距离也相等. 这个超市应该建在何处? (要求:尺规作图, 不写作法, 保留作图痕迹)五、解答题(共20分,每小题4分)26. 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.27.列方程解应用题八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达。
2016-2017学年上海中学八年级(下)期中数学试卷一、选择题(每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C. D.2.(3分)二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥33.(3分)下列计算正确的是()A.B.C.D.4.(3分)正方形面积为36,则对角线的长为()A.6 B.C.9 D.5.(3分)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=56.(3分)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD AD=BC B.∠A=∠B∠C=∠DC.AB=CD AD=BC D.AB=AD CB=CD7.(3分)如图,在?ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm8.(3分)矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A.12 B.10 C.7.5 D.59.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD 的周长是()A.12 B.16 C.20 D.2410.(3分)以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD11.(3分)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)12.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12二、填空题(每小题3分,共18分)13.(3分)= ,= .14.(3分)顺次连接矩形各边中点所得四边形为形.15.(3分)已知菱形的两条对角线长为8和6,那么这个菱形面积是,菱形的高.16.(3分)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF= 度.17.(3分)如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为.18.(3分)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.三、解答题:(共66分)19.(8分)计算:(1)2﹣6+3(2)(﹣).20.(8分)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.21.(10分)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.22.(10分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.23.(10分)(1)化简:2a(a+b)﹣(a+b)2(2)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.试判断四边形OCED的形状,并说明理由.24.(10分)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.25.(10分)如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG 的长.2016-2017学年上海中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)(2014春?宁津县期末)下列二次根式中,属于最简二次根式的是()A.B.C. D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.(3分)(2016春?重庆期中)二次根式有意义的条件是()A.x>3 B.x>﹣3 C.x≥﹣3 D.x≥3【分析】根据二次根式有意义的条件求出x+3≥0,求出即可.【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选C.【点评】本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a ≥0.3.(3分)(2016春?津南区校级期中)下列计算正确的是()A.B.C.D.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式不能合并,错误;C、原式=2×=,错误;D、原式=5,正确,故选D【点评】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.4.(3分)(2016春?津南区校级期中)正方形面积为36,则对角线的长为()A.6 B.C.9 D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.(3分)(2016春?庆云县期末)下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=5【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:A、∵1.52+22≠32,∴该三角形不是直角三角形,故A选项符合题意;B、∵72+242=252,∴该三角形是直角三角形,故B选项不符合题意;C、∵62+82=102,∴该三角形是直角三角形,故C选项不符合题意;D、∵32+42=52,∴该三角形不是直角三角形,故D选项不符合题意.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6.(3分)(2016春?津南区校级期中)能判定四边形ABCD为平行四边形的题设是()A.AB∥CD AD=BC B.∠A=∠B∠C=∠DC.AB=CD AD=BC D.AB=AD CB=CD【分析】利用一组对边平行且相等的四边形为平行四边形可对A进行判定;根据两组对角分别相等的四边形为平行四边形可对B进行判定;根据两组对边分别相等的四边形为平行四边形可对C、D进行判定.【解答】解:A、若AB∥CD,AB=CD,则四边形ABCD为平行四边形,所以A选项错误;B、若∠A=∠C,∠B=∠D,则四边形ABCD为平行四边形,所以B选项错误;C、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以C选项正确;D、若AB=CD,AD=BC,则四边形ABCD为平行四边形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.(3分)(2007?南通)如图,在?ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,所以根据AD、AB的值,求出EC的值.【解答】解:∵AD∥BC,∴∠DAE=∠BEA∵AE平分∠BAD∴∠BAE=∠DAE∴∠BAE=∠BEA∴BE=AB=3∵BC=AD=5∴EC=BC﹣BE=5﹣3=2故选:B.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.8.(3分)(2016春?津南区校级期中)矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A.12 B.10 C.7.5 D.5【分析】如下图所示:∠AOD=∠BOC=60°,即:∠COD=120°>∠AOD=60°,AD是该矩形较短的一边,根据矩形的性质:矩形的对角线相等且互相平分,所以有OA=OD=OC=OB=7.5,又因为∠AOD=∠BOC=60°,所以AD的长即可求出.【解答】解:如下图所示:矩形ABCD,对角线AC=BD=15,∠AOD=∠BOC=60°∵四边形ABCD是矩形∴OA=OD=OC=OB=×15=7.5(矩形的对角线互相平分且相等)又∵∠AOD=∠BOC=60°,∴OA=OD=AD=7.5,∵∠COD=120°>∠AOD=60°∴AD<DC所以该矩形较短的一边长为7.5,故选C.【点评】本题主要考查矩形的性质:矩形的对角线相等且互相平分,且矩形对角线相交所的角中“大角对大边,小角对小边”.9.(3分)(2016春?苏州期末)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.24【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出BC,再根据菱形的周长公式列式计算即可得解.【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.【点评】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.10.(3分)(2016春?津南区校级期中)以下条件不能判别四边形ABCD是矩形的是()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BD D.AB=CD,AB∥CD,OA=OC,OB=OD【分析】先根据平行四边形的判定得出四边形ABCD是平行四边形,再根据矩形的判定逐个判断即可.【解答】解:如图:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴四边形ABCD是矩形,故本选项错误;B、∵OA=OB=OC=OD,∴AC=BD,∴四边形ABCD是平行四边形,∴四边形ABCD是矩形,故本选项错误;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项错误;D、∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,根据OA=OC,OB=OD不能推出平行四边形ABCD是矩形,故本选项正确;故选D.【点评】本题考查了平行四边形和矩形的判定的应用,能熟记矩形的判定定理是解此题的关键.11.(3分)(2006?南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.12.(3分)(2016春?日照期中)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC 折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=?AF?BC=10.故选C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.二、填空题(每小题3分,共18分)13.(3分)(2016春?津南区校级期中)= ,= .【分析】根据二次根式的乘除法则以及二次根式的性质化简即可.【解答】解:==,=|﹣|=,故答案分别为,.【点评】本题考查二次根式的化简,二次根式的性质,解题的关键是掌握分母有理化的方法,记住公式=|a|,()2=a(a>0),属于中考常考题型.14.(3分)(2012?蓟县模拟)顺次连接矩形各边中点所得四边形为菱形.【分析】作出图形,根据三角形的中位线定理可得EF=GH=AC,FG=EH=BD,再根据矩形的对角线相等可得AC=BD,从而得到四边形EFGH的四条边都相等,然后根据四条边都相等的四边形是菱形解答.【解答】解:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=AC,FG=EH=BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD,∴EF=GH=FG=EH,∴四边形EFGH是菱形.故答案为:菱形.【点评】本题考查了三角形的中位线定理,菱形的判定,矩形的性质,作辅助线构造出三角形,然后利用三角形的中位线定理是解题的关键.15.(3分)(2016春?津南区校级期中)已知菱形的两条对角线长为8和6,那么这个菱形面积是24 ,菱形的高.【分析】如图,四边形ABCD是菱形,BD=8,AC=6,作AE⊥BC于E,先利用勾股定理求出菱形边长,根据菱形的面积等于对角线乘积的一半等于底乘高,即可解决问题.【解答】解:如图,四边形ABCD是菱形,BD=8,AC=6,作AE⊥BC于E.∴AC⊥BD,AO=AC=3,BO=BD=4,∴AB===5,∴BC=AB=5,∴菱形的面积=?AC?BD=24,∵BC?AE=24,∴AE=,∴菱形的高为.故答案为24,.【点评】本题考查菱形的性质,记住菱形的面积的两种求法,①菱形面积等于三角形乘积的一半,②菱形的面积等于底乘高,属于基础题,中考常考题型.16.(3分)(2016春?津南区校级期中)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF= 90 度.【分析】先根据平行四边形的判定定理得出四边形AEDF为平行四边形,再根据平行线的性质及角平分线的性质得出∠1=∠3,故可得出?AEDF为菱形,根据菱形的性质即可得出结论.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴OA=OD,OE=OF,∠2=∠3,∵AD是△ABC的角平分线,∵∠1=∠2,∴∠1=∠3,∴AE=DE.∴?AEDF为菱形.∴AD⊥EF,即∠AOF=90°.故答案为:90.【点评】本题考查的是菱形的判定与性质,根据题意判断出四边形AEDF是菱形是解答此题的关键.17.(3分)(2004?郫县)如图,四边形ABCD的两条对角线AC,BD互相垂直,A1,B1,C1,D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为20 .【分析】此题要能够根据三角形的中位线定理证明四边形A1B1C1D1是矩形,从而根据矩形的面积进行计算.【解答】解:∵A1,B1,C1,D1是四边形ABCD的中点四边形,且AC=8,BD=10∴A1D1是△ABD的中位线∴A1D1=BD=×10=5同理可得A1B1=AC=4根据三角形的中位线定理,可以证明四边形A1B1C1D1是矩形那么四边形A1B1C1D1的面积为A1D1×A1B1=5×4=20.【点评】本题考查了三角形的中位线定理,是经常出现的知识点.注意:顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.18.(3分)(2013?钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是10 .【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案为:10.【点评】本题考查了轴对称﹣最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.三、解答题:(共66分)19.(8分)(2016春?津南区校级期中)计算:(1)2﹣6+3(2)(﹣).【分析】(1)先把各个二次根式进行化简,合并同类二次根式即可;(2)先把各个二次根式进行化简,合并同类二次根式,再根据二次根式的除法法则计算即可.【解答】解:(1)2﹣6+3=4﹣2+12=14;(2)(﹣)=(5﹣2)÷=3÷=3.【点评】本题考查的是二次根式的混合运算,掌握二次根式的性质和二次根式的混合运算法则是解题的关键.20.(8分)(2015春?荣昌县期末)当x=2﹣时,求代数式(7+4)x2+(2+)x+的值.【分析】因为x2=7﹣4直接代入,可构成两个平方差公式,计算比较简便.【解答】解:∵x2=(2﹣)2=7﹣4,∴原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+[22﹣()2]+=1+(4﹣3)+=2+.【点评】此题的难点在于将7+4写成(2+)2的形式.21.(10分)(2016春?津南区校级期中)如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.【分析】如图,连接BD.首先利用勾股定理求出BD,再利用勾股定理的逆定理证明△BDC是直角三角形,分别求出△ABD,△DBC的面积即可解决问题.【解答】解:如图,连接BD.在Rt△ABD中,∵∠A=90°,AD=4,AB=3,∴BD===5,∵BD2+BC2=52+122=169,DC2=132=169,∴BD2+BC2=CD2,∴△BDC是直角三角形,∴S△DBC=?BD?BC=×5×12=30,S△ABD=?AD?AB=×3×4=6,∴四边形ABCD的面积=S△BDC+S△ADB=36.【点评】本题考查勾股定理、勾股定理的逆定理、三角形的面积等知识,解题的关键是把四边形问题转化为三角形问题解决,属于中考常考题型.22.(10分)(2014?泉州)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.【分析】根据矩形的性质得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根据平行四边形的判定得出四边形AFCE是平行四边形,即可得出答案.【解答】证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴CF∥AE,∵DF=BE,∴CF=AE,∴四边形AFCE是平行四边形,∴AF=CE.【点评】本题考查了平行四边形的性质和判定,矩形的性质的应用,注意:矩形的对边相等且平行,平行四边形的对边相等.23.(10分)(2013?济南模拟)(1)化简:2a(a+b)﹣(a+b)2(2)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.试判断四边形OCED的形状,并说明理由.【分析】(1)提取公因式(a+b),然后整理即可得解;(2)根据矩形的对角线互相垂直平分求出OC=OD,然后求出四边形OCED是平行四边形,再根据一组邻边相等的平行四边形是菱形证明.【解答】(1)解:2a(a+b)﹣(a+b)2,=(a+b)(2a﹣a﹣b),=(a+b)(a﹣b),=a2﹣b2;(2)解:四边形OCED菱形.理由如下:∵四边形ABCD是矩形,∴AC=BD,OD=BD,OC=AC,∴OC=OD,∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∴四边形OCED是菱形.【点评】本题考查了菱形的判定,矩形的对角线互相垂直平分的性质,以及平行四边形的判定与一组邻边相等的平行四边形是菱形.24.(10分)(2013?南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.25.(10分)(2011?河池)如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG 的长.【分析】(1)由在△ABO中,∠OAB=90°,∠A OB=30°,OB=8,根据三角函数的知识,即可求得AB与OA的长,即可求得点B的坐标;(2)首先可得CE∥AB,D是OB的中点,根据直角三角形斜边的中线等于斜边的一半,可证得BD=AD,∠ADB=60°,又由△OBC是等边三角形,可得∠ADB=∠OBC,根据内错角相等,两直线平行,可证得BC∥AE,继而可得四边形ABCD是平行四边形;(3)首先设OG的长为x,由折叠的性质可得:AG=CG=8﹣x,然后根据勾股定理可得方程(8﹣x)2=x2+(4)2,解此方程即可求得OG的长.【解答】(1)解:在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,∴OA=OB?cos30°=8×=4,AB=OB?sin30°=8×=4,∴点B的坐标为(4,4);(2)证明:∵∠OAB=90°,∴AB⊥x轴,∵y轴⊥x轴,∴AB∥y轴,即AB∥CE,∵∠AOB=30°,∴∠OBA=60°,∵DB=DO=4∴DB=AB=4∴∠BDA=∠BAD=120°÷2=60°,∴∠ADB=60°,∵△OBC是等边三角形,∴∠OBC=60°,∴∠ADB=∠OBC,即AD∥BC,∴四边形ABCE是平行四边形;(3)解:设OG的长为x,∵OC=OB=8,∴CG=8﹣x,由折叠的性质可得:AG=CG=8﹣x,在Rt△AOG中,AG2=OG2+OA2,即(8﹣x)2=x2+(4)2,解得:x=1,即OG=1.【点评】此题考查了折叠的性质,三角函数的性质,平行四边形的判定,等边三角形的性质,以及勾股定理等知识.此题难度较大,解题的关键是注意数形结合思想与方程思想的应用,注意折叠中的对应关系.2020-2-8。
2017学年第一学期八年级期中考试数学试卷一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并写在答题纸的相应位置上】1. 二次根式153-+x x 中字母x 的取值范围是( ) A.x<1 B.x ≤1 C.x >1 D.x ≥12. 下列二次根式中,属于最简根式的是( )A.219 B.79 C.20 D.5.0 3. 下列一元二次方程有实数根的是( ) (利用判别式)A.x 2+1=0B.x 2-x-1C.x 2-x+1=0D.x 2+x+1=04. 一元二次方程x2-2x+m 有实数根,那么实数m 的取值范围是( )(利用判别式)A.m >1B.m =1C.m <1D.m ≤15. 下列各组二次根式中,是同类二次根式的是( ) A.85.0与 B.15,45 C.12,18 D.3232, 6. 过正比例函数y=kx 的图像上一点A (3,m )作x 轴的垂线,垂足为B ,如果S △AOB =7,则k 的值为( )A.±37B.±314C.±914D.±97 二、填空题:(本大题共12题,每题2分,满分24分)7.比较大小:56.8.已知xy=21,那么yx y x y x += . 9.二次根式b a +21的有理化因式是 . 10.不等式02210<-x 的解集为 .11.计算:3·26= .12.已知正比例函数y=(3-k )x (k 为常数,k ≠3),点()23-2,在这个函数的图像上,那么y 的值随x 的增大而 . (选填“增大”或“减小”) 13.如果正比例函数y=kx ,当x 增加的值为,则的值增加时,k y 2-323+ .14.一元二次方程的求根公式为 .15.已知ab b a ab b a +=-=+则,8,24= . 16.某校进行篮球比赛,第一轮每个班级都要和其他班级进行一场比赛,结果一共进行了28场比赛,设这个年级有x 个班级,则可列出方程 .17.利用配方法可将方程999162--x x 配为( )2= .18.已知a 为实数,且62162-+a a ,均为整数,则a 的值为 .三、解答题:(本大题共7题,满分58分)19.(本题满分15分,其中每小题5分)计算:(1)a b b a ab b ÷-)(·135;(2)3-527515-21-35++; (3)...22222...22222+++++-(?2?,, (222)==x x x 则为提示:设)20. (本题满分6分) .52041222的最小值求代数式的实数根,为有理数)有两个相等、(的一元二次方程已知关于-++=-+-m n m n m m nx x x 21.(本题满分4分)22. (本题满分10分,每小题5分)阅读下题解答过程:(1)请指出上述解答过程中的错误(写出步骤号及错误原因)。
2016-2017学年度第一学期期中考试八年级数学试卷一、选择题(3×10=30分)1、点P(1,-5)关于x 轴对称的点是( ) A .(-1,-5) B .(1,-5) C .(1,5) D .(-1,5)2、下列长度的三条线段,能组成三角形的是( )A 、3cm ,4cm ,7cmB 、 11cm ,11cm ,22cmC 、 6cm ,7cm ,11cmD 、6cm ,21cm ,11cm 3、已知三角形一个角的外角是150°,则这个三角形余下两角之和是( ) A.60° B.90° C.120° D.150° 4、下列图形中,不是轴对称图形的是( )5、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为( ) A . 30°或150° B .30°或150° C .60°或150° D .60°或120°6、如图,已知∠1=∠2,BC =ED ,增加下列条件:① AB =AE ;② AC =AD ;③ ∠C =∠D ; ④ ∠B =∠E ,其中能使△ABC ≌△AED 的条件有( )个 A .4B .3C .2D .17、如图,∠DAE =∠FAD =∠ADE =15°,DF ⊥AB .若AE =6,则DF 等于( ) A .5 B .4 C .3 D .28、如图,在中,ABE ∆50B =∠,AE 的垂直平分线MC 交BE 于点C , 且AB=CE ,则AE B ∠的度数是( ) A .115 B.120 C.125 D.1059、如图,线段AB,DE 的垂直平分线交于点C ,且∠ABC=∠EDC= 72°, ∠A EB=92°,则∠EBD 的度数为( ) A .168° B .158° C .128° D .118°10、如图,△ABC 中,∠A =90°,角平分线BD 、CE 交于点I , IF ⊥CE 交CA 于F ,IH ⊥AB 于H ,下列结论:① ID 平分∠CIF ; ② CF +BE =BC ;③AD +AF =2AH ;④ S △IED =S △IFD ; ⑤直线EF ∥BD ;其中正确结论的个数为( ) A .2个 B .3个 C .4个 D .5个 二、填空题(3×6=18分)B D CA 第8题 第6题 第7题 CABEM第9题 AEBD C第10题11、一个多边形的每一个外角都等于450,则该多边形的内角和等于 .12、如图,CD=CA ,EC=BC ,欲证DEC AB C ∆≅∆,则需增加条件 13、若三角形的三个内角度数之比为1:1:2,则相应的外角之比为___________; 14、如图,在△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 于E ,若CE =4,则BD =_________15、如图,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D .AD =8,DE =5,则S △BEC 为____16、如图, DE ⊥AB 于E ,DF ⊥AC 于F ,DE =DF , AC =AB +BD ,∠B =78° ,则∠C =________三、解答题(共9小题,共72分) 17、(本题满分8分)△ABC 中,∠A =60°,∠B 的两倍比∠C 大15°,求∠C 和∠B 的大小. 18、(本题满分8分) 作图题:如图,已知AOB ∠和C 、D 两点,用直尺和圆规在AOB ∠内部作一点P ,使P 到OA 、OB 两边的距离相等且PC=PD. (不写作法,保留作图痕迹)19、(本题满分8分)如图,AD 是△ ABC 的中线,BE ⊥ AD 于点E ,CF ⊥ AD 交AD 的延长线于点F 。
2016-2017学年八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形不是轴对称图形的是()A.B.C.D.2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.已知a m=5,a n=6,则a m+n的值为()A.11 B.30 C.D.4.下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a6 5.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS6.计算(x+3y)2﹣(3x+y)2的结果是()A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)27.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.288.计算(﹣2x+1)(﹣3x2)的结果为()A.6x3+1 B.6x3﹣3 C.6x3﹣3x2D.6x3+3x29.分解因式:x2﹣4y2的结果是()A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)210.如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是()A.①②③ B.、①C.、②D.、③二、填空题(共6小题,每小题3分,共18分)11.计算:20130﹣2﹣1=.12.化简的结果是.13.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.15.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.三、解答题(共8题,共72分)17.计算:(1)(3a﹣2b)(9a+6b);(2)(﹣2m﹣1)2.18.分解因式:4a2﹣9b2.19.解分式方程=.20.已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE的长.21.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)由图观察易知点A(0,2)关于直线l的对称点A′坐标为(2,0),请在图中分别标明点B(5,3),C(﹣2,﹣5)关于直线l的对称点B′,C′的位置,并写出它们的坐标:B′、C′;(2)结合图形观察以上三组点的坐标,你发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′坐标为.22.2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?23.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP 全等?一、选择题(共10小题,每小题3分,共30分)1.下列图形不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故选项错误;B、不是轴对称图形,故选项正确;C、是轴对称图形,故选项错误;D、是轴对称图形,故选项错误.故选:B.2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】三角形三边关系.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.3.已知a m=5,a n=6,则a m+n的值为()A.11 B.30 C.D.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.【解答】解:a m+n=a m×a n=30.故选B.4.下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】直接利用积的乘方、同底数幂的乘法、合并同类项以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、(﹣2x)3=﹣8x3,故本选项错误;B、﹣a2•a=﹣a3,故本选项正确;C、(﹣x)9+(﹣x)9=﹣x9+(﹣x9)=﹣2x9,故本选项正确;D、(﹣2a3)2=4a6,故本选项正确.故选A.5.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS【考点】全等三角形的应用.【分析】由O是AA′、BB′的中点,可得AO=A′O,BO=B′O,再有∠AOA′=∠BOB′,可以根据全等三角形的判定方法SAS,判定△OAB≌△OA′B′.【解答】解:∵O是AA′、BB′的中点,∴AO=A′O,BO=B′O,在△OAB和△OA′B′中,∴△OAB≌△OA′B′(SAS),故选:A.6.计算(x+3y)2﹣(3x+y)2的结果是()A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)2【考点】完全平方公式;平方差公式.【分析】由平方差公式a2﹣b2=(a+b)(a﹣b),展开计算即可.【解答】解:原式=(x+3y+3x+y)(x+3y﹣3x﹣y)=(4x+4y)(﹣2x+2y)=8(x+y)(﹣x+y)=8(y2﹣x2)=8y2﹣8x2,故选B.7.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.8.计算(﹣2x+1)(﹣3x2)的结果为()A.6x3+1 B.6x3﹣3 C.6x3﹣3x2D.6x3+3x2【考点】单项式乘多项式.【分析】依据单项式乘多项式法则进行计算即可.【解答】解:原式=6x3﹣3x2.故选:C.9.分解因式:x2﹣4y2的结果是()A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)2【考点】因式分解-运用公式法.【分析】根据平方差公式直接分解即可.【解答】解:x2﹣4y2=(x+2y)(x﹣2y),故选:B.10.如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是()A.①②③ B.、①C.、②D.、③【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】根据角平分线的定义可得∠BAD=∠CAD,然后利用“边角边”证明△ADC和△ADE 全等,根据全等三角形对应边相等可得CD=DE,根据等边对等角可得∠CED=∠ECD,再根据两直线平行,内错角相等可得∠ECD=∠CEF,然后求出∠CED=∠CEF,再根据角平分线的定义判断出CE平分∠DEF,然后根据到线段两端点距离相等的点在线段的垂直平分线上判断出AD垂直平分CE.【解答】解:∵AD是角平分线,∴∠BAD=∠CAD,在△ADC和△ADE中,,∴△ADC≌△ADE(SAS),故①正确;∴CD=DE,∴∠CED=∠ECD,∵EF∥BC,∴∠ECD=∠CEF,∴∠CED=∠CEF,∴CE平分∠DEF,故②正确;∵AE=AC,CD=DE,∴AD垂直平分CE,故③正确;综上所述,正确的是①②③.故选A.二、填空题(共6小题,每小题3分,共18分)11.计算:20130﹣2﹣1=.【考点】负整数指数幂;零指数幂.【分析】根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.【解答】解:20130﹣2﹣1,=1﹣,=.故答案为:.12.化简的结果是m.【考点】分式的混合运算.【分析】本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.【解答】解:=(m+1)﹣1=m故答案为:m.13.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n 个图形的周长是2+n.【考点】规律型:图形的变化类.【分析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n个图形的周长.【解答】解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n个图形的周长为:2+n.故答案为:2+n.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为6015.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是十一.【考点】多边形内角与外角.【分析】已知一个多边形的内角和与外角和的差为1260°,外角和是360度,因而内角和是1620度.n边形的内角和是(n﹣2)•180°,代入就得到一个关于n的方程,就可以解得边数n.【解答】解:根据题意,得(n﹣2)•180﹣360=1260,解得:n=11.那么这个多边形是十一边形.故答案为十一.三、解答题(共8题,共72分)17.计算:(1)(3a﹣2b)(9a+6b);(2)(﹣2m﹣1)2.【考点】完全平方公式.【分析】(1)利用平方差公式进行解答;(2)利用完全平方和公式进行解答.【解答】解:(1)原式=3(3a﹣2b)(3a+2b)=3(9a2﹣4b2)=27a2﹣12b2;(2)原式=4m2+4m+1.18.分解因式:4a2﹣9b2.【考点】因式分解-运用公式法.【分析】利用平方差公式分解,即可得到结果.【解答】解:4a2﹣9b2=(2a+3b)(2a﹣3b).19.解分式方程=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.20.已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE 的长.【考点】全等三角形的判定与性质.【分析】由DE⊥AC,BF⊥AC得到∠DEC=∠AFB=90°,由AB∥CD,得到∠C=∠A,根据三角形全等的判定定理即可证出Rt△DEC≌Rt△BFA,得到CE=AF.【解答】解:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,∵AB∥CD,在△DEC和△BFA中,,∴△DEC≌△BFA,∴CE=AF,CE=5.21.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)由图观察易知点A(0,2)关于直线l的对称点A′坐标为(2,0),请在图中分别标明点B(5,3),C(﹣2,﹣5)关于直线l的对称点B′,C′的位置,并写出它们的坐标:B′(3,5)、C′(﹣5,﹣2);(2)结合图形观察以上三组点的坐标,你发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′坐标为(b,a).【考点】坐标与图形变化-对称.【分析】(1)分别作出点B和C关于直线y=x的对称点B′、C′,然后写出它们的坐标;(2)利用(1)三组对应点的坐标规律得到关于直线y=x对称的点的坐标特征为横纵坐标互换.【解答】解:(1)如图,B′(3,5)、C′(5,﹣2);(2)P′(b,a).故答案为(3,5),(5,﹣2);P′(b,a).22.2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5千米/小时,根据题意可得,高铁走千米比普快走1026千米时间减少了9小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为1点40.故他能在开会之前到达.23.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)根据角平分线性质可证ED=EC,从而可知△CDE为等腰三角形,可证∠ECD=∠EDC;(2)由OE平分∠AOB,EC⊥OA,ED⊥OB,OE=OE,可证△OED≌△OEC,可得OC=OD;(3)根据SAS证出△DOE≌△COE,得出DE=EC,再根据ED=EC,OC=OD,可证OE是线段CD的垂直平分线.【解答】证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,∵,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.24.如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP 全等?【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先表示出BP,根据PC=BC﹣BP,可得出答案;(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.(3)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;【解答】解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2))△BPD和△CQP全等理由:∵t=1秒∴BP=CQ=2×1=2厘米,∴CP=BC﹣BP=6﹣2=4厘米,∵AB=8厘米,点D为AB的中点,∴BD=4厘米.∴PC=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);(3)∵点P、Q的运动速度不相等,∴BP≠CQ又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,∴点P,点Q运动的时间t==秒,∴V Q===厘米/秒.2016年11月1日。
2016-2017学年度第一学期期中调研试题八年级数学(上)试卷(11-14章)一、选择题(每小题3分,共24分)1.2的算术平方根是…………………………………………………………………………【 】AB .2CD .±22.已知∠AOB ,求作射线OC ,使OC 平分∠AOB ,那么作法的合理顺序是…………【 】 ①作射线OC ; ②在射线OA 和OB 上分别截取OD 、OE ,使OD=OE ; ③分别以D 、E 为圆心,大于12DE 的长为半径在∠AOB 内作弧,两弧交于点C. A .①②③ B .②①③ C .②③① D .③①②3.在实数:213. ,π−227,0中,无理数的个数有……………………………【 】A .1个B .2个C .3个D .4个 4.下列计算正确的是……………………………………………………………………… 【 】A .2232=5a a a +4B .842x x x÷=C .2- D .2363(2)8x y x y -=-5.如图是一个风筝设计图,其主体部分(四边形ABCD )关于BD 所在的直线对称,AC 与BD 相交于点O ,且AB ≠AD ,则下列判断不正确的是………………………………………………【 】A .△ABD ≌△CBDB .△ABC 是等边三角形C .△AOB ≌△COBD .△AOD ≌△COD 6.下列因式分解正确的是………………【 】A 、()y x x x xy x -=+-2B 、()2232b a a ab b a a -=+-C 、()314222+-=+-x x x D 、()()3392-+=-x x a ax7.信息技术的存储设备常用B ,K ,M ,G 等作为存储量的单位.例如,我们常说某计算机硬盘容量是320G ,某移动硬盘的容量是80G ,某个文件的大小是88K 等,其中1G=210M ,1M=210K ,1K=210B ,对于一个存储量为16G 的闪存盘,其容量有【 】个B .A .24000B . 230C . 234D .2120 8.工人师傅常用角尺平分一个任意角.做法如下:如图所示, ∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺, 使角尺两边相同的刻度分别与M ,N 重合.过角尺顶点C 的射 线OC 即是∠AOB 的平分线.做法中用到三角形全等的判定方 法是……………………………………………【 】A .SSSB .SASC .ASAD .HL 二、填空题(本大题共7小题,每小题3分,共21分) 9.若2(2)(3)x x x px q -+=++,则p q += .10.如图,C 是AB 的中点,AD=CE ,若添加一个条件使△ACD ≌△CBE , 你添加的条件是11.已知等腰三角形的一个外角是135°,则它顶角的度数为_____.…………………密……………封……………线……………内……………不……………准……………答……………题……………………班 级____________ 姓 名____________ 考 号_____第5题(第8题)64100A第12题图(第2题)12.如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A 的面积为 。
上海民办新竹园中学2016学年第一学期八年级期中考试卷
一、填空题
1. 2
2. y x y +=____________
3. 把中根号外的a 放到根号内是:=____________
4. 中,字母x 的取值范围是____________
5. 分解因式:42239x x --=____________
6. 方程2310x x ++=的两根为m 、n =____________
7. 已知2是关于x 的方程240x x c -+=的一个根,则c 的值为____________
8. 已知关于x 的方程2
2
(3)04m x m x +-+=有两个不相等的实数根,则m 的最大整数值是____________
9. 方程2420x x --=的两个根分别是1x 、2x ,且12x x <,则2212x x -=____________
10. 为了迎接“双十一”。
超市对某一食品进行连续两次降价促销,每盒的价格由原来的80元降至52.8元,如果平均每次降价的百分率为x , 则根据题意所列方程为:____________
11. 把命题“同角的余角相等”改写成为“如果…,那么…”的形式是____________
12. 如图,矩形ABCD 中,AC 与BD 相交于点O ,30,16ACB AC ∠=︒=,将矩形ABCD 绕点O 旋转后点A 与点D 重合,点B 落在点E 处,那么AE 的长为____________
13. 如图,点D 、E 分别是线段AB 、AC 的中点,点F 、G 分别是线段BD 、CE 的中点,若6FG =,则BC =____________
第12题 第13题
二、选择题
14. 下列各式一定成立的是( )
A. =
B. =
C. 2=±
D. 4= 15.
下列说法正确的是( )
A. 原命题和逆命题同真同假
B. 两直线平行,同旁内角互补这个定理有逆定理
C. 一个定理的逆命题也是它的逆定理
D. 如果两个角的补角相等,那么这两个角的余角也相等
16. 当3a <|4|a -的结果是( )
A. -1
B. 1
C. 27a -
D. 72a -
17. 等腰直角三角形斜边的中线为2+ )
A. 2
B. 5
C. 10+
D. 20+18. 已知四边形ABCD 中,四个角都是90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )
A. AD BC =
B. AB CD =
C. CD BC =
D. AC BD =
三、简答题
19.
20. 计算:2)(2
+
21. 解方程:2(21)4(21)30x x ++++=
22. 解方程:11()()22y y +-=
23. 解方程:()222
()00mnx m n x mn mn -++=≠
24. 当x y =
=
25. 已知:
x =,求分式222325235x x x x x x +--++-的值
四、解答题
26. 如图,在四边形ABCD 中,BC AB >,180A C ∠+∠=︒,且AD DC =,求证:BF 平分ABC ∠.
27. 如图,点E 是直角三角形ABC 斜边AB 的中点,D 是BC 延长线上一点,且CD CE =,ABC ∠的平分线交DE 于点F ,求证:点F 在线段BD 的垂直平分线上
28. 如图,在等边三角形ABC 中,D 、E 分别是BC 、AB 上一点,且,BD AE CN AD =⊥于点N ,CE 交AD 于点M ,证明:MN 与CM 的关系,并证明你的结论
29. 某机械租赁公司有同一型号的机器设备40套,经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金每提高10 元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20 元.设每套设备
的月租金为x (元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y (元)
(1)用含x 的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费;
(2)求y 与x 之间的二次函数关系式;
(3)当x 为何值时,租赁公司出租该型号设备的月收益最大,为多少?
(4)当租赁公司的月收益不低于11040 元时,此时租赁公司出租的设备套数应满足什么条件?
参考答案
1、>
2、3或5
3、
4、01x ≤<
5、()()22233x x +-
6、3
7、1
8、1
9、- 10、()280152.8x -=
11、如果两个角是同一个角的余角,那么这两个角相等。
12、8 13、8 14-18、BBDCC
19、1-
20、
21、121,2x x =-=-
22、12y y ==23、12,m
n
x x n m ==
24、
25、原式=1
1x x ++ ,代值得:原式=5
26、证明略
27、证明略
28、2CM MN =,证明略
29、(1)未出租的设备套数:270
10x - ;所有未出租设备(套)的支出费:
2540x - (2)21
6554010y x x =-++
(3)当330x =元或320x =元时,收益最大,为11100元
(4)出租的设备套数应不低于32,不高于37。