表冷器校核
- 格式:xls
- 大小:17.00 KB
- 文档页数:2
表面式冷却器的热工计算总传热系数与总传热热阻如前所述,间壁式换热器的类型很多,从其热工计算的方法和步骤来看,实质上大同小异。
下面即以本专业领域使用较广的、显热交换和潜热交换可以同时发生的表面式冷却器为例,详细说明其具体的计算方法。
别的诸如加热器、冷凝器、散热器等间壁式换热器的热工计算方法,本节给予概略介绍。
对于换热器的分析与计算来说,决定总传热系数是最基本但也是最不容易的。
回忆传热学的内容,对于第三类边界条件下的传热问题,总传热系数可以用一个类似于牛顿冷却定律的表达式来定义,即(6-4)式中的Δt是总温差;总传热系数与总热阻成反比,即:(6-5)式中Rt为换热面积为A时的总传热热阻,℃/W。
如果两种流体被一管壁所隔开,由传热学知,其单位管长的总热阻为(6-6)单位管长的内外表面积分别为πdi 和πd,此时传热系数具有如下形式:对外表面(6-7)对内表面(6-7)其中K0A0=K i A i应该注意,公式(6-6)至(6-8)仅适用于清洁表面。
通常的换热器在运行时,由于流体的杂质、生锈或是流体与壁面材料之间的其他反应,换热表面常常会被污染。
表面上沉积的膜或是垢层会大大增加流体之间的传热阻力。
这种影响可以引进一个附加热阻来处理,这个热阻就称为污垢热阻R f。
其数值取决于运行温度、流体的速度以及换热器工作时间的长短等。
对于平壁,考虑其两侧的污垢热阻后,总热阻为(6-9)把管子内、外表面的污垢热阻包括进去之后,对于外表面,总传热系数可表示为(6-10)对于内表面则为(6-11)知道了h0、R f,0、h i和R f,i以后,就可以确定总传热系数,其中的对流换热系数可以由以前传热学中给出的有关传热关系式求得。
应注意,公式(6-9)~(6-11)中壁面的传导热阻项是可以忽略的,这是因为通常采用的都是材料的导热系数很高的薄壁。
此外,经常出现某一项对流换热热阻比其它项大得多的情况,这时它对总传热系数起支配作用。
空气冷却器热工性能校核计算(转)概述表面空气冷却器的计算方法,曾经是80年代我国空调设计的热门课题之一。
进入90年代后,该课题已很少有人问津,普遍认为课题已趋成熟;与之相对应的情况是:我国空调工业进入90年代后高速发展,国内空调系统末端生产企业一直为如何准确计算表面空气冷却器的换热性能而大伤脑筋,因为现有的计算方法,对表面空气冷却器进行计算时,冷量计算误差大于10%,甚至有的超过30%,部分状态点,还无法计算,为安全起见,生产企业不得不增大配置的表面空气冷却器的面积,结果,使生产成本提高,浪费了国家的有色金属材料和能源。
(一)国内外情况分析由于表面空气冷却器(以下简称表冷器)是空调机组的核心部件,表冷器的性能直接影响到空调机组的性能。
因此,国内外对表冷器的热工计算方法十分重视,先后提出的计算方法已不下几十种之多,这些方法各具特色。
国内从70年代末期,开始进行表冷器热工计算方法研究,提出了热交换效率法(也称干球温度效率法),湿球温度效率法,干球温度-析湿系数法,图解法,焓效率法,线性方程组求解法,当量温差法,传热单元数法等。
目前国内外空调设计手册和教科书中所采用的表冷器计算方法有两类:设计型和校核型,对不同的方法计算结果分析表明,已有的计算方法不能达到当对表面空气冷却器进行实验时,计算的冷量与实测的冷量结果误差小于5%。
(二)问题的提出从上面介绍可以看出,用目前国内外空调设计手册和教科书中采用的几种主要的表冷器热工计算方法进行计算时各有利弊,虽然依据表冷器试验结果进行的分析表明,热交换效率法是目前阶段较理想的一种计算方法,但该方法在进行冷量校核计算时,依然不能较全面和准确计算表冷器的冷量。
如干工况无法计算,部分湿工况误差较大。
在现阶段,由于表冷器的数值计算方法尚未达到实用化的阶段,表冷器的热工校核计算方法仍然需要建立在准确的试验数据的一致性,另外,由于计算工具的进步,为准确计算起见,已没有必要为了避免试算,而采取这样或那样的近似措施。
组合空调机组表冷器计算的若干问题韩书生【摘要】空调系统的正常有效运行,是由系统的正确设计、可靠施工和先进的控制系统所决定的,空调系统中的主要设备-组合空调机组的过滤器阻力取值、机组附加热交换能力及表冷器性能的计算尤为关键.本文就有关问题加以分析,并提出一种对表冷器设计选型、校核计算的方法:在具有干球效率安全系数α=1.0时的热工性能值,推算出该表冷器α≠1.0时的热工性能值.【期刊名称】《发电技术》【年(卷),期】2010(031)006【总页数】3页(P55-56,61)【关键词】表冷器计算;干球效率;安全系数【作者】韩书生【作者单位】上海日兴建筑工程设计咨询有限公司,上海,200092【正文语种】中文【中图分类】TU831.4改革开放30多年来,全国的工商业、经济、科技、教育等各个领域发生了翻天覆地的变化,经济的迅猛发展使得人们对生活水平、生活环境的追求日益提高,其中对生产、生活环境的要求尤为突出,工业、民用建筑中空调系统不可缺少,空调设备的市场前景无可估量。
为此,空调设备生产企业遍布全国各地,不可胜数。
不同的生产厂商对组合空调机组配置的表冷器性能各异,设计人员难于掌握表冷器的具体参数,设计中亦难于选定表冷器的具体型号,取而代之的是提出对空调器额定的制冷量、制热量、风量、机外余压等参数的要求,由组合空调机组生产商根据要求进行具体计算,设计人再对生产商提交的计算书进行审核。
笔者在对某生产商提交的计算书进行审核时发现以下问题:(1)过滤器阻力按初阻力计算;(2)未进行风机、电机附加散热量的计算;(3)表冷器选型计算程序没考虑“干球效率安全系数”。
目前对过滤器阻力计算存有三种争议:(1)初阻力说:设计人员在进行管路阻力计算时考虑了足够的安全余量,采用初阻力就可以满足要求;(2)终阻力说:过滤器寿命周期内的各性能均应满足设计要求,当阻力达到2倍初阻力时就应该清洗或更换过滤器,设计计算时应考虑管路阻力的安全余量;(3)1.5倍初阻力说:折衷了初阻力说和终阻力说。
基于excel的水冷式表冷器设计和校核计算该文介绍了基于Excel的水冷式表冷器的设计和校核计算方法。
首先,对水冷式表冷器的工作原理进行了简要介绍。
然后,详细介绍了如何使用Excel进行热传导计算、冷却水侧传热系数计算、冷凝水侧传热系数计算、冷凝温度计算、热交换面积计算、水流量计算等步骤。
最后,通过实例演示了如何利用Excel进行水冷式表冷器设计和校核计算。
该文对于从事空调制冷、制冷设备设计、热力学等相关领域的工程师和学生有一定的参考价值。
- 1 -。
4.2.3表冷器校核计算表冷器选型计算分为两种:一种是设计计算,另一种是校核计算。
对于新风机组的表冷器的大小,那这个计算过程属于后者。
首先确定表冷器迎风面积,风量/风速 =表冷器迎风面积。
又表冷器是安装在新风空调机组的内部,表冷段的宽高尺寸基本确定。
根据迎风面积和表冷段空间去分配表冷器的宽高。
确定出宽高并不是完整的计算过程。
你还需要根据所需冷热量去校核该表冷器是不是合理,比如是不是可以达到要求的冷热量,水阻力是不是满足国标要求。
如果不能满足那就需要扩大空调箱或者调整回路数来满足这些要求。
以体育馆一层一区系统夏季为例进行表冷器校核计算,已知该区被处理的空气量为4885m 3/h (1.71kg/s ),空气的初参数为1t =28℃,1h =67/kJ kg ,1s t =22.6℃,冷水量为1.33/kg s ,冷水初温为1w t =6℃。
(1) 求表冷器迎面风速y V 及水流速ω由风量看出,可以选用JW10-4型表冷器,迎风面积F y =0.944m 2,每排散热面积F d =12.15m 2,通水断面积20.00407w f m =,所以y 1.71 1.51/0.944 1.2y G V m s F ρ===⨯ 331.330.33/100.0040710w W m s f ω===⨯⨯ (2) 求表冷器可提供的'E根据查表,当y V =1.51m/s 时、N=4排时,'E =0.841(3) 假定2t 确定空气终状态先假定2t =18℃(一般可按21(4~6)w t t =+℃假设)。
根据()()2211'1s s t t t t E =---可得:218(2822.6)(10.841)17.1s t =---=℃查焓湿图,当2s t =17.1℃时,248.2/h kJ kg =。
(4) 求析湿系数根据()1212=p h h c t t ξ--可得: ()67-48.2==1.861.0128-18ξ⨯ (5)求传热系数 查阅相关书籍,对于JW 型4排表冷器1s 0.52 1.030.8y 11=+39.7332.6K V ξω-⎡⎤⎢⎥⎢⎥⎣⎦=10.52 1.030.81139.7 1.51 1.86332.60.33-⎡⎤+⎢⎥⨯⨯⨯⎣⎦ =()255.5W /m C •︒(6)求表面冷却器能达到的'g E 值 355.512.1540.841.86 1.71 1.0110s d p K F Gc βξ⨯⨯===⨯⨯⨯ 331.86 1.71 1.01101.33 4.1910pGc Wc ξγ⨯⨯⨯===⨯⨯0.58 由=0.84β和=0.58γ,可得()()0.8410.58g0.8410.5'810.50210.67E -----==- (7)求需要的g E 并于上面得到的'g E 比较121128180.455286g w t t E t t --===-- 计算时可取0.05δ=当'gg E E δ-≤,证明2t =18℃合适。
表冷器综合效果检验与测定一、实验目的1.通过实验掌握表冷器冷却能力的测定2.通过实验对表冷器的综合效果有更深入的认识。
3.通过实验掌握表冷器热交换率和接触系数的测定二、实验原理1.表冷器冷却能力的测定(1)空气经过表冷器放出的热量为:12()Q G h h =−式中:Q —空气经过表冷器说散失的热量G —经过表冷器的实测风量(kg/s )1h —经过表冷器前的空气焓(kj/kg )2h —经过表冷器后的空气焓(kj/kg )(2) 经过表冷器冷水吸收的热量21()Q W t t ′=−式中:Q ′—经过表冷器冷说所吸收的热量W —经过表冷器的实测水量(kg/s )2t —经过表冷器后的冷水温度(℃)1t —经过表冷器前的冷水温度(℃)空气通过表冷器失去的热量Q 与冷水经过表冷器所吸收的热量Q ′应该相等,实验时允许有误差。
2.表冷器热交换率和接触系数的测定(1)表冷器热交换率系数的测定:1211ct t t t ε−=− (2)表冷器接触系数测定 222111s s t t t t ε−=−− 式中:1t 、2t —经处理前后的空气干球温度1s t 、2s t —经处理前后的空气湿球温度c t —表冷器冷水初始温度三、实验装置空调机组、楼宇自动化综合实验台、水管温度传感器VF20、水管流量变送器DWM2000、电加热分级控制器15KW、系统软件License for EBI with a 24 reader/500 point database.includes 2 Stations,Display Builder,Quick Builder and one interface.四、实验步骤1、实验前准备工作(1)熟悉实验系统,了解实验台的各个设备、部件以及测量系统的作用和功能;(2)确定表冷器进水温度。
夏季处理时,表冷器需要降温、除湿,其进水温度要比经过表冷器的空气露点温度要低,调节制冷压缩机的温度继电器的温度要比测得的露点温度低1—1.5℃。
概述本规范描述了组合式空调机组的设计参数、性能要求、设计工况及各元件设计和选型方法。
组合式空调机组基本型号有24个,功能段包括混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、各种加湿、风机段、消声段等二十余种功能段。
组合式空调机组的长、宽、高是按模数进行设计,标准规定:1M=158mm,基本命名方式为:MKZXXXX,前两为数字表高度上的模数,后两位表示宽度上的模数,尺寸的计算方法为:L=XX*158+50(70)(面板厚度为30mm时取50,面板厚度为50mm时取70)。
组合式空调机组的具体命名方法可参阅组合式空调机组产品分类与型号命名(QMZ-J20.011-2007)组合式空调机组的基本设计工况:混合段、初效过滤段、中效过滤段、表冷段、热盘管段、电加热段、加湿段、风机段、消声段等进行自由组合,对空气的进行处理,满足客户对空气洁净度和舒适度、环境噪声的需求。
第一章换热器设计计算方法换热器用来实现空气与热源载体——水进行能量交换的设备,是空调末端产品中最重要的部件之一。
主要构件有进出水管、集水管、铜管、翅片、U型管、端板等,下面主要介绍表冷器大小、翅片形式、铜管大小等的选择,其结构上的知识不做介绍。
我们公司换热器的命名方法:换热器的中文名称加三个主参数,即:换热器 M*N*L,M表示换热器厚度方向铜管排数,N表示换热器高度方向的铜管数,L表示换热器有效长度(即换热铜管长度),如:换热器 4*20* 1500,表示4排换热器,高度方向有20根管,换热器铜管的有效长度为1500。
换热器的其他构件相关尺寸都是以这三个基本参数为依据换算而来。
file:///C:\Users\ADMINI~1\AppData\Local\Temp\ksohtml\wpsB238.tmp.png换热器的的系列代号方法如下:完整的换热器的表示方法如下:MK.HRQ3Z 换热器M×N×L(换热器系列部件图样代号及名称)MK.HRQ3Z 换热器8×24×2015(换热器系列部件图样代号及名称)表示换热管规格为φ16、总水管通径为DN65(3型管)、8排(M=8)换热管、每排管数为24(N=24)、换热器迎风面长度或换热管有效长度为2015mm(L=2015)的左式换热器。
表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量 q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。
(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。
我近30遍的手工计算也证明了这一点。
提高水流速和降低水温对提高换热总量有更为积极的贡献。
通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。
于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。
这样就出现了大流量小温差的情况,水流速ω可以提高。
在冷冻水里添加乙二醇,使冷冻水的冰点下降。
很容易我们发现对数平均温差提高了很多。
从而达到了提高换热总量的目的。
)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。
推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。
表冷器计算书之杨若古兰创作(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈空气体积流量 q vg=14000/3600≈3/s②空气进、出口温度:干球:35/17℃℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2=1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈②查《部分空气冷却器的接触系数ε2》表:当时:GLⅡ六排的ε2从这我们可以看出:六排管即可满足请求.(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量老是不大理想,即使强行添加排数仍旧帮忙不大.我近30遍的手工计算也证实了这一点.提高水流速和降低水温对提高换热总量有更为积极的贡献.通过计算我们可以发现钢管的水阻实在太大,稍微添加一点,水阻就大的吓人.因而我设计采取了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回.如许就出现了大流量小温差的情况,水流速ω可以提高.在冷冻水里添加乙二醇,使冷冻水的冰点降低.很容易我们发现对数平均温差提高了很多.从而达到了提高换热总量的目的.)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×)≈(235760Kcal/h)⊙由六排管的水阻△Pω≤70Kpa得:管内水流速ω≤[水阻的大小和水程的是非也有密切的关系,经验公式没有对此给个说法.推论:八排管(即实际上的二排管)在流速必定时的水阻必为六排管的1/3.理论上可以使△Pω≤70Kpa,有ω≤1.8874m/s,但常识告诉我们:不克不及如此取值,可以判定八排管(即实际上的二排管)的ω≤1.5m/s为合理.] 平安起见,设令:ω=1.2m/s⊙请求V,可初估迎面尺寸(计算标明风速和流速的添加,将带来K值的添加,但K值的添加,却导致迎面的减小,间接使全部换热面积A的减小,我对Vy=2.8m/s进行的计算标明,K值的添加,A值减小,K×A之积添加其实不明显.从这点来看就义K值换A值较为有益于全体换热后果,特此外要保6~8排的K值,换来的是将在当前用4~6排的添加面积来弥补,是很得不偿失的,况且那时K值还得再按0.8倍计算.但按Vy=2.0m/s计算标明:A值添加,K×A之积也反而减小,K=65.336,考虑其它因数K=54.23,β≈,γ≈;ε1≈0.5665534,提出t w1℃的分歧理请求.由多次的计算看出存在一个K×A最好大值,即以下的分析计算).控制V摆布,有:顶风面积Ay=q vg2令:表冷器长L=1500 L’=1500+120+120+60=1800表冷器高≈迎面换热管数n=h/39≈(根)取n=29根同时总供水根数N=29×4=116根有:表冷器高h=1131 h’=1131+84=1215顶风面积2迎面风速Vy= q vg≈⊙可提供的冷水流量 q mw:经反复多次验算,按△tw =℃摆布较为合理.冷冻水量q mw=Q/C×△tw×==18.71L/s(67.356CMH)根据所提供的110CMH的水量分配到前表冷器可在75CMH摆布(因为水泵的选大,实际流量已在120CMH以上,分配到前表冷器可达80CMH).通水截面Aw= n× Ad =116×1.54×10-4=1.7864×10-2m2ω= q mw /Aw≈提高到ω=m/s 有q mw= L/s (77.17248CMH)则:△tw≈3.0544℃≈3.1℃④表冷器结构尺寸(GLⅡ型)查《实用制冷与空调工程手册》page584~586《空气冷却器功能参数》表:肋管D18×2+φmm单位长度管传热面积:Fd=0.64㎡/m考虑局部存有片距为 3.2~3.4㎜,统一按Fd=0.61㎡/m计.换热面积A:A=n×8×L×Fd =29=28㎡⑤析湿系数:ξ⑥传热系数:K8yξ8)]-1≈99.077W/㎡℃K8计= K8×η×≈82.234W/㎡℃η—批改系数(考虑排数、污垢、概况积灰、计算误差等平安身分)⑦计算热交换效力系数ε1:计算传热单元数:β=KA/ξq mg Cp×28/3.231×4.667×1.01×103≈计算水当量比:γ=ξq mg Cp/q mw C≈ε1=[1-e-(1-γ)β]/[ 1-γe-(1-γ)β]≈≈⑧校核计算冷冻水初始温度t w1:⊙t w1=t g1-(t g1-t g2)/αε15×0.656432≈℃(根据〈简明空调设计手册〉page150介绍:考虑平安系数α=0.94.这是针对冷冻水从头走到底的情况,我们拔取的是八排四进四出,冷排管始终坚持一个平均低温形态,可以使平安系数α=0.95~1,取α=0.95)t w1=℃>6℃满足可提供6℃的冷冻水请求.取t w1=℃⊙我们的结构更多的可能是α=1:t w1=t g1-(t g1-t g2)/αε1=35-(35-17)/1×0.656432≈℃⊙t w2= t w1+△tw =6+3.℃⑨校核计算传热量⊙对数平均温差△tm△tm=[(35-9.1)-(17-6)]/ln[(35-9.1)/(17-6)]≈℃⊙Q=KA△≈303736(w)≈3(Kw)⊙平安系数≈10.8%分析:因为我们在参数的取值设定上已经是最晦气的情况,而计算又充分考虑了余量,且使用的计算公式本人就是根据实验得出的经验公式,在此基础上还不足量是平安合理的.⑩风阻校核计算:六排:△P≈八排:△P×8/6≈1≈175Pa⑾水阻校核计算:六排:△PωKPa这里八排管(即实际上的二排管)估取△Pw=40Kpa,满足请求.(二)后表冷器a. 已知:⑪风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈空气体积流量 q vg=14000/3600≈3/s⑫空气进、出口温度:干球:/14.5℃湿球:℃⑬空气进、出口焓值:/29.79KJ/㎏⑭进水温度:6℃,流量:110CMH(前、后冷却器)⑮阻力:水阻<70KPa,风阻700Pa(前、后冷却器)b. 计算:①接触系数ε2:ε2=1-(t g2-t s2)/(t g1-t s1)=1-()/()≈0.7843②查《部分空气冷却器的接触系数ε2》表:当Vy=3m/s时:GLⅡ六排的ε2-6>0.78922、GLⅡ四排的ε2-4通过我之前多次的计算比较,拔取12排才干较好的满足K×A的请求,为不使水阻过限,分三组每组走四排(两个来回).③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×)≈Kw(112735Kcal/h)⊙控制Vy=3m/s,可初估迎面尺寸:Ay=q vg3≈1.2963≈1.3m2令:L=1500(统一外型宽度)L’=1500+120+120+60=1800h=Ay/L=1.3≈mn=h/39≈22.23根取n=22根、N=22×3=66根有:h=858 h’=858+84=942Ay= L×h=×0.858=1.287m2Vy= q vg287≈m/s⊙管内水流速ω根据在前表冷器的分析,设令:ω≤1.1m/s⊙可提供的冷水流量 q mw:经反复多次验算,按△tw =℃估:q mw=Q/C×△tw×≈kg/s=L/s(CMH)根据所提供的110CMH的水量分配到后表冷器可在35CMH摆布(因为水泵的选大,实际流量已在120CMH以上,分配到前表冷器可达40CMH).Aw= n× Ad =66×1.54×10-4=1.0164×10-2m2ω= q mw/Aw≈m/s(小于设定的ω≤1.1m/s)q mw = L/s(40CMH)可提高到ω=m/s则:△tw≈℃≈℃④表冷器结构尺寸(GLⅡ型)查《实用制冷与空调工程手册》page584~586《空气冷却器功能参数》表:肋管D18×2+φmm单位长度管传热面积:Fd=0.64㎡/m考虑局部存有片距为 3.2~3.4㎜,统一按Fd=0.61㎡/m计.换热面积:A=n×12×L×Fd =22×12=241.56㎡⑤析湿系数:ξ=1(因为没有除湿)⑥传热系数:K12yξ8)]-1≈43.64W/㎡℃K12计= K12×η×≈≈31W/㎡℃η—批改系数(考虑排数、污垢、概况积灰、计算误差等平安身分)⑦计算热交换效力系数ε1:⊙计算传热单元数:β=KA/ξq mg Cp=31×2/1×4.667×1.01×103≈⊙计算水当量比:γ=ξq mg Cp/q mw C=1≈01336⊙ε1=[1-e-(1-γ)β]/[ 1-γe-(1-γ)β]≈≈⑧校核计算冷冻水初始温度t w1:⊙t w1=t g1-(t g1-t g2)/αε1=-(-1)/×≈℃t w1=℃>6℃满足可提供6℃的冷冻水请求.取t w1=℃⊙t w2= t w1+△tw ℃⑨校核计算传热量⊙对数平均温差△tm△tm=[(-)-(1-6)]/ln[(3-)/(1-6)]=/ln/≈1℃⊙Q=KA△tm=31×2×1≈130722(w)≈(Kw)⊙平安系数≈8.44%分析:因为我们在参数的取值设定上已经是最晦气的情况,而计算又充分考虑了余量,且使用的计算公式本人就是根据实验得出的经验公式,在此基础上还不足量是平安合理的.⑩风阻校核计算:6排:△P≈12排:△P×12/6≈≈315Pa⑾水阻校核计算:6排:△PωKPa这里12排管(即实际上的4排管)估取△Pw=60Kpa,满足请求.。