数学归纳法经典练习及解答过程
- 格式:docx
- 大小:39.46 KB
- 文档页数:10
例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n Λ. 请读者分析下面的证法:证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k Λ. 那么当n =k +1时,有:()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=3211211211217151513131121k k k k Λ 322221321121++⋅=⎪⎭⎫ ⎝⎛+-=k k k ()1121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立.由①、②可知,对一切自然数n 等式成立.评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求.正确方法是:当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k Λ ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式:a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组.⎪⎩⎪⎨⎧=++=+=60322426321211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3.故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立.下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.因为起始值已证,可证第二步骤.假设n =k 时,等式成立,即a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2)那么当n =k +1时,a 1+2a 2+3a 3+…+ka k +(k +1)a k +1= k (k +1)(k +2)+ (k +1)[3(k +1)+3]=(k +1)(k 2+2k +3k +6)=(k +1)(k +2)(k +3)=(k +1)[(k +1)+1][(k +1)+2]这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立.例3.证明不等式n n 2131211<++++Λ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++Λ.那么当n =k +1时,11131211++++++k k Λ1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k Λ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.例4.已知数列{a n }满足a 1=0,a 2=1,当n ∈N 时,a n +2=a n +1+a n .求证:数列{a n }的第4m +1项(m ∈N )能被3整除.分析:本题由a n +1=a n +1+a n 求出通项公式是比较困难的,因此可考虑用数学归纳法.①当m =1时,a 4m +1=a 5=a 4+a 3=(a 3+a 2)+(a 2+a 1)=a 2+a 1+a 2+a 2+a 1=3,能被3整除.②当m =k 时,a 4k +1能被3整除,那么当n =k +1时,a 4(k +1)+1=a 4k +5=a 4k +4+a 4k +3=a 4k +3+a 4k +2+a 4k +2+a 4k +1=a 4k +2+a 4k +1+a 4k +2+a 4k +2+a 4k +1=3a 4k +2+2a 4k +1由假设a 4k +1能被3整除,又3a 4k +2能被3整除,故3a 4k +2+2a 4k +1能被3整除.因此,当m =k +1时,a 4(k +1)+1也能被3整除.由①、②可知,对一切自然数m ∈N ,数列{a n }中的第4m +1项都能被3整除.例5.n个半圆的圆心在同一条直线l上,这n个半圆每两个都相交,且都在直线l的同侧,问这些半圆被所有的交点最多分成多少段圆弧?分析:设这些半圆最多互相分成f (n)段圆弧,采用由特殊到一般的方法,进行猜想和论证.当n=2时,由图(1).两个半圆交于一点,则分成4段圆弧,故f (2)=4=22.当n=3时,由图(2).三个半径交于三点,则分成9段圆弧,故f (3)=9=32.由n=4时,由图(3).三个半圆交于6点,则分成16段圆弧,故f (4)=16=42.由此猜想满足条件的n个半圆互相分成圆弧段有f (n)=n2.用数学归纳法证明如下:①当n=2时,上面已证.②设n=k时,f (k)=k2,那么当n=k+1时,第k+1个半圆与原k个半圆均相交,为获得最多圆弧,任意三个半圆不能交于一点,所以第k+1个半圆把原k个半圆中的每一个半圆中的一段弧分成两段弧,这样就多出k条圆弧;另外原k个半圆把第k+1个半圆分成k+1段,这样又多出了k+1段圆弧.∴ f (k+1)=k2+k+(k+1)=k2+2k+1=(k+1)2∴满足条件的k+1个半圆被所有的交点最多分成(k+1)2段圆弧.由①、②可知,满足条件的n个半圆被所有的交点最多分成n2段圆弧.说明:这里要注意;增加一个半圆时,圆弧段增加了多少条?可以从f (2)=4,f (3)=f (2)+2+3,f (4)=f (3)+3+4中发现规律:f (k+1)=f (k)+k+(k+1).。
数学倒推归纳法经典例题及解析一、什么是倒推归纳法倒推归纳法呢,就像是我们走迷宫的时候从出口往入口找路一样。
它是一种特殊的数学归纳法啦。
通常我们先从比较大的数或者比较复杂的情况开始考虑,然后逐步往小的数或者简单的情况推导。
比如说,有这么一个例题。
二、经典例题例题:证明对于所有的正整数n,有1 + 3 + 5 + … + (2n - 1)=n²。
三、解析1. 当n = 1的时候呢,左边就是1,右边就是1² = 1,等式成立。
这就像是我们搭积木的第一块,很重要哦。
2. 假设当n = k(k是一个比较大的正整数啦)的时候这个等式成立,也就是1+3 + 5+…+(2k - 1)=k²。
3. 现在我们要证明当n = k + 1的时候等式也成立。
当n = k + 1的时候,左边就变成了1+3 + 5+…+(2k - 1)+(2(k + 1)- 1)。
根据我们之前的假设,1+3 + 5+…+(2k - 1)=k²,所以现在左边就等于k²+(2(k + 1)- 1)=k²+2k + 1。
而右边呢,当n = k + 1的时候,(k + 1)²=k²+2k + 1。
左边等于右边,所以当n = k + 1的时候等式也成立。
从这个例题就可以看出倒推归纳法的厉害之处啦。
它可以让我们在证明一些关于正整数的命题的时候,有一个新的思路。
就像我们在解决生活中的问题一样,有时候从结果往前推,反而更容易找到解决的办法呢。
再看一个例题哈。
四、例题证明不等式(1 + 1/2)(1 + 1/4)…(1 + 1/2ⁿ)<4。
五、解析1. 当n = 1的时候,左边就是(1 + 1/2)=3/2,3/2肯定是小于4的,这第一步就走通啦。
2. 假设当n = k的时候不等式成立,也就是(1 + 1/2)(1 + 1/4)…(1 + 1/2ⁿ)<4。
3. 当n = k + 1的时候,左边就变成了(1 + 1/2)(1 + 1/4)…(1 + 1/2ⁿ)(1 + 1/2^(k + 1))。
数学概括法()一、用数学法明与正整数相关命的步是:( 1)明当n取第一个n0(如 n0 1或2等)正确;( 2)假当n k( k N , k n0 ) 正确,明n k 1也正确.合( 1)、( 2),⋯⋯注意:数学法使用重点:两步 ,一。
二、型:型 1.明朝数恒等式例 1.用数学概括法证明:1111n1335572n12n12n111,右侧11证明:① n=1 时,左侧,左侧 =右侧,等式建立.123313②假定 n=k 时,等式建立,即:1111k.1335572k12k12k1当n=k+1 时.111111335572k 1 2k12k12k3k12k12k12k 32k 23k12k1 k12k12k32k12k3k1k12k3 2 k11这就说明,当n=k+1 时,等式亦建立,由①、②可知,对全部自然数n 等式建立.题型 2.证明不等式例 2.明不等式111n (n∈N).1322n明:①当 n=1 ,左 =1,右 =2.左 <右,不等式建立.②假 n=k ,不等式建立,即111k .1322k那么当 n=k+1 ,1111 13k k 1 22k1 2 k k11 k1k1k k11 2 k12k 1k1k1就是,当n=k+1 ,不等式建立.由①、②可知,原不等式随意自然数n 都建立.明:里要注意,当n=k+1 ,要的目是1111 13k 2 k 1 ,今世入假后,就是要明:2k 11k 1 .2 k2k1了个目,于是便可朝个目下去,并行相关的形,达到个目.题型 3.证明数列问题例3 ( x+1) n=a0+a1(x-1)+ a2(x- 1)2+ a3(x- 1)3+⋯+ a n( x-1)n (n≥ 2, n∈ N* ) .(1)当 n= 5 ,求 a0+ a1+ a2+ a3+ a4+a5的.a2(2)b n=2n-3, T n= b2+ b3+ b4+⋯+ b n.用数学法明:当n≥ 2 , T n=n(n+1)(n-1).3解:(1)当 n= 5 ,原等式 (x+ 1)5= a0+ a1(x- 1)+ a2(x- 1)2+ a3( x- 1)3+a4(x- 1)4+ a5(x- 1)5令 x = 2 得 a 0+ a 1+ a 2+ a 3+ a 4+ a 5= 35 =243.(2)由于 (x + 1)n = [2+ (x - 1)]n ,因此 a 2= C n 2·2n -2b n =a 2= 2C n 2= n(n - 1)(n ≥ 2)2n-3① 当 n = 2 时.左侧= T 2= b 2 = 2,右侧=2(2+ 1)(2-1)= 2,左侧=右侧,等式建立.3② 假定当 n = k(k ≥ 2,k ∈ N * ) 时,等式建立,即T k = k(k + 1)(k - 1)建立3那么,当 n = k +1 时,左侧= T k + b k + 1=k(k +1)(k -1)+(k +1)[( k + 1)- 1]=k(k +1)(k - 1)+ k(k + 1)33= k(k + 1)k - 1+ 1 = k(k + 1)(k + 2)33=(k + 1)[( k +1)+ 1][( k + 1)-1]=右侧. 3故当 n = k + 1 时,等式建立.n( n + 1)( n - 1)综上 ①② ,当 n ≥ 2 时, T n =.3。
数学归纳法(2016.4.21)一、用数学归纳法证明与正整数有关命题的步骤是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),……注意:数学归纳法使用要点: 两步骤,一结论。
二、题型归纳:题型1.证明代数恒等式例1.用数学归纳法证明:()()1212121751531311+=+-++⨯+⨯+⨯n n n n 证明:①n =1时,左边31311=⨯=,右边31121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.()()()()3212112121751531311++++-++⨯+⨯+⨯k k k k ()()3212112++++=k k k k ()()()()()()321211232121322++++=++++=k k k k k k k k ()1121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立,由①、②可知,对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即k k 2131211<++++.那么当n =k +1时, 11131211++++++k k1112112+++=++<k k k k k ()()12112111+=++=++++<k k k k k k这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意自然数n 都成立.说明:这里要注意,当n =k +1时,要证的目标是1211131211+<++++++k k k ,当代入归纳假设后,就是要证明: 12112+<++k k k .认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标.题型3.证明数列问题例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3. 解: (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立,即T k =k (k +1)(k -1)3成立 那么,当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1) =k (k +1)⎝⎛⎭⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时,等式成立.综上①②,当n ≥2时,T n =n (n +1)(n -1)3.。
数学归纳法经典例题及答案数学归纳法是解决数学问题中常用的一种证明方法,它基于两个基本步骤:证明基准情况和证明归纳假设,通过这两个步骤逐步推导证明,从而得到结论。
下面将介绍一些经典的数学归纳法例题及其答案。
例题一:证明1 + 2 + 3 + ... + n = n(n+1)/2,其中n∈N(自然数)。
解答:首先,我们先验证这个等式在n=1时是否成立。
当n=1时,左边等式为1,右边等式为1(1+1)/2=1,两边相等,因此基准情况成立。
其次,我们假设对于任意的k∈N,当n=k时等式成立,即1+2+3+...+k=k(k+1)/2。
接下来,我们需要证明当n=k+1时等式也成立。
根据归纳假设,我们已经知道1+2+3+...+k=k(k+1)/2,现在我们要证明1+2+3+...+k+(k+1)=(k+1)(k+2)/2。
将左边等式的前k项代入归纳假设得到:(k(k+1)/2)+(k+1)=(k+1)(k/2+1)= (k+1)(k+2)/2。
所以,当n=k+1时,等式也成立。
根据数学归纳法的原理,我们可以得出结论,对于任意的n∈N,都有1+2+3+...+n=n(n+1)/2。
例题二:证明2^n > n,其中n∈N,n>1。
解答:首先,我们验证这个不等式在n=2时是否成立。
当n=2时,左边等式为2^2=4,右边等式为2,显然不等式成立。
其次,我们假设对于任意的k∈N,当n=k时不等式成立,即2^k > k。
接下来,我们需要证明当n=k+1时不等式也成立。
根据归纳假设,我们已经知道2^k > k,现在我们要证明2^(k+1) > k+1。
我们可以将左边等式进行展开得到:2^(k+1) = 2^k * 2。
由归纳假设可知,2^k > k,所以2^(k+1) = 2^k * 2 > k * 2。
我们可以观察到当k>2时,k * 2 > k + 1,当k=2时,k * 2 = k + 1。
数学归纳法(2016.4.21)之老阳三干创作一、用数学归纳法证明与正整数有关命题的步伐是:(1)证明当n 取第一个值0n (如01n =或2等)时结论正确;(2)假设当0(N ,)n k k k n *=∈≥ 时结论正确, 证明1n k =+时结论也正确.综合(1)、(2), ……注意:数学归纳法使用要点:两步伐,一结论.二、题型归纳: 题型1.证明代数恒等式例1.用数学归纳法证明:证明:①n =1时, 左边31311=⨯=, 右边31121=+=, 左边=右边, 等式成立.②假设n =k 时, 等式成立, 即:()()1212121751531311+=+-++⨯+⨯+⨯k k k k . 当n =k +1时.这就说明, 当n =k +1时, 等式亦成立,由①、②可知, 对一切自然数n 等式成立.题型2.证明不等式例2.证明不等式n n 2131211<++++ (n ∈N).证明:①当n =1时, 左边=1, 右边=2.左边<右边, 不等式成立.②假设n =k 时, 不等式成立, 即k k 2131211<++++ .那么当n =k +1时,这就是说, 当n =k +1时, 不等式成立.由①、②可知, 原不等式对任意自然数n 都成立. 说明:这里要注意, 当n =k +1时, 要证的目标是1211131211+<++++++k k k , 今世入归纳假设后, 就是要证明:12112+<++k k k .认识了这个目标, 于是就可朝这个目标证下去, 并进行有关的变形, 到达这个目标.题型3.证明数列问题例 3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2, n ∈N *).(1)当n =5时, 求a 0+a 1+a 2+a 3+a 4+a 5的值.(2)设b n =a 22n -3, T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时, T n =n (n +1)(n -1)3.解:(1)当n =5时,原等式酿成(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243.(2)因为(x +1)n =[2+(x -1)]n , 所以a 2=C n 2·2n -2 b n =a 22n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2,右边=2(2+1)(2-1)3=2, 左边=右边, 等式成立. ②假设当n =k (k ≥2, k ∈N *)时, 等式成立, 即T k =k (k +1)(k -1)3成立那么, 当n =k +1时,左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3+k (k +1)=k (k +1)⎝ ⎛⎭⎪⎫k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3=右边. 故当n =k +1时, 等式成立.综上①②, 当n ≥2时, T n =n (n +1)(n -1)3.。
数学归纳法(理)证明一个与正整数n 有关的命题,可按下列步骤:1.(归纳奠基)证明当n 取第一个值n 0(n 0∈N*)时命题成立;2.(归纳递推)假设n =k(k ≥n 0,k ∈N*)时命题成立,证明当n =k +1时命题也成立.只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.例1:已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n =2(1n +2+1n +4+…+12n )时,若已假设n =k (k ≥2且k 为偶数)时命题为真,则还需要用归纳假设再证 ( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立解: ∵n 为偶数故假设n =k 成立后,再证n =k +2时等式成立例2:用数学归纳法证明“1+2+22+…+2n +2=2n +3-1”,在验证n =1时,左边计算所得的式子为 ( ) A .1 B .1+2 C .1+2+22 D .1+2+22+23解:由n =1时,左=1+2+22+23.例3:已知f (n )=1n +1n +1+1n +2+…+1n 2,则 ( ) A .f (n )中共有n 项,当n =2时,f (2)=12+13 B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14例4:用数学归纳法证明:“1+12+13+…+12n -1<n (n >1)”,由n =k (k >1)不等式成立,推证n =k +1时,左例5:在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验第一个值n 0=________. 解:第一步检验的第一个值n 0应为3.例6:求证:(n +1)(n +2)·…·(n +n)=2n ·1·3·5·…·(2n -1)(n ∈N*).解:当n =1时,等式左边=2,右边=2,故等式成立;假设当n =k 时等式成立,即(k +1)(k +2)·…·(k +k)=2k·1·3·5·…·(2k -1),那么当n =k +1时,左边=(k +1+1)(k +1+2)·…·(k +1+k +1)=(k +2)(k +3)·…·(k +k)(2k +1)(2k +2) =2k·1·3·5·…·(2k -1)(2k +1)·2=2k +1·1·3·5·…·(2k -1)(2k +1),这就是说当n =k +1时等式也成立. 综上可知原等式对于任意正整数n 都成立.用数学归纳法证明恒等式应注意(1)明确初始值n 0的取值并验证n =n 0时等式成立.(2)由n =k 证明n =k +1时,弄清左边增加的项,且明确变形目标.(3)掌握恒等变形常用的方法:①因式分解;②添拆项;③配方法.例7:数列{an}满足Sn =2n -a n (n ∈N*).(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ;(2)用数学归纳法由此猜想a n =2n -12n -1(n ∈N *). (2)证明:①当n =1时,a 1=1,结论成立.②假设n =k (k ≥1且k ∈N *)时,结论成立,即a k =2k -12k -1.那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k . ∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k .这表明n =k +1时,结论成立.由①②知猜想a n =2n -12n -1(n ∈N *)成立. 例8:已知数列{a n }的前n 项和S n 满足:S n =a n 2+1a n-1,且a n >0,n ∈N *. (1)求a 1,a 2,a 3,并猜想{a n }的通项公式; (2)证明通项公式的正确性.解:(1)当n =1时,由已知得a 1=a 12+1a 1-1,a 21+2a 1-2=0.∴a 1=3-1或a 1=-3-1(舍去). 当n =2时,由已知得a 1+a 2=a 22+1a 2-1,将a 1=3-1代入并整理得a 22+23a 2-2=0. ∴a 2=5-3或a 2=-5-3(舍去).同理可得a 3=7- 5.由a 1,a 2,a 3,猜想a n =2n +1-2n -1(n ∈N *).(2)证明:①由(1)的计算过程知,当n =1,2,3时,通项公式成立.②假设当n =k (k ≥3,k ∈N *)时,通项公式成立,即a k =2k +1-2k -1.那么由a k +1=S k +1-S k =a k +12+1a k +1-a k 2-1a k,将a k =2k +1-2k -1代入上式并整理得 a 2k +1+22k +1a k +1-2=0,解得:a k +1=2k +3-2k +1或a k +1=-2k +3-2k +1(舍去).即当n =k +1时,通项公式也成立.由①和②,可知对所有n ∈N *,a n =2n +1-2n -1都成立.例9:用数学归纳法证明1+2+3+…+n 2=n 4+n 22,则当n =k +1时左端应在n =k 的基础上加上( ) A .k 2+1B .(k +1)2C.k +14+k +122D .(k 2+1)+(k 2+2)+(k 2+3)+…+(k +1)2 解:当n =k 时,等式左端=1+2+…+k 2,当n =k +1时,等式左端=1+2+…+k 2+221(1)(1)k k k +⋯++++个.答案:D例10:如果命题p (n )对n =k 成立,则它对n =k +2也成立.若p (n )对n =2成立,则下列结论正确的是( )A .p (n )对所有正整数n 都成立B .p (n )对所有正偶数n 都成立C .p (n )对所有正奇数n 都成立D .p (n )对所有自然数n 都成立解:若n =2p (n )成立,则n =4,6,8,…,时p (n )成立.答案:B例11:用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值最小应取( ) A .7 B .8 C .9 D .10解:可逐个验证,n =8成立.答案:B例12.下列代数式(其中k ∈N *)能被9整除的是( )A .6+6·7kB .2+7k -1C .2(2+7k +1)D .3(2+7k )解:(1)当k =1时,显然只有3(2+7k )能被9整除.(2)假设当k =n (n ∈N *)时,命题成立,即3(2+7n )能被9整除,那么3(2+7n +1)=21(2+7n )-36.这就是说,k =n +1时命题也成立.由(1)(2)可知,命题对任何k ∈N *都成立.答案:D例13:若凸n (n ≥4)边形有f (n )条对角线,是凸(n +1)边形的对角线条数f (n +1)为( )A .f (n )+n -2B .f (n )+n -1C .f (n )+nD .f (n )+n +1解:由题意知f (n +1)-f (n )=n -1,故f (n +1)=f (n )+n -1.答案:B例14:在数列{a n }中,a 1=13且S n =n (2n -1)a n ,通过计算a 2,a 3,a 4,猜想a n 的表达式是____________. 解:a 1=13=11×3,a 2=115=13×5,a 3=135=15×7,∴a n =12n -12n +1.例15:用数学归纳法证明“当n 为正奇数时,x n +y n 能被x +y 整除”,当第二步假设n =2k -1(k ∈N *)命题为真时,进而需证n =________时,命题亦真. 解:∵n 为正奇数,假设n =2k -1成立后,需证明的应为n =2k +1时成立.答案:2k +1例16:用数学归纳法证明下面的等式12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +12. 证明:(1)当n =1时,左边=12=1,右边=(-1)0·1×1+12=1,∴原等式成立. (2)假设n =k (k ∈N *,k ≥1)时,等式成立,即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1k k +12. 那么,当n =k +1时,则有12-22+32-42+…+(-1)k -1·k 2+(-1)k (k +1)2=(-1)k -1k k +12+(-1)k ·(k +1)2=(-1)k ·k +12[-k +2(k +1)]=(-1)k k +1k +22,∴n =k +1时,等式也成立, 由(1)(2)得对任意n ∈N *有12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n n +12. 例17:已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=b n 1-4a 2n(n ∈N *),且点P 1的坐标为(1,-1). *解:(1)由题意得a 1=1,b 1=-1,b 2=-11-4×1=13,a 2=1×13=13,∴P 2(13,13). ∴直线l 的方程为y +113+1=x -113-1,即2x +y =1. (2)①当n =1时,2a 1+b 1=2×1+(-1)=1成立.②假设n =k (k ≥1且k ∈N *)时,2a k +b k =1成立.则2a k +1+b k +1=2a k ·b k +1+b k +1=b k 1-4a 2k ·(2a k +1)=b k 1-2a k =1-2a k 1-2a k=1, ∴当n =k +1时,2a k +1+b k +1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.例18:已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1).试比较11+a 1+11+a 2+11+a 3+…+1与1的大小,并说明理由. 解:∵f ′(x )=x 2-1,a n +1≥f ′(a n +1),∴a n +1≥(a n +1)2-1.∵函数g (x )=(x +1)2-1=x 2+2x 在区间[-1,+∞)上单调递增,于是由a 1≥1,得a 2≥(a 1+1)2-1≥22-1,进而得a 3≥(a 2+1)2-1≥24-1>23-1,由此猜想:a n ≥2n -1.下面用数学归纳法证明这个猜想:①当n =1时,a 1≥21-1=1,结论成立;②假设当n =k (k ≥1且k ∈N *)时结论成立,即a k ≥2k -1,则当n =k +1时,由g (x )=(x +1)2-1在区间[-1,+∞)上单调递增知,a k +1≥(a k +1)2-1≥22k -1≥2k +1-1,即n =k +1时,结论也成立.由①、②知,对任意n ∈N *,都有a n ≥2n -1.即1+a n ≥2n .∴11+a n ≤12n . ∴11+a 1+11+a 2+11+a 3+…+11+a n ≤12+122+123+…+12n =1-12n ⎛⎫ ⎪⎝⎭<1.。
数学归纳法⼀(讲解,练习及答案)数学归纳法(Ⅰ)数学归纳法的定义:⼀般地,证明⼀个与正整数n有关的命题,可按下列步骤进⾏:(1)(归纳奠基)证明当n取第⼀个值n0时,命题成⽴;(2)(归纳递推)假设时,命题成⽴,证明当时,命题也成⽴.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成⽴.其证明的⽅法叫做数学归纳法.说明:1、适⽤范围:常⽤来证明与⾃然数有关的命题.2、归纳奠基与归纳递推这两步缺⼀不可.(1)缺少第⼆步归纳递推致错举例:例如:⼀个数列的通项公式是,容易验证,如果由此作出结论对于任何,都成⽴,那就是错误的,事实上.可见,只有归纳奠基,⽽没有归纳递推得到的结论是靠不住的.(2)缺少第⼀步归纳奠基致错举例:例如:证明等式时,假设n=k时等式成⽴,即.那么.这就是说当时等式也成⽴.但是当n=1时,左边=2,右边=3,显然等式不成⽴.3、起始值n0不⼀定等于1.4、注意从k到k+1的跨度,即k到k+1增加了多少项.例1、⽤数学归纳法证明:n∈N*时,证明:(1)当n=1时,左边==,右边===左边,所以等式成⽴.(2)假设当n=k(k∈N*)时等式成⽴,即有++…+=,则当n=k+1时,++…++=+====所以当n=k+1时,等式也成⽴.∴由(1)(2)得等式成⽴.例2、试证:当n为正整数时,能被64整除.证明:(1)当n=1时,f(1)=34-8-9=64,能被64整除.(2)假设当n=k(k≥1,k∈N*)时,f(k)=32k+2-8k-9能被64整除.当n=k+1时,f(k+1)=32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9×8k+9×9-8(k+1)-9=9(32k+2-8k-9)+64(k+1).即f(k+1)能被64整除.∴由(1)(2)得所求证成⽴.例3、平⾯内有n个圆,其中每两个圆都交于两点,且⽆三个圆交于⼀点,求证:这n个圆将平⾯分成n2-n+2个部分.证明:(1)当n=1时,1个圆将平⾯分成2个部分,显然结论成⽴.(2)假设当n=k(k∈N*)时,k个圆将平⾯分成k2-k+2个部分.当n=k+1时,第k+1个圆交前⾯k个圆于2k个点,这2k个点将圆分成2k段,每段将各⾃所在区域⼀分为⼆,于是增加了2k个区域,所以这k+1个圆将平⾯分成k2-k+2+2k个部分,即(k+1)2-(k+1)+2个部分.故n=k+1时,结论成⽴.∴由(1),(2)可知所求证成⽴.例4、数列{b n}的通项为,证明:对任意的,不等式成⽴.证明:(1)当n=1时,左边=,右边==左边(备注:视频中书写有误),∴结论成⽴.(2)假设当n=k时,不等式成⽴,即成⽴.当n=k+1时,左边所以当n=k+1时,不等式也成⽴.∴由①、②可得不等式恒成⽴.练习:⼀、选择题1、设f(n)=+++…+(n∈N*),那么f(n+1)-f(n)等于()A.B.C.+D.-2、凸n边形有f(n)条对⾓线,则凸n+1边形有对⾓线条数f(n+1)为()A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-23、⽤数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为()A.2k+1 B.2(2k+1)C.D.4、⽤数学归纳法证明“1+++…+<n(n∈N*,n>1)”时,由n=k(k>1)不等式成⽴,推证n=k+1时,左边应增加的项数是()A.2k-1B.2k-1C.2k D.2k+1⼆、填空题5、⽤数学归纳法证明:“++…+≥1(n∈N*)”时,在验证初始值不等式成⽴时,左边的式⼦应是“__________”.三、解答题6、⽤数学归纳法证明:对任意的n∈N*,1-+-+…+-=++…+.、7、⽤数学归纳法证明(3n+1)·7n-1(n∈N*)能被9整除.8、⽤数学归纳法证明:1+++…+≥(n∈N*).9、平⾯内有n条直线,其中⽆任何两条平⾏,也⽆任何三条共点,求证:这n条直线把平⾯分割成(n2+n+2)块.10、求证:.参考答案:1、D解析:f(n+1)-f(n)=++…+++-(++…+)=+-=-.2、C解析:由n边形到n+1边形,增加的对⾓线是增加的⼀个顶点与原n-2个顶点连成的n-2条对⾓线,以及原先的⼀条边成了对⾓线.3、B解析:当n=1时,显然成⽴.当n=k时,左边=(k+1)(k+2)·…·(k+k),当n=k+1时,左边=(k+1+1)(k+1+2)·…·(k+1+k)(k+1+k+1)=(k+2)(k+3)·…·(k+k)(k+1+k)(k+1+k+1)=(k+1)(k+2)·…·(k+k)=(k+1)(k+2)·…·(k+k)2(2k+1).4、C解析:左边的特点:分母逐渐增加1,末项为;由n=k,末项为到n=k+1,末项为=,∴应增加的项数为2k.5、++6、(1)当n=1时,左边=1-===右边,∴等式成⽴.(2)假设当n=k(k≥1,k∈N*)时,等式成⽴,即1-+-+…+-=++…+.则当n=k+1时,1-+-+…+-+-=++…++-=++…+++(-)=++…+++,即当n=k+1时,等式也成⽴,所以由(1)(2)知对任意的n∈N*等式成⽴.7、证明:(1)当n=1时,4×7-1=27能被9整除,命题成⽴.(2)假设n=k (k≥1,k∈N*)时命题成⽴,即(3k+1)·7k-1能被9整除.当n=k+1时,[(3k+3)+1]·7k+1-1=(3k+1+3)·7·7k-1=7·(3k+1)·7k-1+21·7k=[(3k+1)·7k-1]+18k·7k+6·7k+21·7k=[(3k+1)·7k-1]+18k·7k+27·7k,由归纳假设(3k+1)·7k-1能被9整除,⼜因为18k·7k+27·7k能被9整除,所以[3(k+1)+1] ·7k+1-1能被9整除,即n=k+1时命题成⽴.由(1)(2)知,对所有的正整数n,命题成⽴.9、证明:(1)当n=1时,1条直线把平⾯分成2块,⼜(12+1+2)=2,命题成⽴.(2)假设n=k,k≥1时命题成⽴,即k条满⾜题设的直线把平⾯分成(k2+k+2)块,那么当n=k +1时,第k+1条直线被k 条直线分成k+1段,每段把它们所在的平⾯块⼜分成了2块,因此,增加了k +1个平⾯块.所以k+1条直线把平⾯分成了(k2+k+2)+k+1=[(k+1) 2+(k+1)+2]块,这说明当n=k+1时,命题也成⽴.由(1)(2)知,对⼀切n∈N*,命题都成⽴.10、证明:(1)当n=1时,左边=,不等式成⽴.(2)假设n=k时命题成⽴,即,则当n=k+1时,=()++>1+=1+.这就是说,当时,不等式成⽴.由(1)(2)知原不等式成⽴.。
数学归纳法是一种证明方法,用于证明与自然数有关的命题。
它分为两个步骤:基础步骤和归纳步骤。
基础步骤:证明当自然数n等于某个特定值时,命题成立。
归纳步骤:假设当自然数n等于某个特定值时,命题成立,然后证明当n等于下一个值时,命题也成立。
下面是一个典型的数学归纳法例题:
例题:证明对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1) / 2。
基础步骤:当n等于1时,左边的表达式为1,右边的表达式也为1,所以当n等于1时,命题成立。
归纳步骤:假设当n等于k时,命题成立,即1 + 2 + 3 + ... + k = k(k + 1) / 2。
我们需要证明当n等于k+1时,命题也成立。
根据归纳假设,我们有1 + 2 + 3 + ... + k = k(k + 1) / 2。
将等式两边都加上k+1,得到1 + 2 + 3 + ... + k + (k+1) = k(k + 1) / 2 + (k+1)。
化简得到(k+1)(k+2) / 2 = k(k + 1) / 2 + (k+1)。
继续化简得到k^2 + 3k + 2 = k^2 + k + 2k + 2。
整理得到2k = k,显然这个等式不成立。
所以我们的归纳假设是错误的,即当n等于k+1时,命题不成立。
这说明我们的数学归纳法无法证明该命题对于任意正整数n都成立。
总结:数学归纳法是一种常用的证明方法,但并不是所有与自然数有关的命题都可以通过数学归纳法来证明。
在使用数学归纳法时,需要注意基础步骤和归纳步骤的正确性,以及是否存在反例。
第七节 数学归纳法知识点 数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立.(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 易误提醒 运用数学归纳法应注意:(1)第一步验证n =n 0时,n 0不一定为1,要根据题目要求选择合适的起始值. (2)由n =k 时命题成立,证明n =k +1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法.[自测练习]1.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:从n 到n 2共有n 2-n +1个数,所以f (n )中共有n 2-n +1项,且f (2)=12+13+14,故选D.答案:D2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n +1=2⎝⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( )A .k +1B .k +2C .2k +2D .2(k +2)解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B考点一 用数学归纳法证明等式|求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立.(2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k·1·3·5·…·(2k -1).当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1).这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立.1.用数学归纳法证明下面的等式: 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1?2.证明:(1)当n =1时,左边=12=1, 右边=(-1)0·1×?1+1?2=1,∴原等式成立.(2)假设n =k (k ∈N *,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k 2=(-1)k -1k ?k +1?2.那么,当n =k +1时,则有 12-22+32-42+…+(-1)k -1·k 2+(-1)k ·(k +1)2=(-1)k -1k ?k +1?2+(-1)k·(k +1)2=(-1)k·k +12[-k +2(k +1)]=(-1)k ?k +1??k +2?2.∴n =k +1时,等式也成立, 由(1)(2)知对任意n ∈N *,有 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1?2.考点二 用数学归纳法证明不等式|设数列{a n }各项均为正数,且满足a n +1=a n -a 2n . 求证:对一切n ≥2,都有a n ≤1n +2. [证明] ∵数列{a n }各项均为正数,且满足a n +1=a n -a 2n , ∴a 2=a 1-a 21>0,解得0<a 1<1.当n =2时,a 3=a 2-a 22=14-⎝ ⎛⎭⎪⎫a 2-122≤14,不等式成立,假设当n =k (k ≥2)时,不等式成立,即a k ≤1k +2, 则当n =k +1时,a k +1=a k -a 2k =14-⎝ ⎛⎭⎪⎫a k -122≤14-⎝ ⎛⎭⎪⎫1k +2-122=k +1?k +2?2<k +1?k +1??k +3?=1?k +1?+2,∴当n =k +1时,不等式也成立, 由数学归纳法知,对一切n ≥2,都有a n ≤1n +2.2.数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明:1S 1+1S 2+…+1S n >nn +1.解:(1)证明:∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n,即1a n +1-1a n=2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.(2)由(1)知1a n =2n -1,∴S n =n ?1+2n -1?2=n 2.证明:法一:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n ?n +1?=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.法二:(数学归纳法)当n=1时,1S1=1,nn+1=12,不等式成立.假设当n=k时,不等式成立,即1S1+1S2+…+1S k>kk+1.则当n=k+1时,1S1+1S2+…+1S k+1S k+1>kk+1+1?k+1?2,又k?k+1?+1?k+1?2-k+1k+2=1-1k+1+1?k+1?2-1+1k+2=1k+2-k?k+1?2=1?k+2??k+1?2>0,∴1S1+1S2+…+1S k+1S k+1>k+1k+2,∴原不等式成立.考点三归纳—猜想—证明问题|将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…,分别计算各组包含的正整数的和如下,试猜测S1+S3+S5+…+S2n-1的结果,并用数学归纳法证明.S1=1,S2=2+3=5,S3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,S6=16+17+18+19+20+21=111,…[解] 由题意知,当n=1时,S1=1=14;当n=2时,S1+S3=16=24;当n=3时,S1+S3+S5=81=34;当n=4时,S1+S3+S5+S7=256=44.猜想:S1+S3+S5+…+S2n-1=n4.下面用数学归纳法证明:(1)当n=1时,S1=1=14,等式成立.(2)假设当n=k(k∈N*)时等式成立,即S1+S3+S5+…+S2k-1=k4,那么,当n=k+1时,S1+S3+S5+…+S2k-1+S2k+1=k4+[(2k2+k+1)+(2k2+k+2)+…+(2k2+k+2k+1)]=k4+(2k+1)(2k2+2k+1)=k4+4k3+6k2+4k+1=(k+1)4,这就是说,当n=k+1时,等式也成立.根据(1)和(2),可知对于任意的n∈N*,S1+S3+S5+…+S2n-1=n4都成立.3.设a >0,f (x )=axa +x,令a 1=1,a n +1=f (a n ), n ∈N *.(1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.解:(1)∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a ;a 3=f (a 2)=a 2+a ;a 4=f (a 3)=a3+a .猜想a n =a?n -1?+a (n ∈N *).(2)证明:①易知n =1时,猜想正确. ②假设n =k 时猜想正确,即a k =a?k -1?+a ,则a k +1=f (a k )=a ·a ka +a k =a ·a?k -1?+a a +a?k -1?+a=a ?k -1?+a +1=a[?k +1?-1]+a.这说明,n =k +1时猜想正确. 由①②知,对于任意的n ∈N *,都有a n =a?n -1?+a成立.14.数学归纳法在证明不等式中的易误点【典例】 设函数f (x )=x -sin x ,数列{a n }满足a n +1=f (a n ). (1)若a 1=2,试比较a 2与a 3的大小;(2)若0<a 1<1,求证:对任意n ∈N *,0<a n <1恒成立.[解] (1)当a 1=2时,a 2=f (2)=2-sin 2∈(0,2),所以sin a 2>0,又a 3=f (a 2)=a 2-sin a 2,所以a 3-a 2=-sin a 2<0,所以a 2>a 3.(2)证明:用数学归纳法证明当0<a 1<1时,对任意n ∈N *,0<a n <1恒成立. ①当n =1时,0<a 1<1,结论成立;②假设当n =k (k ≥1,k ∈N *)时,0<a k <1,所以sin a k >0,则当n =k +1时,a k +1-a k =-sin a k <0,所以a k +1<a k <1.因为f (x )=x -sin x , 当x ∈(0,1)时,f ′(x )=1-cos x >0, 所以f (x )是(0,1)上的单调递增函数,所以a k +1=f (a k )>f (0)=0,即0<a k +1<1, 故当n =k +1时,结论成立.综上可得,当0<a 1<1时,对任意n ∈N *,0<a n <1恒成立.[易误点评] (1)不会作差比较a 2与a 3大小,同时忽视了sin 2的值大小. (2)证明n =k +1成立时用不归纳做证n =k 成立条件导致失误.[防范措施] (1)用数学归纳证明不等式的关键是由n =k 时命题成立,证明n =k +1时命题成立.(2)在归纳假设使用后,注意最后结论证明方法的选择.[跟踪练习] 若函数f (x )=x 2-2x -3,定义数列{x n }如下:x 1=2,x n +1是过点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴的交点的横坐标,试运用数学归纳法证明:2≤x n <x n +1<3.证明:(1)当n =1时,x 1=2,f (x 1)=-3,Q 1(2,-3).∴直线PQ 1的方程为y =4x -11,令y =0,得x 2=114,因此,2≤x 1<x 2<3,即n =1时结论成立.(2)假设当n =k 时,结论成立,即2≤x k <x k +1<3. ∴直线PQ k +1的方程为y -5=f ?x k +1?-5x k +1-4(x -4).又f (x k +1)=x 2k +1-2x k +1-3,代入上式,令y =0,得x k +2=3+4x k +12+x k +1=4-52+x k +1,由归纳假设,2<x k +1<3,x k +2=4-52+x k +1<4-52+3=3;x k +2-x k +1=?3-x k +1??1+x k +1?2+x k +1>0,即x k+1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由(1),(2)知对任;意的正整数n,2≤x n <x n +1<3.A 组 考点能力演练1.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N +,n ≥2).证明:(1)当n =2时,1+122=54<2-12=32,命题成立.(2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1k. 当n =k +1时,1+122+132+…+1k 2+1?k +1?2<2-1k +1?k +1?2<2-1k +1k ?k +1?=2-1k +1k-1k +1=2-1k +1命题成立. 由(1),(2)知原不等式在n ∈N +,n ≥2时均成立.2.已知数列{a n }的前n 项和为S n ,通项公式为a n =1n f (n )=⎩⎪⎨⎪⎧S 2n ,n =1,S 2n -S n -1,n ≥2,(1)计算f (1),f (2),f (3)的值;(2)比较f (n )与1的大小,并用数学归纳法证明你的结论. 证明:(1)由已知f (1)=S 2=1+12=32,f (2)=S 4-S 1=12+13+14=1312, f (3)=S 6-S 2=13+14+15+16=1920;(2)由(1)知f (1)>1,f (2)>1;下面用数学归纳法证明:当n ≥3时,f (n )<1. ①由(1)知当n =3时,f (n )<1;②假设n =k (k ≥3)时,f (k )<1,即f (k )=1k +1k +1+…+12k<1,那么f (k +1)=1k +1+1k +2+…+12k +12k +1+12k +2=⎝ ⎛⎭⎪⎫1k +1k +1+1k +2+…+12k +12k +1+12k +2-1k <1+⎝ ⎛⎭⎪⎫12k +1-12k +⎝ ⎛⎭⎪⎫12k +2-12k =1+2k -?2k +1?2k ?2k +1?+2k -?2k +2?2k ?2k +2?=1-12k ?2k +1?-1k ?2k +2?<1,所以当n =k +1时,f (n )<1也成立.由①和②知,当n ≥3时,f (n )<1.所以当n =1和n =2时,f (n )>1;当n ≥3时,f (n )<1.3.(2015·安庆模拟)已知数列{a n }满足a 1=a >2,a n =a n -1+2(n ≥2,n ∈N *). (1)求证:对任意n ∈N *,a n >2;(2)判断数列{a n }的单调性,并说明你的理由;(3)设S n 为数列{a n }的前n 项和,求证:当a =3时,S n <2n +43.解:(1)证明:用数学归纳法证明a n >2(n ∈N *); ①当n =1时,a 1=a >2,结论成立;②假设n =k (k ≥1)时结论成立,即a k >2,则n =k +1时,a k +1=a k +2>2+2=2,所以n =k +1时,结论成立.故由①②及数学归纳法原理,知对一切的n ∈N *,都有a n >2成立. (2){a n }是单调递减的数列.因为a 2n +1-a 2n =a n +2-a 2n =-(a n -2)(a n +1),又a n >2,所以a 2n +1-a 2n <0,所以a n +1<a n .这说明{a n }是单调递减的数列. (3)证明:由a n +1=a n +2,得a 2n +1=a n +2,所以a 2n +1-4=a n -2.根据(1)知a n >2(n ∈N *),所以a n +1-2a n -2=1a n +1+2<14,所以a n +1-2<14(a n -2)<⎝ ⎛⎭⎪⎫142·(a n -1-2)<…<⎝ ⎛⎭⎪⎫14n(a 1-2).所以,当a =3时,a n +1-2<⎝ ⎛⎭⎪⎫14n ,即a n +1<⎝ ⎛⎭⎪⎫14n+2.当n =1时,S 1=3<2+43.当n ≥2时,S n =3+a 2+a 3+…+a n <3+⎝ ⎛⎭⎪⎫14+2+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫142+2+…+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫14n -1+2=3+2(n -1)+141-14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n -1=2n +1+13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n -1<2n +43.综上,当a =3时,S n <2n +43(n ∈N *).。
第七节 数学归纳法知识点 数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行: (1)(归纳奠基)证明当n 取第一个值n 0(n 0∈N *)时命题成立.(2)(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立. 易误提醒 运用数学归纳法应注意:(1)第一步验证n =n 0时,n 0不一定为1,要根据题目要求选择合适的起始值. (2)由n =k 时命题成立,证明n =k +1时命题成立的过程中,一定要用到归纳假设,否则就不是数学归纳法.[自测练习]1.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14 C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析:从n 到n 2共有n 2-n +1个数,所以f (n )中共有n 2-n +1项,且f (2)=12+13+14,故选D.答案:D2.(2016·黄山质检)已知n 为正偶数,用数学归纳法证明1-12+13-14+…+1n +1=2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证n =( )时等式成立( )A .k +1B .k +2C .2k +2D .2(k +2)解析:根据数学归纳法的步骤可知,则n =k (k ≥2为偶数)下一个偶数为k +2,故选B. 答案:B考点一 用数学归纳法证明等式|求证:(n +1)(n +2)·…·(n +n )=2n ·1·3·5·…·(2n -1)(n ∈N *). [证明] (1)当n =1时,等式左边=2,右边=21·1=2,∴等式成立.(2)假设当n =k (k ∈N *)时,等式成立,即(k +1)(k +2)·…·(k +k )=2k ·1·3·5·…·(2k -1). 当n =k +1时,左边=(k +2)(k +3)·…·2k ·(2k +1)(2k +2) =2·(k +1)(k +2)(k +3)·…·(k +k )·(2k +1) =2·2k ·1·3·5·…·(2k -1)·(2k +1) =2k +1·1·3·5·…·(2k -1)(2k +1). 这就是说当n =k +1时,等式成立. 根据(1),(2)知,对n ∈N *,原等式成立. 1.用数学归纳法证明下面的等式: 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1?2.证明:(1)当n =1时,左边=12=1, 右边=(-1)0·1×?1+1?2=1,∴原等式成立.(2)假设n =k (k ∈N *,k ≥1)时,等式成立, 即有12-22+32-42+…+(-1)k -1·k2=(-1)k -1k ?k +1?2.那么,当n =k +1时,则有 12-22+32-42+…+(-1)k -1·k 2+(-1)k·(k +1)2=(-1)k -1k ?k +1?2+(-1)k ·(k +1)2=(-1)k·k +12[-k +2(k +1)]=(-1)k?k +1??k +2?2.∴n =k +1时,等式也成立, 由(1)(2)知对任意n ∈N *,有 12-22+32-42+…+(-1)n -1·n 2=(-1)n -1n ?n +1?2.考点二 用数学归纳法证明不等式|设数列{a n }各项均为正数,且满足a n +1=a n -a 2n .求证:对一切n ≥2,都有a n ≤1n +2.[证明] ∵数列{a n }各项均为正数,且满足a n +1=a n -a 2n , ∴a 2=a 1-a 21>0,解得0<a 1<1. 当n =2时,a 3=a 2-a 22=14-⎝⎛⎭⎪⎫a 2-122≤14,不等式成立,假设当n =k (k ≥2)时,不等式成立,即a k ≤1k +2, 则当n =k +1时,a k +1=a k -a 2k =14-⎝⎛⎭⎪⎫a k -122≤14-⎝⎛⎭⎪⎫1k +2-122=k +1?k +2?2<k +1?k +1??k +3?=1?k +1?+2,∴当n =k +1时,不等式也成立,由数学归纳法知,对一切n ≥2,都有a n ≤1n +2.2.数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n ,并证明:1S 1+1S 2+…+1S n >nn +1.解:(1)证明:∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n ,即1a n +1-1a n=2,故数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,2为公差的等差数列.(2)由(1)知1a n=2n -1,∴S n =n ?1+2n -1?2=n 2.证明:法一:1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n ?n +1?=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.法二:(数学归纳法)当n =1时,1S 1=1,n n +1=12,不等式成立.假设当n =k 时,不等式成立,即1S 1+1S 2+…+1S k >kk +1.则当n =k +1时,1S 1+1S 2+…+1S k +1S k +1>k k +1+1?k +1?2,又k ?k +1?+1?k +1?2-k +1k +2=1-1k +1+1?k +1?2-1+1k +2=1k +2-k ?k +1?2=1?k +2??k +1?2>0, ∴1S 1+1S 2+…+1S k +1S k +1>k +1k +2, ∴原不等式成立.考点三 归纳—猜想—证明问题|将正整数作如下分组:(1),(2,3),(4,5,6),(7,8,9,10),(11,12,13,14,15),(16,17,18,19,20,21),…,分别计算各组包含的正整数的和如下,试猜测S 1+S 3+S 5+…+S 2n-1的结果,并用数学归纳法证明. S 1=1, S 2=2+3=5, S 3=4+5+6=15,S4=7+8+9+10=34,S5=11+12+13+14+15=65,S6=16+17+18+19+20+21=111,…[解]由题意知,当n=1时,S1=1=14;当n=2时,S1+S3=16=24;当n=3时,S1+S3+S5=81=34;当n=4时,S1+S3+S5+S7=256=44.猜想:S1+S3+S5+…+S2n-1=n4.下面用数学归纳法证明:(1)当n=1时,S1=1=14,等式成立.(2)假设当n=k(k∈N*)时等式成立,即S1+S3+S5+…+S2k-1=k4,那么,当n=k+1时,S1+S3+S5+…+S2k-1+S2k+1=k4+[(2k2+k+1)+(2k2+k+2)+…+(2k2+k+2k+1)]=k4+(2k+1)(2k2+2k+1)=k4+4k3+6k2+4k+1=(k+1)4,这就是说,当n=k+1时,等式也成立.根据(1)和(2),可知对于任意的n∈N*,S1+S3+S5+…+S2n-1=n4都成立.3.设a>0,f(x)=axa+x,令a1=1,a n+1=f(a n),n∈N*.(1)写出a2,a3,a4的值,并猜想数列{a n}的通项公式;(2)用数学归纳法证明你的结论.解:(1)∵a1=1,∴a2=f(a1)=f(1)=a1+a ;a3=f(a2)=a2+a;a4=f(a3)=a3+a.猜想a n=a?n-1?+a(n∈N*).(2)证明:①易知n=1时,猜想正确.②假设n =k 时猜想正确,即a k =a?k -1?+a,则a k +1=f (a k )=a ·a ka +a k =a ·a ?k -1?+a a +a ?k -1?+a=a ?k -1?+a +1=a[?k +1?-1]+a.这说明,n =k +1时猜想正确. 由①②知,对于任意的n ∈N *,都有a n =a?n -1?+a成立.14.数学归纳法在证明不等式中的易误点【典例】 设函数f (x )=x -sin x ,数列{a n }满足a n +1=f (a n ). (1)若a 1=2,试比较a 2与a 3的大小;(2)若0<a 1<1,求证:对任意n ∈N *,0<a n <1恒成立.[解] (1)当a 1=2时,a 2=f (2)=2-sin 2∈(0,2),所以sin a 2>0,又a 3=f (a 2)=a 2-sin a 2, 所以a 3-a 2=-sin a 2<0,所以a 2>a 3.(2)证明:用数学归纳法证明当0<a 1<1时,对任意n ∈N *,0<a n <1恒成立. ①当n =1时,0<a 1<1,结论成立;②假设当n =k (k ≥1,k ∈N *)时,0<a k <1,所以sin a k >0,则当n =k +1时,a k +1-a k =-sin a k <0,所以a k +1<a k <1.因为f (x )=x -sin x , 当x ∈(0,1)时,f ′(x )=1-cos x >0, 所以f (x )是(0,1)上的单调递增函数, 所以a k +1=f (a k )>f (0)=0,即0<a k +1<1, 故当n =k +1时,结论成立.综上可得,当0<a 1<1时,对任意n ∈N *,0<a n <1恒成立.[易误点评] (1)不会作差比较a 2与a 3大小,同时忽视了sin 2的值大小. (2)证明n =k +1成立时用不归纳做证n =k 成立条件导致失误.[防范措施] (1)用数学归纳证明不等式的关键是由n =k 时命题成立,证明n =k +1时命题成立.(2)在归纳假设使用后,注意最后结论证明方法的选择.[跟踪练习] 若函数f (x )=x 2-2x -3,定义数列{x n }如下:x 1=2,x n +1是过点P (4,5),Q n (x n ,f (x n ))的直线PQ n 与x 轴的交点的横坐标,试运用数学归纳法证明:2≤x n <x n +1<3.证明:(1)当n =1时,x 1=2,f (x 1)=-3,Q 1(2,-3).∴直线PQ 1的方程为y =4x -11, 令y =0,得x 2=114,因此,2≤x 1<x 2<3,即n =1时结论成立. (2)假设当n =k 时,结论成立,即2≤x k <x k +1<3. ∴直线PQ k +1的方程为y -5=f ?x k +1?-5x k +1-4(x -4).又f (x k +1)=x 2k +1-2x k +1-3,代入上式,令y =0,得x k +2=3+4x k +12+x k +1=4-52+x k +1,由归纳假设,2<x k +1<3,x k +2=4-52+x k +1<4-52+3=3;x k +2-x k +1=?3-x k +1??1+x k +1?2+x k +1>0,即x k +1<x k +2.所以2≤x k +1<x k +2<3,即当n =k +1时,结论成立. 由(1),(2)知对任;意的正整数n,2≤x n <x n +1<3.A 组 考点能力演练1.用数学归纳法证明:1+122+132+…+1n 2<2-1n (n ∈N +,n ≥2). 证明:(1)当n =2时,1+122=54<2-12=32,命题成立. (2)假设n =k 时命题成立,即 1+122+132+…+1k 2<2-1k .当n =k +1时,1+122+132+…+1k 2+1?k +1?2<2-1k +1?k +1?2<2-1k +1k ?k +1?=2-1k +1k-1k +1=2-1k +1命题成立. 由(1),(2)知原不等式在n ∈N +,n ≥2时均成立.2.已知数列{a n }的前n 项和为S n ,通项公式为a n =1n f (n )=⎩⎨⎧S 2n ,n =1,S 2n -S n -1,n ≥2,(1)计算f (1),f (2),f (3)的值;(2)比较f (n )与1的大小,并用数学归纳法证明你的结论. 证明:(1)由已知f (1)=S 2=1+12=32, f (2)=S 4-S 1=12+13+14=1312, f (3)=S 6-S 2=13+14+15+16=1920; (2)由(1)知f (1)>1,f (2)>1;下面用数学归纳法证明:当n ≥3时,f (n )<1. ①由(1)知当n =3时,f (n )<1;②假设n =k (k ≥3)时,f (k )<1,即f (k )=1k +1k +1+…+12k <1,那么f (k +1)=1k +1+1k +2+…+12k +12k +1+12k +2=⎝ ⎛⎭⎪⎫1k +1k +1+1k +2+…+12k +12k +1+12k +2-1k <1+⎝ ⎛⎭⎪⎫12k +1-12k +⎝ ⎛⎭⎪⎫12k +2-12k =1+2k -?2k +1?2k ?2k +1?+2k -?2k +2?2k ?2k +2?=1-12k ?2k +1?-1k ?2k +2?<1,所以当n =k +1时,f (n )<1也成立.由①和②知,当n ≥3时,f (n )<1.所以当n =1和n =2时,f (n )>1;当n ≥3时,f (n )<1.3.(2015·安庆模拟)已知数列{a n }满足a 1=a >2,a n =a n -1+2(n ≥2,n ∈N *). (1)求证:对任意n ∈N *,a n >2;(2)判断数列{a n }的单调性,并说明你的理由;(3)设S n 为数列{a n }的前n 项和,求证:当a =3时,S n <2n +43. 解:(1)证明:用数学归纳法证明a n >2(n ∈N *); ①当n =1时,a 1=a >2,结论成立;②假设n =k (k ≥1)时结论成立,即a k >2,则n =k +1时,a k +1=a k +2>2+2=2,所以n =k +1时,结论成立.故由①②及数学归纳法原理,知对一切的n ∈N *,都有a n >2成立. (2){a n }是单调递减的数列.因为a 2n +1-a 2n =a n +2-a 2n =-(a n -2)(a n +1),又a n >2, 所以a 2n +1-a 2n <0,所以a n +1<a n .这说明{a n }是单调递减的数列.(3)证明:由a n +1=a n +2,得a 2n +1=a n +2,所以a 2n +1-4=a n -2.根据(1)知a n >2(n ∈N *),所以a n +1-2a n -2=1a n +1+2<14,所以a n +1-2<14(a n -2)<⎝ ⎛⎭⎪⎫142·(a n -1-2)<…<⎝ ⎛⎭⎪⎫14n (a 1-2).所以,当a =3时,a n +1-2<⎝ ⎛⎭⎪⎫14n ,即a n +1<⎝ ⎛⎭⎪⎫14n+2.当n =1时,S 1=3<2+43. 当n ≥2时,S n =3+a 2+a 3+…+a n <3+⎝ ⎛⎭⎪⎫14+2+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫142+2+…+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫14n -1+2=3+2(n -1)+141-14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n -1=2n +1+13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n -1<2n +43.综上,当a =3时,S n <2n +43(n ∈N *).。