认识二元一次方程组的教案
- 格式:doc
- 大小:108.30 KB
- 文档页数:5
2024年七年级下册《二元一次方程组》教案2024年七年级下册《二元一次方程组》教案1(约913字)教学目标1.会用加减法解一般地二元一次方程组。
2.进一步理解解方程组的消元思想,渗透转化思想。
3.增强克服困难的勇力,提高学习兴趣。
教学重点把方程组变形后用加减法消元。
教学难点根据方程组特点对方程组变形。
教学过程一、复习引入用加减消元法解方程组。
二、新课。
1.思考如何解方程组(用加减法)。
先观察方程组中每个方程x的系数,y的系数,是否有一个相等。
或互为相反数?能否通过变形化成某个未知数的系数相等,或互为相反数?怎样变形。
学生解方程组。
2.例1.解方程组思考:能否使两个方程中x(或y)的系数相等(或互为相反数)呢?学生讨论,小组合作解方程组。
提问:用加减消元法解方程组有哪些基本步骤?三、练习。
1.P40练习题(3)、(5)、(6)。
2.分别用加减法,代入法解方程组。
四、小结。
解二元一次方程组的加减法,代入法有何异同?五、作业。
P33.习题2.2A组第2题(3)~(6)。
B组第1题。
选作:阅读信息时代小窗口,高斯消去法。
后记:2.3二元一次方程组的应用(1)2024年七年级下册《二元一次方程组》教案2(约900字)教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题难点:寻找等量关系教学过程:看一看:课本99页探究2问题:1“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?思考:这块地还可以怎样分?练一练一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
3.5认识二元一次方程组【教学目标】1.了解二元一次方程、二元一次方程组和它们解的含义.会检验一对数是不是某个二元一次方程组的解.2.会利用二元一次方程组的解的含义判断一组未知数的值是不是二元一次方程组的解.3.会根据实际问题列出简单的二元一次方程或二元一次方程组.4.通过加深对概念的理解,提高对“元”和“次”的认识.5.能够逐步培养类比分析和归纳概括的能力,了解辩证统一的思想.【重点难点】重点:1.掌握二元一次方程及二元一次方程组的概念,理解它们解的含义;2.判断一组数是不是某个二元一次方程组的解.难点:从实际问题中抽象出二元一次方程组的过程,体会数学方程的建模思想.【教学过程】一、创设情境前面我们已经知道本章3.1节的“鸡兔同笼”趣题中存在两个等量关系,并运用一元一次方程知识予以解决.若设兔有x只,鸡有y只,你能根据两个等量关系列出两个方程吗?列出的方程还是一元一次方程吗?从本节课开始,我们继续研究一类一次方程——二元一次方程(组).二、探究归纳探究点1:二元一次方程(组)的概念1.【思考】(1)“鸡兔同笼”趣题中存在两个等量关系是:________.(2)根据两个等量关系所列的方程是:________________________.(3)上述方程是一元一次方程吗?如果不是,请说明理由.(4)它们都有什么共同的特点?你能参照一元一次方程的定义给这样的方程命名吗?(5)要解决上述“鸡兔同笼”问题,(2)中的两个等量关系需要同时成立,于是将两个方程联立{①②,你能给这样的方程组命名吗?2.【归纳总结】(1)含有两个未知数,并且含未知数的项的次数都是1,这样的方程叫作二元一次方程;(2)只含有两个未知数,并且含未知数的项的次数都是1的方程组叫作二元一次方程组.3.【针对性训练】下列方程中,哪些是二元一次方程?不是的说明理由.(1)3pq=-8不是,整式的次数为2(2)2y2-6y=1不是,y的次数为2(3)5(x-y)+2(2x-3y)=4是(4)7x+2=3不是,只有一个未知数探究点2:二元一次方程(组)的解1.【做一做】(1)把满足方程①,且符合实际意义的x,y的值填入下表:x…y…(2)上表中存在哪对x,y的值满足方程②吗?若有,请指出.2.【归纳总结】(1)一般地,使二元一次方程左右两边的值相等的两个未知数的值,叫作二元一次方程的解.一个二元一次方程有无数组解.(2)一般地,对于未知数为x ,y 的二元一次方程组,若x ,y 分别用数c 1,c 2代入,能使每个方程左右两边的值相等,则把(c 1,c 2)叫作这个方程组的一个解,习惯上记作{x =c 1y =c 2.(3)求方程组的解的过程叫作解方程组.讲方程组的一个解的概念.强调方程组的解是相关的一组未知数的值.这些值是相互联系的.而且要满足方程组中的每一个方程,写的时候也要像写方程组一样用“{”括起来.3.【典例评析】出示教材P118例引导学生分析题目的等量关系,列出方程组,并代入数值检验是否是方程组的解. 4.【针对性训练】教材P119练习 三、交流反思今天我们学习了哪些知识? 1.什么是二元一次方程2.一元一次方程与二元一次方程的区别3.根据题意列出二元一次方程4.什么是二元一次方程的解5.什么是二元一次方程组 四、检测反馈1.下列方程组中,不是二元一次方程组的是( )A .{x =1y +2=3 B .{x +y =1,x -y =0.C .{x +y =1xy =0D .{y =x x -2y =1 2.已知x ,y 的值:①{x =2y =2,②{x =3y =2,③{x =-3y =-2,④{x =6y =6,其中,是二元一次方程2x -y =4的解的是 ( ) A .① B .② C .③ D .④3.已知一个二元一次方程组的解是{x =-1,y =-2则这个方程组是 ( )A .{x +y =-3xy =2 B .{x +y =-3x -2y =1C .{2x =y y -x =-3D .{23x -56y =12x +y =-44.已知方程组{mx +y =0x +ny =3的解是{x =1y =-2,则2m +n 的值为 ( )A .1B .2C .3D .05.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下面所列的方程组中符合题意的是( )A .{x +y =2462y =x -2B .{x +y =2462x =y +2 C .{x +y =246y =2x +2 D .{x +y =2462y =x +26.买12支铅笔和5本练习本,其中铅笔每支x 元,练习本每本y 元,共需用4.9元. ①列出关于x ,y 的二元一次方程为________;②若再买同样的铅笔6支和同样的练习本2本,价钱是2.2元,列出关于x ,y 的二元一次方程为________;③若铅笔每支0.2元,则练习本每本________元. 7.在二元一次方程2x -3y =4中,当x =5时,y =________.8.已知{x =-2y =5是二元一次方程2x +6y -407b =10的一个解,则b =________.9.写出一个解为{x =-1y =2的二元一次方程组________.五、布置作业基础:课本P119习题3.5T1 综合:课本P119习题3.5T2六、板书设计3.5认识二元一次方程组1.二元一次方程2.二元一次方程(组)的概念3.解方程组例题当堂检测…… …………………… 七、教学反思本节课主要学习了二元一次方程及其解的概念,二元一次方程组及其解的概念.在教学中,可结合已学过的一元一次方程的概念,让学生归纳总结出二元一次方程、二元一次方程组必须满足的三个条件,以及二者的区别与联系.优点:通过学生的积极参与,培养学生的概括能力,体验成功的快乐,提高学生的学习兴趣.缺点:学生在刚开始接触这部分内容时或多或少会有点不习惯.对二元一次方程及其解的理解不是太好,学习中发现仍有部分同学判断上出问题.。
七年级二元一次方程组教案(必备6篇)七年级二元一次方程组教案第1篇【教学目标】知识目标:①使学生初步理解二元一次方程与一次函数的关系。
②能根据一次函数的图象求二元一次方程组的近似解。
能力目标:通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。
情感目标:通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。
重点要求:1、二元一次方程和一次函数的关系。
2、根据一次函数的图象求二元一次方程组的近似解。
难点突破:经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。
【教学过程】一、学前先思师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?生:代入消元法、加减消元法。
师:请你猜测还有其他的解法吗?生:(小声议论,有人提出图象解法)师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?生:二元一次方程组怎么会有图象?它的图象应该怎样画?生:二元一次方程组的图象解法怎么做?师:同学们都问得很好!那你有喜欢的二元一次方程组吗?生:(比较害羞)师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。
让我们带着同学们提出的问题从二元一次方程开始今天的学习。
二、探究导学题目:判断上面几组解中哪些是二元一次方程的解?生:和不是,其余各组均是方程的解。
师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
认识二元一次方程(组)教学设计贺兰四中黄菊一、教学目标知识与技能:了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
过程与方法:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型。
情感与态度:(1)培养学生良好的数学应用意识。
(2)通过实际问题情景,引出问题并激发学生的学习兴趣。
二、教学重点与难点重点是理解二元一次方程、二元一次方程组等有关概念。
难点是让学生体会方程是刻画现实世界的有效模型,培养学生良好的数学应用意识。
二、教学过程:(一)创设情景,引入新课导语:法国数学家笛卡尔说过:一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程。
因此,一旦解决了方程问题,一切问题将迎刃而解。
(先请一生朗读,再交流感受,从而自然引入课题)设计意图:通过这样的一段话充分引起学生兴趣,顺利引入课题。
(二)复习旧知,引入新知1、什么是一元一次方程?2、什么是一元一次方程的解?设计意图:让学生充分感受类比的数学思想,复习旧知,学习新知,排除畏难情绪。
(三)合作探究,探究新知引例:老牛:累死我了?小马:你还累?这么大的个,才比我多驮了两个老牛:我从你的背上拿来一个,我的包裹数就是你的两倍小马:真的吗?问:小马和老牛各驮了多少个?师:小马:你还累?这么大的个,才比我多驮了两个老牛:我从你的背上拿来一个,我的包裹数就是你的两倍两句话是什么意思?包含怎样的等量关系式?法1:设老牛驮了x个包裹,则小马驮了____个包裹xy=根据题意得__________________1法2:设老牛驮了x个包裹,小马驮了y个包裹根据题意得_______________(生先自己思考,之后与同伴交流,再全班交流)师:思考:上面的方程各自有哪些特点?能否类比一元一次方程给二元一次方程下一个合适的定义?(四人小组讨论后全班交流)明晰:含有两个未知数,且含未知数的项的次数为1的整式方程叫做二元一次方程xy=是二元一次方程吗?为什么?师:为什么是“含未知数的项的次数为1”?方程1练兵场1:1.请判断下列各方程中,哪些是二元一次方程,哪些不是?并说明理由(1)5210(2)21(3)20(4)210(5)235(6)2100x y x y z x y x x a b x xy +=++=+=++++=+= 2(1)537(2)572(3)21(4)11(5)5()2(23)4(6)21x y x xy x y x y x y x +=-==-=-+-==+ 其中二元一次方程的个数是()3、若方程2x 2m+3+3 y 3n-7=0是关于x 、y 的二元一次方程,则m=______,n=______;议一议:在上面的方程x-y=2和x+1=2(y-1)中,x ,y 的含义分别相同吗?明晰:x,y 的含义分别相同.因而x,y 必须同时满足方程x-y=2和x+1=2(y-1)把它们联立起来,得:212(1)x y x y -=⎧⎨+=-⎩ 像这样,把两个一次方程合在一起后共有两个未知数,这样就组成了一个二元一次方程组。
第十二章第一节认识二元一次方程组撰写人:安玉之一、教学目标:知识技能目标:通过实例,了解二元一次方程,二元一次方程组及其解等概念,并会判断一个数是不是某个二元一次方程组的解。
能力目标:培养学生用数学知识解决实际问题的能力,发展学生的观察、归纳、概括的能力情感目标:体会方程是刻画现实世界有效的数学模型,激发学生的求知欲,培养他们勇于探索的精神。
二、重点:二元一次方程、二元一次方程组及其解的概念三、(一)复习【你来当法官】通过调查,在上周的垃圾池清理劳动中,我们班的小红同学和小明同学表现最为积极,所以我们要在他俩中评选一位劳动之星。
可是谁也记不清他们到底干了多少,只记得:他们总共推了12车,而且小明说,他如果再推3车就是小红的2倍。
同学们你能帮老师来判断一下谁能成为这次的劳动之星吗?(3分钟小组合作,能根据我们以前所学的知识解决这个问题吗?如果能,是根据什么来解决的?)【旧知回忆】什么是方程?什么是一元一次方程?方程:含有未知数的是方程一元一次方程:含有个未知数,未知数的次数都是的方程叫做一元一次方程。
(二)新课流程二元一次方程1、结合复习的内容,预习课本,找出什么是二元一次方程,即二元一次方程满足的条件,填充:二元一次方程必须同时满足:①含有个未知数②含有未知数的的次数都是③含有未知数的式子都是2、练习巩固:判断下列方程是否为二元一次方程①1/x + y=1 ②2x+y+z=1 ③ x2 +y=20④x2 +2x+1=0 ⑤2a+3b=5 ⑥2x+10xy =03、列举一个简单二元一次方程eg:x+y=8 (找出能使等式成立的未知数的值,并填充下表)xy你能从表中发现什么问题:结论:二元一次方程组1、判断下列是不是二元一次方程组x +Y= 8,y=1 xy=1(1)(2) (3)5X+3y = 343x+y=-2x-y=31/x – y=1 X+y+z=2(4) (5)X + 1/y=2 X+y=1总结判断二元一次方程组的依据:(1)(2)2、课本p76 A组第二题二元一次方程组的应用:研作例一总结列方程组的方法:1、找出两个变量2、找出两个等式关系练习:鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?初一数学教学案作业纸:必做题:1、如果(m-1)x + (1+m)y + 4=0 是关于x 、y的二元一次方程,则m必须满足的条件是。
七年级数学二元一次方程组教案七年级数学二元一次方程组教案范文一:应用二元一次方程组教学目标:知识与技能目标:通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。
培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。
过程与方法目标:经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。
情感态度与价值观目标:1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。
重点:经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。
难点:确立等量关系,列出正确的二元一次方程组。
教学流程:课前回顾复习:列一元一次方程解应用题的一般步骤情境引入探究1:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?(1)画图法用表示头,先画35个头将所有头都看作鸡的,用表示腿,画出了70只腿还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿四条腿的是兔子(12只),两条腿的是鸡(23只)(2)一元一次方程法:鸡头+兔头=35鸡脚+兔脚=94设鸡有x只,则兔有(35-x)只,据题意得:2x+4(35-x)=94比算术法容易理解想一想:那我们能不能用更简单的方法来解决这些问题呢?回顾上节课学习过的二元一次方程,能不能解决这一问题?(3)二元一次方程法今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?(1)上有三十五头的意思是鸡、兔共有头35个,下有九十四足的意思是鸡、兔共有脚94只.(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;鸡足有2x只;兔足有4y只.解:设笼中有鸡x只,有兔y只,由题意可得:鸡兔合计头xy35足2x4y94解此方程组得:练习1:1.设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=152.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.三、合作探究探究2:以绳测井。
二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
第五章二元一次方程组5.1 认识二元一次方程组第一环节:情境引入内容:(一)情境1实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?请每个学习小组讨论(讨论2分钟,然后发言).教师注意引导学生设两个未知数,从而得出二元一次方程.这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程2-=,若x y老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:()+=-.x y121(二)情境2实物投影,并呈现问题:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?仍请每个学习小组讨论(讨论2分钟,然后发言),老师注意引导学生分析其中有几个未知量,如果分别设未知数,将得到什么样的关系式?这个问题由于涉及到有几个成年人和几个儿童两个未知数,我们设他们中有x个成年人,有y个儿童,在题目的条件中,我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可以得到方程8+=x y和5334+=.x y在这个问题中,可能会有学生认为用一元一次方程也可以解答,我们要肯定学生的做法,并将学生的答案保留下来,放到第二节二元一次方程组解法的学习中去,让学生更有学习的好奇心与积极性.同时告诉学生在某些有两个等量关系的实际问题中,列二元一次方程组比列一元一次方程更快捷、清楚.目的:通过现实情景再现,让学生体会到方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.设计效果:学生通过前面的情景引入,在老师的引导下,列出关注两个未知数的方程,为后续关于二元一次方程的讨论提供了素材,同时,有趣的情境,也激发了学生学习的兴趣.第二环节:新课讲解,练习提高内容:(一)二元一次方程概念的概括提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程.教师对概念进行解析,要求学生注意:这个定义有两个要求:①含有两个未知数;②所含未知数的项的最高次数是一次.再呈现一些关于二元一次方程概念的辨析题,进行巩固练习:1.下列方程有哪些是二元一次方程:(1)093=-+y x ,(2)012232=+-y x ,(3)743=-b a ,(4)113=-y x ,(5)()523=-y x x ,(6)152=-n m . 2.如果方程13221=-+-n m m y x 是二元一次方程,那么m = ,n = .(二)二元一次方程组概念的概括师提请学生思考:上面的方程2121()x y x y -=+=-, 中的x 含义相同吗?y 呢?(两个方程中x 的表示老牛驮的包裹数,y 表示小马的包裹数,x 、y 的含义分别相同.)由于x 、y 的含义分别相同,因而必同时满足2x y -=和()121x y +=-,我们把这两个方程用大括号联立起来,写成()⎩⎨⎧-=+=-.121,2y x y x ,从而得出二元一次方程组的概念:像这样共含有两个未知数的两个一次方程所组成的一组方程.如:⎩⎨⎧=-=+;03,332y x y x ⎩⎨⎧=+=+.8,835y x y x 注意:在方程组中的各方程中的同一个字母必须表示同一个对象.再呈现一些辨析题,让学生进行巩固练习:判断下列方程组是否是二元一次方程组:(1)⎩⎨⎧=+=-;1253,12y x y x (2)⎩⎨⎧=-=+;53,12y x y x (3)⎩⎨⎧=+=-;153,37z y y x (4)⎩⎨⎧==;2,1y x (5)⎪⎩⎪⎨⎧=+=-;1283,52y x y x (6)⎩⎨⎧=+=-.325,132b ab b a (三)因承上面的情境,得出有关方程的解的概念1.6,2x y ==适合方程8x y +=吗?5,3x y ==呢?4,4x y ==呢?你还能找到其他x ,y 值适合8x y +=方程吗?2. 5,3x y ==适合方程5334x y +=吗?2,8x y ==呢?3.你能找到一组值x ,y 同时适合方程8x y +=和5334x y +=吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.由学生回答上面3个问题,老师作出结论:适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.如x =6, y =2是方程x + y =8的一个解,记作⎩⎨⎧==2,6y x ;同样,⎩⎨⎧==3,5y x 也是方程8x y +=的一个解,同时⎩⎨⎧==3,5y x 又是方程5334x y +=的一个解. 二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.例如,⎩⎨⎧==3,5y x 就是二元一次方程组⎩⎨⎧=+=+3435,8y x y x 的解. 然后,同样呈现一些辨析性练习:(投影)1.下列四组数值中,哪些是二元一次方程13=-y x 的解?(A )⎩⎨⎧==;3,2y x (B )⎩⎨⎧==;1,4y x (C )⎩⎨⎧==;3,10y x (D )⎩⎨⎧-=-=.2,5y x 2.二元一次方程2832=+y x 的解有:⎩⎨⎧==._____,5y x ⎩⎨⎧-==.2_____,y x ⎩⎨⎧=-=._______,5.2y x ⎪⎩⎪⎨⎧==.37_____,y x …… 3.二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 4.以⎩⎨⎧==2,1y x 为解的二元一次方程组是( ) (A )⎩⎨⎧=-=-;13,3y x y x (B )⎩⎨⎧-=+-=-;53,1y x y x (C )⎩⎨⎧-=+-=-;553,32y x y x (D )⎩⎨⎧=+-=-.53,1y x y x 5.二元一次方程6=+y x 的正整数解为 .6.如果⎩⎨⎧==2,1y x 是⎩⎨⎧=-=+n y x m y x 3,2的解,那么m = ,n = . 7.写出一个以⎩⎨⎧-==3,2y x 为解的二元一次方程组为 . (答案不唯一)目的:通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.设计效果:通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理一些新问题.第三环节:课堂小结内容:1.含有两未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.2.二元一次方程的解是一个互相关联的两个数值,它有无数个解.3.含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值.目的:引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.设计效果:本环节虽然用时不多,却是必不可少的教学环节,对学生回顾与整理本节课的知识效果明显.第四环节:布置作业习题5.1教学设计反思1.本节课充分体现了从问题情景中抽象数学问题、使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能的有意义的这一变化学习过程.在教学中力求体现“问题情景——建立数学模型——解释、应用与拓展”的模式,使学生在自主探索和合作交流的过程中建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,获得对数学较全面的体验和理解.2.通过情境引入,让同学们体会到了生活中的数学无处不在,激发了学生强烈的求知欲望,学生的反应非常积极踊跃,丰富了学生们的情感与态度.充分利用小组合作交流,让同学们自己找出方程中的等量关系,启发同学们自己说出各个定义的理解.在同学们合作做题的时候,老师进一步强调小组合作交流、合理分配时间会取得更好的效果.教学过程各环节紧紧相扣,整个教学过程逻辑思维清晰,问题与问题之间衔接紧密,每一步都为下一步做了很好的铺垫.3.这个案例主要针对中等生而设计,教师可根据学生学习能力再进行设计上的侧重.比如,学生学习能力较强,可在实际问题中抽象二元一次方程组的模型环节、课后的拓展环节增加适当的深层次的内容,以满足学生的学习需要.4.4 一次函数的应用第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式 正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52. 方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 18+0.4 216+0.8 324+1.2 432+1.6 540+2.0 … …解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、……解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念 【类型一】 求一个数的算术平方根 求下列各数的算术平方根: (1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32; (3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质 【类型一】 含算术平方根式子的运算 计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。
二元一次方程组一、教学目标知识与技能:学生能够理解二元一次方程组的概念,掌握解二元一次方程组的基本方法(如代入法、消元法),并能熟练运用这些方法解决实际问题。
过程与方法:通过观察、分析、讨论等数学活动,培养学生的逻辑思维能力和问题解决能力,学会将实际问题抽象为数学问题并求解。
情感态度与价值观:激发学生对数学的兴趣,培养严谨的数学态度,以及合作学习的精神,感受数学在解决实际问题中的应用价值。
二、教学重点和难点教学重点:二元一次方程组的概念、解二元一次方程组的基本方法(代入法、消元法)。
教学难点:理解消元法的原理,灵活运用不同方法解决复杂的二元一次方程组问题。
三、教学过程1. 引入新课(约5分钟)生活实例引入:通过一个涉及两个未知数的实际问题(如购买两种不同价格的商品),引导学生思考如何建立数学模型,引出二元一次方程组的概念。
旧知回顾:复习一元一次方程的概念和解法,为学习二元一次方程组做铺垫。
明确目标:介绍本节课的学习内容,即二元一次方程组的概念、解法和应用。
2. 讲授新知(约15分钟)二元一次方程组的概念:明确二元一次方程组的定义,解释其中“二元”和“一次”的含义,通过实例展示如何根据实际问题建立二元一次方程组。
解二元一次方程组的基本方法:介绍代入法和消元法的基本步骤,通过例题演示这两种方法的应用。
强调消元法的核心思想——通过加减消去一个未知数,将二元一次方程组转化为一元一次方程来求解。
方法对比:引导学生比较代入法和消元法的优缺点,理解不同情况下选择不同方法的策略。
3. 深入理解(约10分钟)例题分析:选取几道典型例题,分析如何根据题目条件选择合适的解法,逐步展示解题过程,注意细节的处理和易错点的提醒。
学生尝试:让学生尝试自己解决类似的问题,教师巡回指导,及时纠正学生的错误。
小组讨论:分组讨论解题过程中遇到的困难和解决方法,鼓励学生分享自己的见解和思路。
4. 巩固练习(约15分钟)分层练习:设计不同难度的练习题,包括基础题、提高题和拓展题,确保每位学生都能得到适当的训练。
————主讲:叶春华
1.教学目标:让学生通过对实际问题的分析,体会方程是刻画现实世界的一个有效数学模型;同时了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
教学重点:(1)掌握二元一次方程及二元一次方程组的概念,理解它们解的含义;
(2)判断一组数是不是某个二元一次方程组的解.。
教学难点:从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想.。
2.教学过程:
(一).情境引入:实物投影,并呈现问题:在一望无际的呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个.”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?
请每个学习小组讨论(讨论2分钟,然后发言).教师注意引导学生设两个未知数,从而得出二元一次方程.
这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:.。
(二)情境2
实物投影,并呈现问题:昨天,有8个人去红山公园玩,他们买门票共花了34元.每张成人票5元,每张儿童票3元.那么他们到底去了几个成人、几个儿童呢?同学们,你们能否用所学的方程知识解决呢?
仍请每个学习小组讨论(讨论2分钟,然后发言),老师注意引导学生分析其中有几个未知量,如果分别设未知数,将得到什么样的关系式?
这个问题由于涉及到有几个成年人和几个儿童两个未知数,我们设他们中有x个成年人,有y个儿童,在题目的条件中,我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可以得到方程
和.
提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程.
(一)二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程,叫做二元一次方程.二元一次方程的概念,是说明一个方程是否为二元一次方程的理论依据,是研究二元一次方程组相关知识的基础.
二元一次方程必须满足以下四个条件:①是一个方程;②含有两个未知数;
③所含未知数的项的次数都是1;④含有未知数的式子都是整式.
1.提问:以下方程中,是二元一次方程的是().
A.7x-y=2z B.xy=1
1
C.3x+2y=0 D.y=x
2.下列方程有哪些是二元一次方程:
(1),(2),(3),
(4),(5),(6).
3.如果方程是二元一次方程,那么m=,n=.
(二)二元一次方程组概念的概括:
师提请学生思考:上面的方程中的x含义相同吗?y呢?(两个方程中x的表示老牛驮的包裹数,y表示小马的包裹数,x、y的含义分别相同.)由于x、y的含义分别相同,因而必同时满足和
,我们把这两个方程用大括号联立起来,写成,从而得出二元一次方程组的概念:像这样共含有两个未知数的两个一次方程所组成
的一组方程.如:就是二元一次方程组。
注意:在方程组中的各方程中的同一个字母必须表示同一个对象。
再呈现一些辨析题,让学生进行巩固练习:
判断下列方程组是否是二元一次方程组:
(1)(2)(3)
(4)(5)(6)
(三)因承上面的情境,得出有关方程的解的概念
1.适合方程吗?呢?呢?你还能找到其他x,y值适合方程吗?
2. 适合方程吗?呢?
各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到2题的结论.
由学生回答上面2个问题,老师作出结论:
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.。
由于二元一次方程中含有两个未知数,所以二元一次方程的一个解包含两个值,若把这两个未知数的值代入二元一次方程,则适合该方程.在二元一次方程中,只要给定其中一个未知数的一个值,就可以相应地求出另一个未知数的值,因此,二元一次方程有无数个解.
3.你能找到一组值x,y同时适合方程和吗?
是方程的一个解,同时又是方程的一个解
.因此二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.
例如
就是二元一次方程组的解.
然后,同样呈现一些辨析性练习:(投影)
1.下列四组数值中,哪些是二元一次方程的解?
(A)(B)(C)(D)
注意:把每组数值代入方程,能够使方程的左右两边的值相等的,就是方程的解,否则不是.
2..二元一次方程组的解是()
(A)(B)(C)(D)
(1)检验某一对数值是否是某个二元一次方程组的解的方法是:将这对数值分别代入方程组中的每一个方程中,只有当这对数值满足所有的方程时,才能说它是方程组的解,若这对数值不满足其中一个方程,则它不是方程组的解.
(2)二元一次方程组的解一定是方程组中的任何一个方程的解,而二元一次方程的解不一定是方程组的解.
3.以为解的二元一次方程组是()
(A)(B)
(C)(D)
5.二元一次方程的正整数解为.
6.如果是的解,那么m=,n=.
3.课堂小结:
1.含有两未知数,并且含有未知数的项的次数都是1的整式方程(也就是分母不能含未知数)叫做二元一次方程.
2.二元一次方程的解是一个互相关联的两个数值,它有无数个解.
3.含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值.。
4.布置作业:习题5.1
5.教学反思:。