大学物理实验——伏安特性的测定讲解
- 格式:ppt
- 大小:3.23 MB
- 文档页数:35
大学物理实验--太阳能电池伏安特性的测量实验报告太阳能电池伏安特性的测量【实验目的】1.了解太阳能电池的工作原理及其应用2.测量太阳能电池的伏安特性曲线【实验原理】1.太阳电池的结构以晶体硅太阳电池为例,其结构示意图如图1 所示.晶体硅太阳电池以硅半导体材料制成大面积pn 结进行工作.一般采用n+/p 同质结的结构,即在约10 cm×10 cm 面积的p 型硅片(厚度约500 μm)上用扩散法制作出一层很薄(厚度~0.3 μm)的经过重掺杂的n 型层.然后在n 型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图2.光伏效应图二太阳电池发电原理示意图当光照射在距太阳电池表面很近的pn 结时,只要入射光子的能量大于半导体材料的禁带宽度E g ,则在p 区、n 区和结区光子被吸收会产生电子–空穴对.那些在结附近n 区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn 结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p 区与n 区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p 区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p 区.同样,如果在结附近p 区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n 区.结区内产生的电子–空穴对在内建电场的作用下分别移向n 区和p 区.如果外电路处于开路状态,那么这些光生电子和空穴积累在pn 结附近,使p 区获得附加正电荷,n 区获得附加负电荷,这样在pn 结上产生一个光生电动势.这一现象称为光伏效应(Photovoltaic Effect, 缩写为PV).3.太阳电池的表征参数太阳电池的工作原理是基于光伏效应.当光照射太阳电池时,将产生一个由n 区到p 区的光生电流I ph.同时,由于pn 结二极管的特性,存在正向二极管电流I D,此电流方向从p 区到n 区,与光生电流相反.因此,实际获得的电流I 为(1)式中VD 为结电压,I0 为二极管的反向饱和电流,Iph 为与入射光的强度成正比的光生电流,其比例系数是由太阳电池的结构和材料的特性决定的.n 称为理想系数(n 值),是表示pn 结特性的参数,通常在1~2 之间.q 为电子电荷,kB 为波尔茨曼常数,T 为温度.如果忽略太阳电池的串联电阻Rs,VD 即为太阳电池的端电压V,则(1)式可写为(2)当太阳电池的输出端短路时,V = 0(VD ≈0),由(2)式可得到短路电流即太阳电池的短路电流等于光生电流,与入射光的强度成正比.当太阳电池的输出端开路时,I = 0,由(2)和(3)式可得到开路电压(3)当太阳电池接上负载R 时,所得的负载伏–安特性曲线如图2 所示.负载R 可以从零到无穷大.当负载Rm 使太阳电池的功率输出为最大时,它对应的最大功率Pm 为(4)式中Im 和Vm 分别为最佳工作电流和最佳工作电压.将Voc 与Isc 的乘积与最大功率Pm 之比定义为填充因子FF,则(5)FF 为太阳电池的重要表征参数,FF 愈大则输出的功率愈高.FF 取决于入射光强、材料的禁带宽度、理想系数、串联电阻和并联电阻等.太阳电池的转换效率η定义为太阳电池的最大输出功率与照射到太阳电池的总辐射能Pin 之比,即(6)图三太阳电池的伏–安特性曲线4.太阳电池的等效电路图四太阳电池的等效电路图太阳电池可用pn 结二极管D、恒流源Iph、太阳电池的电极等引起的串联电阻Rs 和相当于pn 结泄漏电流的并联电阻Rsh 组成的电路来表示,如图3 所示,该电路为太阳电池的等效电路.由等效电路图可以得出太阳电池两端的电流和电压的关系为(7)为了使太阳电池输出更大的功率,必须尽量减小串联电阻Rs,增大并联电阻Rsh.【实验数据记录、实验结果计算】◆实验中测得的各个条件下的电流、电压以及对应的功率的表格如下:表11.根据以上数据作出各个条件下太阳能电池的伏安特性曲线2.各个条件下,光伏组件的输出功率P随负载电压V的变化【对实验结果中的现象或问题进行分析、讨论】◆各个条件下太阳能电池的伏安特性曲线图的分析与讨论从图中的曲线可以明显看出:1.光照距离越近,也即是光强越大,电池产生的电动势越大(但不能断定是否有上界);2.研究电动势的大小,两个电池并联,电动势几乎不变,电池串联,电动势大致增大一倍;3.研究电池电阻的大小,在I-V图里,函数线越陡,电阻越小,函数线越平坦,电阻越大。
大学物理实验电子元件伏安特性的测量实验报告
一、实验背景
伏安特性是电子元件特有的量化特性,可以在一定条件下揭示元件特性。
它指电子元
件在一定电压驱动器的作用下,随温度、频率和导通阻抗(或输入电阻)变化而产生不同
的电流。
实验室中,我们使用了特定的示波器和电源来测量NPN 型三极管伏安特性进行实验。
二、实验仪器和装备
实验背景实验室中的仪器和设备有:台式示波器,电压电源,波形分析仪,测量系统,以及电路板等。
三、实验设计
用示波器观察NPN三极管的伏安特性的变化,改变示波器的电压、频率和输入电阻来
测量NPN 类型三极管的伏安特性。
用电源给NPN 三极管供电,并使用测量系统记录电流。
四、实验结果与分析
(1)当电源电压改变时,NPN三极管伏安特性的测量变化如下图所示:

可以从图中看出,随着电源电压的增大,NPN 三极管的伏安特性越来越陡峭。
五、结论
本次实验中,我们通过测量NPN 三极管伏安特性,发现电源电压、频率和输入电阻对其特性有影响。
实验证明,熟练掌握伏安特性的测量技术,可以帮助我们更好地理解电子
元件的性能。
大学物理实验伏安特性实验报告一、实验目的1、了解电学元件伏安特性的概念和意义。
2、掌握测量电学元件伏安特性的基本方法。
3、学会使用电流表、电压表、滑线变阻器等仪器。
4、学会分析实验数据,绘制伏安特性曲线,并根据曲线得出元件的特性参数。
二、实验原理伏安特性是指电学元件两端的电压与通过它的电流之间的关系。
对于线性元件(如电阻),其伏安特性曲线是一条直线,符合欧姆定律$U = IR$;对于非线性元件(如二极管),其伏安特性曲线是非线性的。
在测量伏安特性时,通常采用限流电路或分压电路来改变元件两端的电压,从而测量不同电压下通过元件的电流。
限流电路简单,但电压调节范围较小;分压电路电压调节范围大,但电路相对复杂。
三、实验仪器1、直流电源:提供稳定的直流电压。
2、电流表:测量通过元件的电流,量程根据实验需求选择。
3、电压表:测量元件两端的电压,量程根据实验需求选择。
4、滑线变阻器:用于改变电路中的电阻,从而调节元件两端的电压。
5、待测电学元件(如电阻、二极管等)。
6、开关、导线若干。
四、实验内容与步骤1、测量线性电阻的伏安特性按照电路图连接实验电路,选择限流电路。
调节滑线变阻器,使电阻两端的电压从 0 开始逐渐增加,每隔一定电压值记录对应的电流值。
重复测量多次,以减小误差。
2、测量二极管的伏安特性按照电路图连接实验电路,选择分压电路。
正向特性测量:缓慢增加二极管两端的正向电压,记录不同电压下的电流值。
反向特性测量:逐渐增加反向电压,测量并记录反向电流值。
注意反向电压不能超过二极管的反向击穿电压。
3、数据记录设计合理的数据表格,记录测量的电压和电流值。
五、实验数据处理与分析1、线性电阻以电压为横坐标,电流为纵坐标,绘制伏安特性曲线。
根据曲线计算电阻值,与标称值进行比较。
2、二极管分别绘制正向和反向伏安特性曲线。
分析正向特性曲线,找出导通电压。
观察反向特性曲线,了解反向饱和电流和反向击穿现象。
六、实验误差分析1、仪器误差电流表、电压表的精度有限,可能导致测量误差。
第1篇一、实验概述伏安特性实验是电学基础实验之一,旨在通过测量电学元件在电压与电流作用下的关系,绘制出伏安特性曲线,从而分析元件的电阻特性。
本实验采用逐点测试法,对线性电阻、非线性电阻元件的伏安特性进行了测量和绘制。
二、实验目的1. 理解伏安特性曲线的概念,掌握伏安特性曲线的绘制方法。
2. 通过实验验证欧姆定律,了解电阻元件的伏安特性。
3. 分析非线性电阻元件的特性,掌握其应用领域。
三、实验原理1. 伏安特性曲线:在电阻元件两端施加电压,通过电阻元件的电流与电压之间的关系称为伏安特性曲线。
根据伏安特性的不同,电阻元件分为线性电阻和非线性电阻。
2. 线性电阻:线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,斜率代表电阻值。
其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关。
3. 非线性电阻:非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
四、实验步骤1. 准备实验仪器:直流稳压电源、直流电压表、直流电流表、电阻元件、导线等。
2. 连接实验电路:将电阻元件与直流稳压电源、直流电压表、直流电流表连接成闭合回路。
3. 测量电压与电流:逐步调节直流稳压电源的输出电压,记录对应的电流值。
4. 绘制伏安特性曲线:以电压为横坐标,电流为纵坐标,将实验数据绘制成曲线。
五、实验结果与分析1. 线性电阻伏安特性曲线:实验结果表明,线性电阻元件的伏安特性曲线是一条通过坐标原点的直线。
斜率代表电阻值,与实验理论相符。
2. 非线性电阻伏安特性曲线:实验结果表明,非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线。
在低电压下,电阻值较小,随着电压的增大,电阻值逐渐增大,直至趋于饱和。
这与实验理论相符。
3. 伏安特性曲线的应用:通过伏安特性曲线,可以分析电阻元件在不同电压下的电阻值,从而了解电阻元件的电阻特性。
在工程实践中,伏安特性曲线对于设计电路、选择电阻元件具有重要意义。
实验4.6 测量线性电阻的伏安特性物理系:张师平北京科技大学物理系张师平引言•伏安法测电阻是电阻测量的基本方法之一。
当一个原件两端加上电压时,元件内有电流通过时,电压和电流之间存在着一定的关系。
通过此元件的电流随外加电压的变化曲线,称为伏安特性曲线。
从伏安特性曲线所遵循的规律,可以得知该元件的导电特性。
北京科技大学物理系张师平实验目的1.了解电学基本仪器的性能和使用方法。
2.掌握用伏安法测电阻的方法。
3.学习指针式电表的精度表示方法。
4.掌握物理实验中的误差分析方法。
北京科技大学物理系张师平实验仪器1.伏特计(0-1.50-3.00-7.50V)0.5级,额定电流1mA2.毫安计(0-25.0-50.0-100.0mA)0.5级,额定电压26~30mV3.滑线电阻50Ω,1A4.稳压电源JWY-30B型,0~30V,1.0A或0.5A5.待测线性电阻北京科技大学物理系张师平认识电表——伏特计1.5V3.0V7.5V北京科技大学物理系张师平北京科技大学物理系张师平伏特计的使用电压表的内阻=选用量程/额定电流电压表的不确定度=V m ×f%表示该电表须水平放置使用前,调零;读数时,要使眼睛看见的指针以及镜面中指针的像重合再读刻度数。
电压值=读取的刻度数×满量程电压/150(V )认识电表——毫安计100.0mA50.0mA25.0mA北京科技大学物理系张师平北京科技大学物理系张师平毫安计的使用电流表内阻=额定电压30mV/满量程电流电流表的不确定度=I m ×f%表示该电表须水平放置使用前,调零;读数时,要使眼睛看见的指针以及镜面中指针的像重合再读刻度数。
电流值=所读刻度数×满量程电流/100(mA )北京科技大学物理系张师平实验原理——分压法与限流法分压电路限流电路实验内容1.确定电路(采用分压电路还是限流电路?)2.将稳压电源输出设定为9.0V3.待测电阻约为150Ω,注意电流表的量程选择。
实验报告实验报告专业***** 班级******** 姓名**** 学号******实验课程电阻元件特性的研究指导教师实验日期2017.6.8同实验者实验项目测试线性和非线性元件的 V-A特性实验设备及器材1. 0~20V可调直流稳压电源(带限流保护)。
2.量程可变标准数字电流表(200µA、2mA、20mA、200mA四档,三位半数字显示,精度0.5%);三位半数显直流电压表(可变量程2V、20V,精度0.5%)。
3.被测元件(金属膜电阻、二极管、稳压管、12V小灯泡)及8根连线。
一、实验目的测试线性和非线性元件的V-A特性。
1.金属膜电阻的V-A特性。
2.二极管的正向和反向V-A特性。
3.稳压管的正向和反向V-A特性。
4.小灯泡的V-A特性。
二、实验原理把直流电压加到某个电阻性元件上,随着电压V的增加,电流I也增加,电压U 和电流I的比值不一定是一个常数。
当U和I成正比,二者之比为常数时,该元件被称为线性电阻元件,而当两者的比值不是一个常数时,则这种元件被称为非线性电阻元件。
把电压U和电流I的对应关系作图,得到的曲线称为该元件的伏安特性曲线。
曲线上某点的坐标值,电压和电流两者之比是一个电阻量,这个电阻称为等效电阻或静态电阻。
这种通过测量电压和电流测出电阻量的方法称为伏安法。
测量V-A特性的电路如图1、图2所示。
图中E为可调直流稳压电源,R为限流电阻,RL为被测元件,○V为三位半数显直流电压表,○A为三位半数显直流电流表。
测量时,当电压表或电流表显示1或-1时,表示已超过量程范围,必须扩大量程。
图1称为电流表内接,图2称为电流表外接。
由于同时测量电压和电流,无论哪种电路都会产生接入误差,现分析如下:1.电流表内接由图1可知,电流表测出流经RL的电流,但电压表测出的是加在RL和电流表两者的电压之和,即由于电流表的接入产生电压的测量误差UA。
从相对接入误差UA/UD可知,若电流表内阻RA<<RL,则UA<<UD,相对接入误差很小;反之若电流表内阻较大,就会造成不小的接入误差,所以电流表的内阻越小越有利于测量。
伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
伏安特性实验报告引言伏安特性是电阻器、电容器和电感器三种被动元件的重要特性之一,通过伏安特性实验可以了解元件在不同电流和电压下的响应。
本实验旨在通过测量电阻器、电容器和电感器的伏安特性曲线,通过数据分析提取元件的相关参数,并验证实验结果与理论结果的符合性。
实验装置本实验中所使用的实验装置如下:- 直流电源:用于提供稳定的直流电压供电;- 可调直流电源:用于提供不同电流供电; - 电流表:用于测量电流的大小; - 电压表:用于测量元件两端的电压; - 节点线:用于连接电路中的各个元件。
实验步骤1.首先,将直流电源接入实验电路,并调节电压值为初始值;2.将电流表和电压表分别连接到电路中待测元件的两端;3.逐步调节可调直流电源的电流输出值,记录相应的电压和电流数值;4.将记录的电压和电流数值整理成数据表格;5.根据实验数据,绘制伏安特性曲线图;6.根据伏安特性曲线图,计算并比较元件的电阻、电容和电感等参数。
实验数据下表为本实验测量得到的电压和电流数值数据:电流(A)电压(V)0.1 0.50.2 1.00.3 2.00.4 2.50.5 3.0数据分析通过实验数据得到的伏安特性曲线如下图所示:伏安特性曲线伏安特性曲线从曲线图中可以看出,电阻器的伏安特性曲线为一条直线,表明电阻值恒定;电容器的伏安特性曲线为一条指数函数曲线,表明电容器在电流变化过程中的响应比较迟滞;电感器的伏安特性曲线为一条指数函数曲线,表明电感器在电流变化过程中的响应比较迅速。
根据伏安特性曲线的斜率,可以计算出电阻器的电阻值为5Ω;根据曲线在0电流时的截距,可以计算出电容器和电感器的初始电压值。
结论通过本次实验,我们成功地测量并绘制了电阻器、电容器和电感器的伏安特性曲线,并通过数据分析得到了元件的相关参数。
实验结果与理论结果基本符合,验证了伏安特性理论的准确性和实验方法的可靠性。
参考文献[1] 张宇. 电子实验(第3版). 北京:高等教育出版社,2008.。