基于MATLAB的双闭环直流调速系统设计
- 格式:doc
- 大小:75.00 KB
- 文档页数:7
一、设计参数设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为:额定功率200W ; 额定转速48V ; 额定电流4A ;额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2;电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5;电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ;要求转速调节器和电流调节器的最大输入电压==**im nmU U 10V ; 两调节器的输出限幅电压为10V ; PWM 功率变换器的开关频率=f 10kHz ; 放大倍数=s K 4.8。
试对该系统进行动态参数设计,设计指标: 稳态无静差; 电流超调量≤i σ5%;空载起动到额定转速时的转速超调量σ ≤ 25%; 过渡过程时间=s t 0.5 s 。
二、设计过程1、稳态参数计算根据两调节器都选用PI 调节器的结构,稳态时电流和转速偏差均应为零;两调节器的输出限幅值均选择为10V电流反馈系数;*nom 10 1.25/24im U VV A I Aβλ===⨯转速反馈系数:*100.02min/500/min nm nom U Vn V rn r ===⋅2、电流环设计1) 确定时间常数电流滤波时间常数0.2oi T ms =,按电流环小时间常数环节的近似处理方法,则s T T T oi s i 0003.00002.00001.0=+=+=∑2)选择电流调节器结构电流环可按典型Ⅰ型系统进行设计。
电流调节器选用PI 调节器,其传递函数为1()i ACR ii s G s K sττ+= 3)选择调节器参数超前时间常数:i τ=T L =0.008s电流环超调量为5%i σ≤,电流环开环增益:取0.5i i K T ∑=,则0.50.51666.670.0003I i K T ∑=== 于是,电流调节器比例系数为0.00881666.6717.7781.25 4.8i i I s R K K K τβ⨯=⋅=⨯=⨯ 4)检验近似条件电流环截止频率1666. 67 1/ci I K s ω== (1)近似条件1:13ci sT ω≤现在113333.3330.0003ci s T ω==>,满足近似条件。
基于MATLAB的双闭环直流调速系统设计目录1、绪论 (3)2、设计方案论证 (4)3、系统仿真 (8)4、心的体会 (9)5、参考文献 (9)1.绪论对于一般的调速系统来说,采用PI 调节器的单闭环直流调速系统(单闭环系统)可一以在保证系统稳定的前提下实现转速无净差。
但是如果对系统的动态性能要求较高,例如要要求快速起动、制动,突加负载动态速降小等等。
此时仅凭单闭环系统已经很难满足要求。
这主要是因为单闭环系统不能随心所欲地控制电流和转矩的动态过程。
为了能很好地解决这个问题,我们引入了转速、电流双闭环直流调速系统组成的双闭环直流调速系统。
在系统中分别设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
两者之间实行嵌套(或者称为串级)联接。
如图1所示把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。
从闭环 结构上看,电流环在里面,称为内环;转速环在外边,称为外环。
这样就形成了转速、电 流双闭环调速系统。
双闭环直流调速系统的原理图如图1。
图1 转速、电流双闭环直流调速系统TGnASRACRU *n + -U nU iU*i+-U cTAVM+-U dI dUPL-MT2.设计方案论证 2.1.设计要求直流电动机的技术参数如下:220V 、136A 、1460r/min 、e C =0.312min V r ∙、 允许过载倍数λ=1.5,晶闸管装置的放大倍数SK =40,失控时间s T =0.0017s,电枢回路总电路R=0.5Ω,时间常数L T =0.03s, m T =0.18s,电流反馈系数β=0.05V/A ,转速反馈系数α=0.007min V r ∙。
设计要求:稳态指标无净差,动态指标,i σ%不大于5%,n σ%不大于10%2.2.具体设计方法系统无净差则ss e =0,因此选用I 型系统,采用双闭环直流调速系统,先设计电流环,再设计转速环。
基于MATLAB的双闭环直流调速系统设计目录1、绪论 (3)2、设计方案论证 (4)3、系统仿真 (8)4、心的体会 (9)5、参考文献 (9)1.绪论对于一般的调速系统来说,采用PI 调节器的单闭环直流调速系统(单闭环系统)可一以在保证系统稳定的前提下实现转速无净差。
但是如果对系统的动态性能要求较高,例如要要求快速起动、制动,突加负载动态速降小等等。
此时仅凭单闭环系统已经很难满足要求。
这主要是因为单闭环系统不能随心所欲地控制电流和转矩的动态过程。
为了能很好地解决这个问题,我们引入了转速、电流双闭环直流调速系统组成的双闭环直流调速系统。
在系统中分别设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
两者之间实行嵌套(或者称为串级)联接。
如图1所示把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。
从闭环 结构上看,电流环在里面,称为内环;转速环在外边,称为外环。
这样就形成了转速、电 流双闭环调速系统。
双闭环直流调速系统的原理图如图1。
图1 转速、电流双闭环直流调速系统TGnASRACRU *n + -U nU iU*i+-U cTAVM+-U dI dUPL-MT2.设计方案论证 2.1.设计要求直流电动机的技术参数如下:220V 、136A 、1460r/min 、e C =0.312min V r ∙、 允许过载倍数λ=1.5,晶闸管装置的放大倍数SK =40,失控时间s T =0.0017s,电枢回路总电路R=0.5Ω,时间常数L T =0.03s, m T =0.18s,电流反馈系数β=0.05V/A ,转速反馈系数α=0.007min V r ∙。
设计要求:稳态指标无净差,动态指标,i σ%不大于5%,n σ%不大于10%2.2.具体设计方法系统无净差则ss e =0,因此选用I 型系统,采用双闭环直流调速系统,先设计电流环,再设计转速环。
基于Matlab的双闭环调速系统设计报告目录一、摘要 (2)二、总体方案设计 (3)1、控制原理2、控制结构图三、参数计算 (5)1、静态参数设计计算2、动态参数设计计算四、稳定性分析 (8)1、基于经典自控理论得分析2、利用MATLAB辅助分析A、利用根轨迹分析B、在频域内分析奈氏曲线:bode图利用单输入单输出仿真工具箱分析用Simulink仿真五、系统校正 (14)1、系统校正的工具2、调节器的选择3、校正环节的设计4、限流装置的选择六、系统验证 (15)1、分析系统的各项指标2、单位阶跃响应3、Simulink仿真系统验证系统运行情况七、心得体会 (20)八、参考文献 (20)一、摘要运动控制课是后续于自动控制原理课的课程,是更加接近本专业实现应用的一门课程。
直流电动机具有良好的起、制动性能,宜于在大范围内平滑调速,在许多需要调速和快速正反向的电力拖动领域中得到了广泛的应用。
由于直流拖动控制系统在理论上和实践上都比较成熟,而且从控制的角度来看,它又是交流拖动控制系统的基础。
所以加深直流电机控制原理理解有很重要的意义。
本设计首先进行总体系统设计,然后确定各个参数,当明确了系统传函之后,再进行稳定性分析,在稳定的基础上,进行整定以达到设计要求。
另外,设计过程中还要以matlab为工具,以求简明直观而方便快捷的设计过程。
二、总体方案设计1、控制原理根据设计要求,所设计的系统应为单闭环直流调速系统,选定转速为反馈量,采用变电压调节方式,实现对直流电机的无极平滑调速。
所以,设计如下的原理图:图1、单闭环直流调速系统原理图转速用与电动机同轴相连的测速电机产生的正比于转速的电压信号反馈到输入端,再与给定值比较,经放大环节产生控制电压,再通过电力电子变换器来调节电机回路电流,达到控制电机转速的目的。
这里,电压放大环节采用集成电路运算放大器实现,主电路用晶闸管可控整流器调节对电机的电源供给。
所以,更具体的原理图如下:图2、单闭环直流调速系统具体原理图2、控制结构图有了原理图之后,把各环节的静态参数用自控原理中的结构图表示,就得到了系统的稳态结构框图。
基于matlab的双闭环直流调速系统仿真及参数进化设计本文基于matlab平台,设计了一个双闭环直流调速系统,并通过参数进化算法对其进行优化设计,以提高系统的性能和稳定性。
一、双闭环直流调速系统的基本结构和参数双闭环直流调速系统包括基本结构和控制回路两个部分。
其基本结构如下图所示:Abstract........................................................... I I 目录........................................................... I II 1.绪论. (1)1.1 课题背景 (1)1.2 课题研究的目的和意义 (1)1.3 论文的主要内容 (2)2.直流电动机调速系统 (4)2.1 直流电动机简介 (4)2.1.1 直流电动机的工作原理 (4)2.1.2 直流电动机的运行特性 (5)2.1.3 直流电动机的起动与调速 (6)2.2 转速控制的要求和调速指标 (7)3.方案选择及系统工作原理 (9)3.1 电动机参数及设计要求 (9)3.2 方案选择及系统框图 (9)3.2.1 方案一:直流电机单闭环调速系统 (9)3.2.2 方案二:直流电机双闭环调速系统 (10)3.2.3 方案三:双闭环脉宽调速系统 (11)3.3 系统工作原理简介 (11)3.3.1 双闭环调速系统静态特性 (11)3.3.2 双闭环系统启动过程分析 (14)3.3.3 双闭环调速系统的动态抗扰动性能 (17)3.3.4 双闭环调速系统中两个调节器的作用 (18)4.双闭环调速系统的设计 (19)4.1 双闭环直流调速系统总体设计方案 (19)4.2 主电路设计与参数计算 (20)4.2.1 主电路原理图 (20)4.2.2 整流变压器的设计 (21)4.2.3 晶闸管元件选择 (23)4.2.4 电抗器参数的计算 (24)4.2.5 励磁电路 (26)4.2.6 三相桥式全控整流电路 (26)4.2.7 晶闸管触发电路 (28)4.3 直流调速系统的保护 (30)4.3.1 过电压保护 (30)4.3.2 电流保护 (33)4.4 控制电路设计 (34)4.4.1 电流调节器的设计 (35)4.4.2 转速调节器的设计 (37)5.调速系统的仿真 (40)5.1.1 MATLAB简介 (40)5.1.2 MATLAB的安装 (41)5.1.3 MATLAB的启动运行 (41)5.1.4 MATLAB的帮助文件 (41)5.1.5 MATLAB所定义的特殊变量及其意义 (41)5.1.6 MATLAB工具箱及SIMULINK简介 (42)5.2 调速系统仿真模型的建立 (43)5.3 仿真结果 (43)5.4 仿真结果分析 (46)结论 (47)参考文献 (48)致谢 (49)附录 A (50)1.绪论1.1 课题背景直流调速是现代电力拖动自动控制系统中发展较早的技术。
基于MATLAB的直流电机双闭环调速系统的设计与仿真直流电机双闭环调速系统是一种常见的控制系统,常用于工业生产中对电机速度的精确控制。
本文将基于MATLAB软件进行直流电机双闭环调速系统的设计与仿真,包括系统设计、参数设置、控制策略选择、系统仿真以及性能分析等方面。
文章将以1200字以上的篇幅进行详细阐述。
一、系统设计直流电机双闭环调速系统由速度环和电流环构成。
速度环控制系统的输入为速度设定值和电机实际速度,输出为电机期望电压;电流环控制系统的输入为速度环输出的电压和电机实际电流,输出为电机实际电压。
通过控制电机的期望电压和实际电压,达到对电机速度的调控。
二、参数设置在进行系统仿真之前,需要确定系统中各个参数的值。
包括电机的额定转矩、额定电压、电感、电阻等参数,以及控制环节的比例增益、积分增益、微分增益等参数。
这些参数的选择会影响系统的稳定性和动态性能,需要根据实际情况进行调整。
三、控制策略选择常见的控制策略包括PID控制、PI控制、PD控制等。
在直流电机双闭环调速系统中,可以选择PID控制策略。
PID控制器由比例环节、积分环节和微分环节组成,可以提高系统的稳定性和响应速度。
四、系统仿真在MATLAB中进行直流电机双闭环调速系统的仿真,可以使用Simulink模块进行搭建。
根据系统设计和参数设置,搭建速度环和电流环的控制器,连接电机实际速度和电机实际电流的反馈信号,输入速度设定值和电机期望电流,输出电机期望电压。
通过仿真可以得到系统的动态响应曲线,评估系统的性能。
五、性能分析在仿真结果中,可以分析系统的静态误差、超调量、调整时间等指标,评估系统的控制性能。
通过参数调整和控制策略更改等方式,可以优化系统的控制性能,使系统达到更好的调速效果。
总结:本文基于MATLAB软件对直流电机双闭环调速系统进行了设计与仿真。
通过系统设计、参数设置、控制策略选择、系统仿真以及性能分析等步骤,可以得到直流电机双闭环调速系统的动态响应曲线,并通过参数调整和控制策略更改等方式,优化系统的控制性能。
基于MATLAB的直流电机双闭环调速系统的设计与仿真《机电控制系统分析与设计》课程大作业之一基于MATLAB 的直流电机双闭环调速系统的设计与仿真1 计算电流和转速反馈系数β=U im∗dm=10V=1.25Ωα=U nm∗=10=0.02V∙min/r2 按工程设计法,详细写出电流环的动态校正过程和设计结果根据设计的一般原则“先内环后外环”,从内环开始,逐步向外扩展。
在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。
电流调节器设计分为以下几个步骤:a 电流环结构图的简化1)忽略反电动势的动态影响在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,即∆E ≈0。
这时,电流环如下图所示。
2) 等效成单位负反馈系统如果把给定滤波和反馈滤波两个环节都等效地移到环内,同时把给定信号改成U *i (s ) /β ,则电流环便等效成单位负反馈系统。
3) 小惯性环节近似处理由于T s 和 T 0i 一般都比T l 小得多,可以当作小惯性群而近似地看作是一个惯性环节,其时间常数为T ∑i = T s + T oi 简化的近似条件为ois ci 131T T ≤ω电流环结构图最终简化成图。
b 电流调节器结构的选择 1) 典型系统的选择:从稳态要求上看,希望电流无静差,以得到理想的堵转特性,采用 I 型系统就够了。
从动态要求上看,实际系统不允许电枢电流在突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素,为此,电流环应以跟随性能为主,应选用典型I 型系统 2) 电流调节器选择电流环的控制对象是双惯性型的,要校正成典型 I 型系统,显然应采用PI型的电流调节器,其传递函数可以写成ss K s W i i i ACR )1()(ττ+=K i — 电流调节器的比例系数;τi — 电流调节器的超前时间常数3) 校正后电流环的结构和特性为了让调节器零点与控制对象的大时间常数极点对消,选择则电流环的动态结构图便成为图a 所示的典型形式,其中a) 动态结构图:b) 开环对数幅频特性c. 电流调节器的参数计算电流调节器的参数有:K i 和 τi ,其msT l8i==τRK K K i siI τβ=中 τi 已选定,剩下的只有比例系数 K i , 可根据所需要的动态性能指标选取。
MATLAB双闭环直流调速系统的工程设计与仿真双闭环直流调速系统是一种常见的控制系统,在工业中被广泛应用于电机的调速。
本文将针对MATLAB中的双闭环直流调速系统进行工程设计与仿真。
1.系统架构设计双闭环直流调速系统主要由速度环和电流环组成。
速度环主要负责控制电机的速度,通过比较给定速度和实际速度,产生速度偏差。
电流环主要控制电机的电流,通过比较给定电流和实际电流,产生电流偏差。
速度环和电流环形成了一个闭环控制系统,可以使得电机在速度和电流方面达到我们所要求的目标。
2.系统建模在MATLAB中,可以使用Simulink进行系统建模。
首先,需要建立电机的数学模型,包括机械模型、电磁模型和电气模型。
电机的机械模型可以使用转矩方程来描述,电磁模型可以使用电压方程来描述,电气模型可以使用网路方程来描述。
然后,将这些模型通过各个子系统进行连接,并进行参数设置。
最后,通过连接速度环和电流环的闭环控制系统,完成整个系统的建模。
3.控制器设计在MATLAB中,可以使用PID控制器进行控制器的设计。
首先,通过调节PID控制器的参数,使得系统的过渡过程满足我们对速度和电流的要求。
然后,使用增量PID算法对控制器进行改进,减小控制误差。
最后,通过将速度控制器与电流控制器进行串联,完成双闭环控制系统的设计。
4.系统仿真在MATLAB中,可以使用Simulink进行系统的仿真。
首先,设置仿真时间和步长,并进行仿真参数设置。
然后,通过给定输入信号,例如阶跃信号,观察系统的输出响应。
通过调整控制器的参数,观察系统的响应特性,包括超调量、稳定时间和稳态误差等。
最后,通过对仿真数据的分析,检验系统是否满足我们的设计要求。
总结:MATLAB提供了丰富的工具和函数,可以帮助我们进行双闭环直流调速系统的工程设计与仿真。
通过建立系统模型、设计控制器并进行仿真分析,可以快速有效地完成系统设计。
同时,可以通过调整参数和算法对系统进行优化,使得系统的性能更加稳定和可靠。
H a r b i n I n s t i t u t e o f T e c h n o l o g y制造系统自动化技术大作业——基于MATALAB的直流电机双闭环调速系统的设计与仿真院系:机电工程学院班级:学号:姓名:日期:2013.07.02©哈尔滨工业大学第一部分 设计任务书设计参数:设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为:额定功率200W ; 额定转速48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5;电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ;要求转速调节器和电流调节器的最大输入电压==**im nmU U 10V ; 两调节器的输出限幅电压为10V ; PWM 功率变换器的开关频率=f 10kHz ; 放大倍数=s K 4.8。
试对该系统进行动态参数设计,设计指标: 稳态无静差; 电流超调量≤i σ5%;空载起动到额定转速时的转速超调量σ ≤ 25%; 过渡过程时间=s t 0.5 s 。
第二部分 设计说明书一、稳态参数计算电流反馈系数:)/(25.14210A V I U nom im =⨯==*λβ转速反馈系数:)min/(02.050010r V n U nom nm ===*α二、电流环设计1、确定时间常数已知PWM 功率变换器的开关频率kHz f 10=,则s T s 0001.0=。
取电流滤波时间常数0.0002oi s τ=,按电流环小时间常数环节的近似处理方法,取s T T T oi s i 0003.00002.00001.0=+=+=∑2、选择电流调节器结构电流环可按典型I 型系统进行设计。
Simulink是用于动态系统和嵌入式系统的多领域仿真和基于模型的设计工具。
对各种时变系统,包括通讯、控制、信号处理、视频处理和图像处理系统,Simulink 提供了交互式图形化环境和可定制模块库来对其进行设计、仿真、执行和测试。
图3 电流调节器仿真
图4 转速调节器仿真
图5 双闭环直流调速系统的数学模型仿真
此环节将控制电压限幅转换成导通角来控制六脉
冲触发器,当调节器输出最大限幅值10v时,导通角
为0,对应三相全波整流桥输出最大电压加到电动机
电枢。
图6 触发器
图7双闭环直流调速系统模型仿真结果
4 仿真结果分析
双闭环直流调速系统突加给定由静止启动时,转速和电流的仿真波形所示。
启动过程经历了不饱和、饱和、退饱和三个阶段,即电流上升阶段、恒流升速阶段和转速调节阶段。
在双闭环调速系统中,ASR的作用是对转速的抗扰调节并使之在稳态是无静差,ACR的作用是过流自动保护和及时抑制电压的波动。
通过仿真可知:启动时,让转速外环饱和不起作用,电流环起主要作用,调节启动电流保持最大,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随电流外环调节电机的电枢电流以平衡负载电流。