工作记忆的保持与操控_腹侧和背侧额叶皮层的特异性功能磁共振成像活动_英文_
- 格式:pdf
- 大小:1.61 MB
- 文档页数:9
前额叶皮质对工作记忆的调控工作记忆是指个体在进行认知任务时短时存储和处理信息的能力。
作为高级认知功能之一,工作记忆对个体的学习、决策和问题解决等认知任务起着重要作用。
而前额叶皮质在工作记忆的调控中扮演着关键角色。
本文将探讨前额叶皮质对工作记忆的调控,并讨论其中的神经机制。
首先,前额叶皮质在维持和操作工作记忆中起着重要作用。
前额叶皮质的一个主要区域是前额叶脑回,它与工作记忆的功能紧密相关。
研究发现,损伤前额叶脑回的人常常表现出工作记忆能力的下降。
在一项实验中,研究者发现对大鼠实施前额叶皮质切除手术后,其工作记忆能力明显受损。
这些研究结果表明,前额叶皮质在维持和操作工作记忆中扮演着至关重要的角色。
其次,前额叶皮质调控工作记忆的机制多样而复杂。
神经元活动的研究发现,前额叶皮质中的神经元活动与工作记忆的表现密切相关。
前额叶皮质神经元对于工作记忆的维持和调控表现出“细胞灵活性”的特点,即神经元的活动可以根据任务的要求进行灵活调整。
此外,研究者还发现前额叶皮质与其他脑区之间的连接对工作记忆任务的执行起着重要作用。
通过研究脑网络的连接模式,科学家们确定了前额叶皮质与背外侧前额叶、侧外侧前额叶、顶叶等脑区之间的连接对工作记忆的调控具有重要影响。
最后,前额叶皮质的调控与注意力密切相关。
注意力是工作记忆的重要组成部分,而前额叶皮质在注意力的调控中发挥着关键作用。
研究表明,前额叶皮质中的神经元活动与注意力的分配和维持密切相关,特定神经元的激活可以增强或抑制注意力对特定刺激的反应。
此外,前额叶皮质中的神经元活动对注意力的持续性也有重要影响,它可以帮助个体在干扰条件下保持注意力的稳定性,从而支持工作记忆任务的完成。
综上所述,前额叶皮质对工作记忆的调控至关重要。
其在维持和操作工作记忆中发挥关键作用,其调控工作记忆的机制与神经元活动和脑网络的连接密切相关。
此外,注意力在前额叶皮质调控工作记忆中扮演着重要角色。
对前额叶皮质在工作记忆中的功能和调控机制的深入研究,对于理解认知功能的基础和相关疾病的治疗具有重要意义。
任务态功能磁共振任务态功能磁共振(Task-based functional magnetic resonance imaging, t-fMRI)是一种功能磁共振成像技术,主要用于研究人脑神经活动与认知任务之间的关系。
本文将介绍任务态功能磁共振的原理、应用以及一些相关的研究进展。
一、原理fMRI是利用磁共振成像技术,测量人脑中血液氧含量水平的变化,从而反映出神经活动的地点和程度。
由于神经活动与认知任务之间存在密切的联系,因此,将fMRI与认知任务结合起来,可以更加精确地研究不同认知任务在不同脑区的活动情况。
在任务态功能磁共振实验过程中,被试需要执行不同的任务,如视觉注意、工作记忆、语言、运动等任务。
在任务执行过程中,人脑产生的神经活动导致当地脑血液流量的增加,进而导致血液中的氧含量上升,这一过程被称为血氧水平依赖性(Blood Oxygen Level Dependent, BOLD)信号。
BOLD信号的变化量与神经活动的程度、区域大小以及执行任务的时间等因素有关。
通过比较任务执行时和休息时的BOLD信号,可以推断出神经活动的区域和强度。
由于任务性质的不同,要研究的脑区和解剖结构也不同。
例如,视觉注意任务主要涉及前脑的额叶和顶叶,工作记忆任务涉及前额叶的侧前额叶和中央后回等区域。
二、应用任务态功能磁共振广泛应用于神经科学、认知心理学、神经心理学等领域。
其主要应用包括以下几个方面:1. 神经可塑性研究:任务态功能磁共振可以研究大脑不同区域的神经可塑性。
一些发育和成年期的疾病,如自闭症、抑郁症等都可能影响神经可塑性。
通过采取具有治疗效应的任务,可以促进神经可塑性的发展,从而有助于病人的康复。
2. 神经基础研究:任务态功能磁共振可以研究大脑不同区域的功能特点。
通过比较不同任务时的神经活动,可以了解某个视觉或听觉区域是否结构化以及信息加工的方式。
此外,研究任务时不同脑区之间的互动对于理解大脑功能组织也具有重要意义。
工作记忆(workingmemory)工作记忆(working memory):属程序性记忆、短时记忆,是一短暂时刻的知觉,是一系列操作过程中的前后连接关系,后一项活动需要前项活动为参照。
依赖于大脑前额叶皮层神经环路的功能,尤其是谷氨酸神经元与多巴胺神经元之间的平衡。
对脑高级功能的意义,通常是在过去的经历与当前的行动之间提供时间和空间的连续性,对于思维运算、下棋、弹钢琴以及无准备的即席演讲等都是十分重要的。
在工作记忆受损时,难以记住事件正确的前后关系。
一个典型的例子就是回忆一个新的七位数的电话号码。
你能回忆出来的数字的个数称为你的“数字广度”。
对大多数人来说,它通常只有六到七个。
换句话说,工作记忆的能力是有限的。
某些脑损伤的病人只有极小的数字记忆广度,除了他们听到的最后一个字母外,别的一概回忆不起来,但他们的意识却正常。
事实上,他们的长时记忆可能并未受到损害。
工作记忆与智力:1、工作记忆是指记忆与语言理解或思考,或计划同时进行的两种过程,因此,在两种过程之间注意的往返被认为是工作记忆的基本特点。
2、在句子加工过程中语音回路的作用是提供句子的语音表征,以便用于后续的分析与综合。
工作记忆是推理过程的核心。
3、由于工作记忆与语言能力、注意及推理有密切的关系,工作记忆与智力有较高的相关,工作记忆也许是脑的研究与素质教育的联系通道。
工作记忆活动区域fMRI图像的三维重建3-D reconstruction: Certain frontal and parietal brain areas (orange) stayed active when subjects held a series of letters in working memory. Functional MRI data is embedded in a 3-D reconstruction of subject's brain from structural MRI data.。
大脑皮层功能探讨大脑皮层对认知和行为的调控大脑皮层功能探讨大脑皮层,作为人类大脑的最外层,承担着重要的认知和行为调控功能。
它由六个主要区域组成:额叶、顶叶、颞叶、顶叶、枕叶和基底节。
这些区域分别负责不同的神经活动,共同构成了人类复杂的思维和行为过程。
本文将探讨大脑皮层对认知和行为的调控,并介绍一些相关的研究成果。
一、大脑皮层与认知认知是指人类处理信息、感知意识、学习记忆和进行决策的过程。
大脑皮层在认知功能中起着至关重要的作用。
通过神经元间的网络连接和信息传递,大脑皮层可以接收、处理和组织外界的感觉刺激,并产生相应的认知结果。
例如,额叶皮层被认为是执行高级认知功能的关键区域之一。
它参与了注意力、工作记忆、决策和推理等认知过程。
大量的研究表明,额叶皮层的功能异常与认知缺陷和神经认知疾病密切相关。
而顶叶皮层则主要负责感知信息的处理,包括视觉、听觉和触觉等。
这些信息经过顶叶的加工和整合,形成人类对外界环境的认知。
另外,颞叶皮层也扮演着重要的角色。
它参与了语言理解、面部识别、记忆储存等认知功能。
研究发现,颞叶皮层的损伤会导致语言障碍和记忆力下降,这进一步证明了大脑皮层对认知的调控作用。
二、大脑皮层与行为行为是人类对外界刺激做出的响应。
大脑皮层通过调控神经元的兴奋或抑制,影响人类的行为模式和决策过程。
研究发现,额叶皮层的损伤可以导致行为的改变和决策能力的下降。
额叶的前部与人类的情绪调节和社会行为相关,后部则与运动控制和动作计划相关。
通过调节额叶皮层的活动,可以改善这些行为异常和决策问题。
此外,大脑皮层与大脑基底节之间的连接也对行为起着重要的作用。
大脑基底节是由多个次区域组成的一系列神经核团,参与了运动控制、情绪调节和奖赏机制等行为过程。
大脑基底节通过与大脑皮层的相互连接,协同调控人类的运动和行为。
三、研究进展与展望随着科技的发展,神经科学研究在大脑皮层功能方面取得了令人瞩目的进展。
通过功能磁共振成像(fMRI)等技术,科学家们可以观察到大脑皮层在不同认知和行为任务中的活动变化。
工作记忆的基本概念工作记忆的基本概念工作记忆是一种对信息进行暂时加工和贮存的容量有限的记忆系统,在许多复杂的认知活动中起重要作用。
1974年,baddeley和hitch在模拟短时记忆障碍的实验基础上提出了工作记忆的三系统概念,用"工作记忆"(working memory,wm)替代原来的"短时记忆"(short-term memory, stm)概念。
此后,工作记忆和短时记忆有了不同的意义和语境。
工作记忆,(workingmemory,wm),工作记忆是一种较短时间范围的记忆形式,能够让大脑组织同时处理多种想法。
工作记忆是从长时记忆中提取出来的,存在着一个分离的记忆结构,工作记忆依赖于大脑前额叶皮层神经环路的功能,尤其是谷氨酸神经元与多巴胺神经元之间的平衡。
工作记忆的组成原理最早是由英国心理学家baddeley和hitch提出的一个记忆模型,主要由三个子系统构成,分别是中央执行系统、语音回路和视空间模板,指一种对信息进行暂时性加工和存储的能量有限的记忆系统。
在信息加工过程中,随着时间的进展,短时记忆不断变化,工作记忆的内容也就不断地增减、变动和更新。
根据信息加工的观点,在认知过程中,外部刺激经过编码进入记忆系统后,要与已经存储的信息进行比较,并找出与之接近的匹配模式。
长时记忆中已存储的信息有一部分就要再次活动起来,在当前的加工活动中起作用,这一部分记忆就是工作记忆。
工作记忆的主要特点对于工作记忆的结构虽然还存在不同的看法,但对工作记忆的内容:则都认为包括一个人当时注意着的信息和对这些信息进行加工所应用着的操作。
可以把工作记忆看作是正在进行中的精细认知活动的“工作空间”。
它的容量有限,一般认为记忆广度不超过7个项目。
由于工作记忆具有连续性和活动性特点,它的内容才随时变动、不断更新。
可以认为工作记忆是短时记忆概念的扩充和发展。
对脑高级功能的意义,通常是在过去的经历与当前的行动之间提供时间和空间的连续性,对于思维运算、下棋、弹钢琴以及无准备的即席演讲等都是十分重要的。
大脑相关词汇表Aa-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) α-氨基-3-羟基-5-甲基-4-异恶唑丙酸abducent nerve 展神经abstinent heroin dependent individuals (AHD) 海洛因戒断者accessory nerve 副神经acoustic tubercle 听结节Alcohol Use Disorder Identification Test (AUDIT) 酒精依赖疾患识别测验amygdala (AMY) 杏仁核angular gyrus 角回anterior cingulate cortex (ACC) 前扣带回皮层anterior cingulate gyrus (ACG) 前扣带回anterior insula 脑皮层上的前脑岛anterior temporal lobe 颞叶前部arachnoid 蛛网膜area postrema 最后区;极后区arterial spin-labeled perfusion magnetic resonance imaging (ASL-MRI) 磁共振动脉自旋标记灌注成像autonomic nervous system 自主神经系axillary nerve 腋神经BBarratt Impulsiveness Scale (BIS) Barratt冲动性量表basal forebrain 基底前脑,basal ganglia circuits基底节环路basal nuclei 基底核basilar artery 基底动脉basolateral amygdala (BLA) 基底外侧杏仁核basolateral 基底前侧Blood Oxygenation Level Dependent (BOLD) 血氧水平依赖brachial plexus 臂丛brain (encephalon) 脑brain stem 脑干Ccalcarine sulcus 距状沟caudate nucleus 尾状核central nervous system 中枢神经系统central sulcus 中央沟cerebellum (CER) 小脑cerebral aqueduct 中脑导水管cerebral arterial circle 大脑动脉环cerebral cortex 大脑皮质cerebrospinal fluid 脑脊液cervical plexus 颈丛cingulate gyrus (CG)扣带回common peroneal nerve 腓总神经corpus callosum 胼胝体corpus striatum 纹状体cortex (CTX) 皮质corticomedial 皮质内侧corticospinal tract 皮质脊髓束cranial nerves 脑神经crus cerebri 大脑脚cuneate tubercule 楔束结节cuneus gyrus 楔回Ddeep peroneal nerve 腓深神经dendritic spines 树突刺dentate gyrus 齿状回diencephalon 间脑dopamine (DA) 多巴胺dopamine type 2/3 receptor 多巴胺2/3型受体dorsal lateral prefrontal cortex (DLPFC)背外侧前额叶dorsal lateral striatum (DMPFC) 背外侧纹状体dorsal prefrontal cortex 背侧前额叶皮质dorsal putamen 背壳dorsal striatum (DS) 背侧纹状体dorso lateral frontal cortex 背外侧额叶dorsolateral prefrontal cortex (DLPFC) 背外侧前额叶dorsolateral striatum (DLS) 背外侧纹状体dorsomedial prefrontal cortex (DMPFC) 背内侧前额叶dorsomedial striatum (DMS) 背内侧纹状体dura mater 硬脑膜Eelectroencephalography (EEG) 脑电图epithalamus 上丘脑Ffacial colliculus 面丘facial nerve 面神经Fagerström Test for Nicotine Dependence (FTND) 尼古丁依赖量表fasciculus cuneatus 楔束fasciculus gracilis 薄束femoral nerve 股神经fluorodeoxyglucose (FDG) 氟脱氧葡萄糖fornix 穹窿fourth ventricle 第四脑室frontal lobe 额叶functional magnetic resonance imaging (fMRI) 功能磁共振成像fusiform gyrus (FG) 梭状回fusiform gyrus/visual cortex (FG/VC) 梭状回/视觉皮层Gg-aminobutyiric acid (GABA) γ-氨基丁酸ganglion 神经节globus palidus 苍白球glossopharyngeal nerve 舌咽神经glutamate 谷氨酸gracilis tubercule 薄束结节gray matter 灰质Hhealth participants (NDP) 健康人hippocampus/Para hippocampal gyrus (HIPP/PH) 海马/海马旁回hypoglossal nerve 舌下神经hypoglossal trigone 舌下神经三角hypothalamic pituitary axis (HPA) 下丘脑-垂体轴hypothalamus 下丘脑Iinferior cerebellar peduncle 小脑下脚inferior colliculus 下丘inferior frontal gyrus (IFG) 额下回inferior olive nucleus 下橄榄核inferior parietal lobule (IPL) 顶下小叶inferior temporal cortex (ITC) 颞下皮层;下颞叶皮层inferior/superior parietal cortex (IPC/SPC) 上/下顶叶皮质insula (INS) 脑岛intercostal nerve 肋间神经internal capsule 内囊late positive complex (LPC) 晚正复合体lateral hypothalamu 外侧下丘脑lateral lemniscus 外侧丘系lateral prefrontal cortex 外侧前额叶lateral sulcus 外侧沟lateral ventricle 侧脑室lentiform nucleus 豆状核limbic brain circuitry 边缘系统limbic lobe 边缘叶limbic system 边缘系统lingual gyrus 舌回locus ceruleus 蓝斑longthoracic nerve 胸长神经lumbar plexus 腰丛lumbosacral trunk 腰骶干MMagnetic resonance image imaging (MRI) 磁共振成像magnetoencephalography (MEG) 脑磁描记法medial eminence 内侧隆起medial lemniscus 内侧丘系medial prefrontal cortex (MPFC) 内侧前额叶皮质medial striatum 内侧纹状体median nerve 正中神经medulla oblongata 延髓metathalamus 后丘脑methylphenidate (MPH) 利他能(中枢神经兴奋药)midbrain (mesencephalon) 中脑middle cerebellar peduncle 小脑中脚Montreal Neurological Institute (MNI) MNI坐标系motor cortex (MC) 动作皮层;运动皮层musculocutaneous nerve 肌皮神经Nnerve 神经Nervous System 神经系统neural cue reactivity (NCR) 线索诱发的神经活动neuroglia 神经胶质neuron 神经元n-methyl-Daspartic acid (NMDA) N-甲基-D-天冬氨酸nucleus accumbens (NAc) 伏隔核nucleus accumbens related circuitry 伏隔核相关回路nucleus ambiguus 疑核nucleus thoracicus 胸核nucleus 神经核Oobex 闩obturator nerve 闭孔神经occipital lobe 枕叶oculomotor nerve 动眼神经olfactory nerve 神经optic nerve 视神经opticchiasma 视交叉Orbital-prefrontal circuitry 眶前额皮层orbitofrontal cortex (OFC ) 眶额皮层;前额叶眶回Pparacentral lobule 旁中央小叶parahippocampal gyrus 海马旁回parasympathetic nerve 副交感神经parieo-occipital sulcus 顶枕沟parietal lobe 顶叶periaquaeductal grey 导水管周围灰质peripheral nervous system 周围神经系统phrenic nerve 膈神经pia mater 软脑膜pons 脑桥pontine nuclei 脑桥核positron emission tomography (PET) 正电子发放断层扫描postcentral gyrus 中央后回posterior cingulate cortex (PCC) 后扣带回posterior middle temporal gyrus (pMTG) 后颞中回;颞中回后部precentral gyrus 中央前回prefrontal cortex (PFC) 前额叶皮层premotor cortex (PMC) 前运动皮层putamen 壳pyramid 锥体pyramidal decussation 锥体交叉radial nerve 桡神经raphe nuclei 中缝核red nucleus 红核region of interest (ROI) 感兴趣脑区reticular formation 网状结构rhomboid fossa 菱形窝Ssacral plexus 骶丛sciatic nerve 坐骨神经septo-hippocampal complex海马皮层隔septo-hippocampal system 海马皮层系统solitary nucleus 孤束核somatosensory cortex (SC) 躯体感觉皮层spinal cord 脊髓spinal nerves 脊神经spinal trigeminal nucleus 三叉神经脊束核spinal trigeminal tract 三叉神经脊髓束spinothalamic tract 脊髓丘脑束striae medullaris 髓纹substantia gelatinosa 胶状质substantia nigra (SN) 黑质,塞梅林氏神经节subthalamus 底丘脑superficial peroneal nerve 腓浅神经superior cerebellar peduncle 小脑上脚superior colliculus 上丘superior parietal and premotor regions 高级顶叶和运动前区Superior parietal lobule (SPL) 顶上小叶superior temporal sulcus (STS) 颞上沟supplementary motor area (SMA) 辅助运动区supramarginal gyrus 缘上回sympathetic nerve 交感神经Ttelencephalon (cerebrum)端脑(大脑)temporal lobe 颞叶temporal pole 颞极temporal-parietal junctions (TPJ) 颞顶交界处temporoparietal cortex 颞皮层thalamus (THAL) 丘脑thoracic nerves 胸神经thoracodorsal nerve 胸背神经tibial nerve 胫神经tract 神经束transcoronal magnetic stimulating system (TMS) 经颅磁刺激系统trapezoid body 斜方体trigeminal nerve 三叉神经trochlear nerve 滑车神经Uulnar nerve 尺神经uncus (海马旁回)钩Vvagal trigone 迷走神经三角vagus nerve 迷走神经vegetative nervous system 植物性神经系ventral cingulate 前扣带ventral medial (PFC) 腹内侧ventral medial frontal 腹额内侧ventral pallidum (VP) 腹侧苍白球ventral prefrontal cortex 腹侧前额叶皮层ventral premotor cortex ( VPC ) 腹外侧运动前皮质ventral striatum (VS) 腹侧纹状体ventral tegmental area (VTAa) 腹侧背盖区ventrolateral prefrontal cortex (VLPFC) 腹外侧前额叶皮层ventromedial prefrontal cortex (VMPFC) 腹内侧前额叶皮层ventromedial region of prefrontal cortex 前额皮质腹中区域vestibular area前庭区vestibulocochlear nerve 前庭蜗神经visceral nervous system 内脏神经系visual cortex (VC) 视觉皮层Wwhite matter 白质PreG precentral gyrus中央前回PosG postcentral gyrus中央后回MNS: In humans, the mirror neuron system has two major components.One is formed by the inferior parietal lobule (顶下小叶) and the ventral premotor cortex (腹侧运动前皮层)plus the caudal part (尾部的) of Broca’s area, the other by the insula(脑岛) and anterior cingulate gyrus (扣带回) . The main visual input to the MNS originates from the posterior part of the superior temporal sulcus(颞上沟 STS)。
心理学报2009, Vol. 41, No.11, 1054−1062Acta Psychologica Sinica DOI:10.3724/SP.J.1041.2009.01054Maintenance and Manipulation in Working Memory: Differential Ventral and Dorsal Frontal Cortex fMRI ActivitySara Pudas1,4, Jonas Persson1,4, L-G Nilsson1,4 & Lars Nyberg2,3,4(1 Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden)(2 Departments of Integrative Medical Biology (Physiology) and Radiation Sciences (Diagnostic Radiology), Umeå University, 90187, Umeå,Sweden)(3Umeå Center for Functional Brain Imaging (UFBI); 4Stockholm Brain Institute)Abstract: A verbal working memory protocol was designed and evaluated on a group of healthy younger adults in preparation for a large-scale functional magnetic resonance (fMRI) study on aging and memory. Letters were presented in two critical conditions: (i) maintenance, in which letters were to be memorized and kept in mind over a four second interval, and (ii) manipulation, in which letters were shifted forward in alphabetical order, and the new order was kept in mind. Analyses of fMRI data showed that the protocol elicited reliable activation in the frontal cortex, with manipulation producing more extensive activation patterns, both in whole-brain analyses and in predefined regions of interest (ROIs). There was also a distinction between dorsal and ventral lateral prefrontal regions, such that manipulation elicited more dorsolateral prefrontal activation. The protocol also elicited activation in various subcortical areas, previously associated with working-memory tasks. It was concluded that this working memory protocol is appropriate for investigating age-related changes in frontal-cortex functioning.Key wor d s: Frontal cortex; fMRI; working memory; maintenance; manipulationWorking memory (WM) is usually defined as a cognitive system for both temporary storage and manipulation of information (e.g. Baddeley, 1986). Structures within the frontal cortices are activated in many functional neuroimaging studies of various forms of WM tasks, (see e.g. Wager & Smith, 2003), typically in concert with parietal cortex and various sub-cortical regions (e.g. Cabeza, Dolcos, Graham & Nyberg, 2002). Further, different WM tasks seem to elicit different activation patterns within the prefrontal cortex. One distinction is between the kinds of material processed in the tasks. Verbal materials, such as words and letters, usually produce left-lateralizedReceived date: 2009-09-11Correspondence to: Sara Pudas, Department of Psychology, Umeå University, 901 87 Umeå, Sweden.E-mail: sara.pudas@psychology.su.se activation (e.g. Reuter-Lorenz et al., 2000). Spatial materials, on the other hand, tend to activate the right frontal cortex to a larger degree (e.g. McCarthy et al., 1996). Another notable distinction is that between ventral and dorsal lateral frontal regions, and this distinction is related to type of processing. Several studies have shown that maintenance (i.e. simple storage) of information in WM predominantly engages ventral frontal cortical areas, whereas more dorsal frontal regions are recruited if the task require additional processing (i.e. manipulation) of the information (e.g. D’Esposito et al., 1999, for a review, see Wager & Smith, 2003).WM has been extensively studied in relation to aging, prompted by that fact that a reduction in WM capacity is one of the most characteristic signs of cognitive aging (Prull, Gabrieli & Bunge, 2000). Imaging studies of the aging brain have11期Maintenance and Manipulation in Working Memory 1055revealed that prefrontal areas are the predominant site of age-related differences in WM-related brain activity. More specifically, age differences are mainly expressed in the dorsolateral portion of prefrontal cortex with minimal differences in ventrolateral prefrontal cortex (e.g., Rypma & D’Esposito, 2000). This effect seems to be particularly salient during the retrieval phase of working memory tasks, rather than during encoding and maintenance phases.In preparation for a large-scale study on memory and aging, we designed and evaluated a maintenance and manipulation WM task. The objective was to find a task that met the needs of a short scanning time, ease of administration to participants across the adult age span, as well as reliably evoking prefrontal activation. We modeled the task after Chee and Choo (2004). Specifically, our protocol comprised of sets of to-be-remembered letters presented in two critical conditions: maintenance, in which four letters were to be memorized and kept in mind over a four second interval, and manipulation, in which two letters were shifted forward in the alphabet and the results of the shift was kept in mind. In addition, there was a control condition in which four identical letters were presented. The protocol useda blocked design, adapted for functional magnetic resonance imaging (fMRI).The main purpose of the study was to assess whether the maintenance and manipulation task would be associated with a reliable dorsal/ventral PFC distinction in healthy young volunteers. That is, we asked whether manipulation would elicit more dorsolateral activation than maintenance, in accordance with previous findings. Further, we were also interested in examining whether the additional demands in the manipulation condition would produce differences in brain regions outside the frontal cortex. Of particular interest were parietal and basal ganglia regions, which were expected to be differentially involved in the manipulation condition of the current WM task.MethodsParticipantsSixteen undergraduate students (21-40 years;10 females) were recruited from Umeå University and financially compensated for their participation. All volunteers were right-handed on self report, had normal or corrected to normal vision and were in good general health. The study was approved by the ethics committee at the University hospital of Northern Sweden (Norrlands Universitetssjukhus). Two participants (out of 16) were excluded from the fMRI analyses due to movement artifacts on the images.Working memory taskThe current working memory task has been used in previous work on verbal working memory (e.g. Chee & Choo, 2004), and comprises three conditions (Fig 1). For the MAINTENACE condition, four different lowercase letters were presented for 2 s followed by a delay period of 4 s during which a fixation cross was displayed. A probe letter (in uppercase) was then presented for 1.5 s and this was followed by fixation for a further 0.5 s. Subjects signaled a match or a non-match by pressing one of two response buttons on the MR compatible response system within the duration that the probe letter was present. Half of the probes were matches, and the other half were non-matches.The MANIPULATE condition was designed to engage manipulation of items retained in verbal working memory. Two different letters were presented and subjects were instructed to mentally alphabetically shift each letter forward and to keep in mind the results. For example, if ‘b’ and ‘j’ were presented, subjects had to remember ‘C’ and ‘K’ which were to be matched with the probe. Matches comprised half of the trials. Stimulus presentation sequence, timing and control condition were identical to that used in MAINTENANCE.The CONTROL condition was designed to match for perceptual and motor responses. Four1056 心 理 学 报 41卷identical uppercase letters appeared for 0.5 s. The presentation phase was followed by a 0.5 s delay period prior to the appearance of a lower case probe that matched the target in half the trials.Figure 1. Schematic description of the three conditions in the working memory task, including timing. All three examples display items that are hits.Each participant performed 18 blocks of the working memory task, six from each condition, in a single scanning session. Each block started with a four second instruction, followed by four items presented for eight seconds each . The participants received instructions before entering the scanner, including a practice task. The total scanning time for this protocol was approximately 11 minutes.Equipment and softwareThe fMRI study was carried out on a Philips 3.0 T high-speed echo-planar imaging device using a quadrature headcoil. The following parameters were used: repetition time: 1512 ms (31 slices acquired), echo time: 30 ms, flip angle: 70 degrees, field of view: 22 × 22 cm, 64 × 64 matrix and 4.65 mm slice thickness. To avoid signals arising from progressive saturation, ten dummy scans were performed prior to image acquisition. Structural high-resolution T1 and T2-weighted images were also acquired. For the T1-weighted images a 3D turbo field-echo sequence was used with the following parameters: repetition time: 10.5 ms,echo time: 5 ms, flip angle: 8 degrees, and field of view: 24 × 24 cm. 170 sagittal slices with a slice thickness of 1 mm were acquired in 336 × 332 matrices and reconstructed to 800 × 800 matrices. Also, T2-weighted images a turbo spin-echo images collected in the transaxial plane with the following parameters: repetition time: 3000 ms, echo time: 80 ms, flip angle: 90 degrees and field of view: 24 × 24 cm, slice thickness: 5 mm (1 mm gap) were acquired in 400 × 319 matrices and reconstructed to 512 × 512 matrices. All images were sent to a PC and converted to Analyze format.The stimuli were presented on a computer screen visible to the subjects through a tilted mirror that was attached to the head coil. Lumitouch fMRI optical response keypads (photon Control Inc., Canada) were used to collect responses. Presentation, responses and reaction times for all involved phases were handled by a PC running E-prime 1.2 (Psychology Software Tools, Inc. USA). fMRI data analysesFunctional images were analyzed with11期 Maintenance and Manipulation in Working Memory 1057Statistical Parametric Mapping Software (SPM2; Wellcome Department of Imaging Science, Functional Imaging Laboratory; http://www.fil.ion. /fil.html) implemented in Matlab 7.3 (Mathworks Inc, MA, US). After correcting for differences in slice timing within each image volume, all images were realigned to the first image volume acquired, then normalized to standard anatomic space defined by the MNI atlas (SPM2), and finally spatially smoothed using a 6.0-mm full-width at half-maximum Gaussian filter kernel.Statistical analyses were performed on a voxel-by-voxel basis. Each of the experimental and baseline conditions was modelled as a fixed response (box-car) waveform convolved with the canonical hemodynamic response function. Single-subject statistical contrasts were set up using the general linear model, and group data were analyzed in a random-effects model. Statistical parametric maps (SPMs) were generated using t statistics to identify regions activated according to the model. All reported activations passed a threshold of 0.01 using FDR correction for multiple comparisons and had a cluster size larger than 10 voxels. The Marsbar toolbox (/) was used to create region-of-interests (ROIs), and extract each ROIs mean BOLD parameter estimate value for each condition on an individual level. ROIs were functionally defined on the voxels that showed peak activations in a comparison of the MANIPULATE condition versus the MAINTENANCE condition in the current dataset, and that corresponded to regions that are typically activated by manipulation in working memory in the literature (e.g. Wendelken, Bunge & Carter, 2008; Champod & Petrides, 2007; Rypma & D'Esposito, 2000; D'Esposito et al., 1999). Each region was created by including activated voxels (p <0.01, FDR corrected) within a 10-mm sphere around the peak voxel, and had a cluster size larger than 10 voxels.Figure 2. Activations in the maintenance and manipulate conditions, compared to baselineResultsBehavioral dataThe mean accuracy across the 14 participants in the current study were 85%, 78% and 95% for the maintenance, manipulate, and control conditions, respectively. In the critical comparison between the maintenance and manipulationconditions, the difference in accuracy was significant (t =2.24, p <0.05). Accuracy was also significantly higher in the control condition than in both maintenance (t =−4.02,p <0.01) andmanipulation (t =−5.51, p <0.01). For the response time measures medians were used for each subject to minimize the effect of extreme values. Group1058 心 理 学 报 41卷level mean response time was 1006.5 ms (SD = 120.3) in the maintenance condition, 931.3 ms (SD =99.4) in manipulation and 841.5 ms (SD = 145.8) in the control condition. Response times were significantly shorter in the manipulation condition compared to maintenance (t =3.82, p < 0.01). The response times in the control condition were significantly shorter than in both maintenance (t =7.65, p <0.01) and manipulation (t =4.23, p <0.01) conditions.Figure 3. Areas more active in the manipulate condition compared to maintenancefMRI whole-brain analysesAs can be seen in Figure 2, when compared tothe baseline condition, both the maintenance and manipulation working-memory conditions activated frontal and parietal areas, but the activation wasmore extensive in the manipulation condition. Bothconditions also produced a tendency to a left-lateralization of activation patterns in frontaland parietal areas, coupled with activation in theright cerebellum.Direct comparison of the manipulation andmaintenance conditions confirmed that manipulation was associated with a more extensivepattern of brain activity, as can be seen in Figure 3.In the frontal cortex, the [manipulation- maintenance] contrast revealed greater bilateralactivations in both dorsolateral (BA 9) and ventrolateral (BA 44/45/47) frontal areas as well as anterior prefrontal cortex (BA 10). However, asshown in Figure 3, the prefrontal activation difference was most pronounced in dorsolateral areas. There was also increased activation in parietal areas (BA 39/40), including bilateral precuneus (BA 7). Other areas that also showed increased activation in this contrast were thalamus, cerebellum and globus pallidus. Table 1 summarizes the activation clusters for the contrast between manipulation and maintenance, including exact coordinates in stereotaxic space. As can be seen, the strongest activation was in dorsolateralfrontal cortex (BA 9). fMRI region-of-interest analyses In order to further investigate the activationsfound in the whole-brain analysis described above, 11 regions of interest (ROIs) were created. They were defined based on the clusters generated in thewhole-brain analysis and based on previous literature (e.g. Wendelken, Bunge & Carter, 2008; Champod & Petrides, 2007; Rypma & D'Esposito, 2000; D'Esposito et al., 1999). The main objective of the ROI analyses was to check the robustness ofregional activations at the individual level. Figures 4 & 5 show ROIs that were analyzed, individual activation profiles, and group-based statistics.Critically, at the individual level, the manipulation condition was consistently associated withrelatively higher activity in each examined ROI.DiscussionThe present results show that this maintenance and manipulate working memory fMRI protocol can be used to elicit robust prefrontal activation. Further, the results also show that manipulation is associated with more extensive functional brain activity than maintenance, which is in line with previous research (Wager & Smith, 2003). Importantly, the direct comparison (Figure 3) revealed that the difference between manipulation and maintenance was most salient in dorsal frontal cortex (BA 9).11期Maintenance and Manipulation in Working Memory 1059 Table 1.Clusters that were more activated during manipulation compared to maintenanceAnatomical localization BA X y z z-valueFrontalLeft middle frontal gyrus 9 −5220 34 5.06*10−3050 12 4.40*Left inferior frontal gyrus 47 −2824 -8 4.13*44/45−4216 20 4.72*45/46−3236 12 3.80Right middle frontal gyrus 6 30 6 60 4.6295628324.16*10325444.06*Left Anterior cingulate 32 12 30 32 3.86ParietalRight parietal lobe 40 44 −4240 4.75*Right precuneus 7 10 −6850 3.92Left angular gyrus 39 −32−6834 4.47Left precuneus 7 −12−6836 4.35*OtherThalamus−4 −14 4 4.81*Cerebellum38−68−50 4.778−8026 3.99Globus pallidus −10−2 −2 4.15*Caudate nucleus −140 8 3.20*Note: BA, Brodmann’s Area; x, y, z coordinates in MNI (Montreal Neurological Institute)stereotaxic space; *Regions that were selected for ROI-analysesAreas outside of the frontal cortex which were more activated in manipulation than maintenance included the parietal cortex, the cerebellum, the thalamus, as well as the globus pallidus and caudate nucleus of the basal ganglia. Parietal activation is found in many studies of WM (e.g. Cabeza et al., 2002; Chee & Choo, 2004; see Cabeza & Nyberg, 2000), and it has recently been suggested that the parietal cortex, in conjunction with dorsolateral prefrontal cortex, supports organization of information (i.e. manipulation) and the maintenance of that information in an organized state (Wendelken, Bunge & Carter, 2008). This hypothesis is consistent with the current results. The thalamus likely mediates attentional demands (e.g. Portas, Rees, Howseman, Turner & Frith, 1998), while the role of the cerebellum could be linked to higher executive demands (Cabeza & Nyberg, 2000).Basal ganglia structures are important for WM, as shown by neuroimaging studies (e.g. Dahlin et al., 2008; Lewis, Dove, Robbins, Barker & Owen, 2004) and computational studies (see O’Reilly, 2006). The exact nature of their contribution remains to be clarified, but a recent study suggests that the basal ganglia, in concert with the prefrontal cortex, acts as a form of gate-keeper to allow only relevant information to enter WM (McNab & Klingberg, 2008). This could be reconciled with our current results when considering that the manipulation condition in our protocol involved remembering not the presented letters, but the next letters in the alphabet. In this case the presented letters could be hypothesized to constitute irrelevant information, not to be allowed to enter WM. Moreover, the manipulation condition should have had a strong updating component, which has been linked to the caudate1060 心 理 学 报 41卷region in working-memory studies (Dahlin et al., 2008; also see O’Reilly, 2006).A possible confound is that the manipulation condition proved to be more difficult than the maintenance condition, given the significant difference in accuracy for these two conditions. This difference could have accounted for some of the observed differences in brain activity . However , the shorter response times in the manipulation condition would argue against this possibility. Also, given the relative simplicity of the task and the high accuracy in both conditions difference in level of difficulty likely had a relatively minoreffect.Figure 4. Results from the ROI analyses, line charts show individual activation and bar charts ROI activation on a group level (error bars represent the standard error of the mean); maintenance condition on left-hand side of charts, manipulation on right-hand side11期 Maintenance and Manipulation in Working Memory 1061Figure 5. Results from the ROI analyses, line charts show individual activation and bar charts ROI activation on a group level (error bars represent the standard error of the mean); maintenance condition on left-hand side of charts, manipulation on right-hand sideIn conclusion, the working memory protocol described here produces reliable activation in the frontal cortex, as well as a differentiation betweenactivation patterns for maintenance and manipulation conditions. The protocol is thus appropriate for use in future WM studies, and willbe employed in our upcoming study on memory and aging, which is aimed at investigating the neural underpinnings of age-related decline in WMprocesses.References Baddeley, A. D. (1986). Working memory . Oxford University Press:New York.Cabeza, R., Dolcos, F., Graham, R., & Nyberg, L. (2002). Similaritiesand Differences in the Neural Correlates of Episodic Memory Retrieval and Working Memory. NeuroImage, 16, 317−330.Cabeza, R. & Nyberg, L. (2000) Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of CognitiveNeuroscience, 12(1), 1−47.1062 心理学报 41卷Champod, A. S & Petrides, M. (2007) Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring processes. Proceedings of the National Academy of Sciences in the U S A, 104(37), 14837−14842Chee, M. W. L. & Choo, W. C. (2004). Functional Imaging of Working Memory after 24 Hr of Total Sleep Deprivation. The Journal of Neuroscience, 24(19), 4560−4567.Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L.(2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510−1512.de Ribaupierre, S., Ryser, C., Villemure, J.-G., & Clarke, S. (2008).Cerebellar lesions: is there a lateralization effect on memory deficits? Acta Neurochirurgica, 150, 545−550.D’Esposito, M., Postle, B. R., Ballard, D., & Lease, J. (1999).Maintenance versus Manipulation of Information Held in Working Memory: An Event-Related fMRI Study. Brain and Cognition, 41, 66−86.Lewis, S. J. G., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A.M. (2004). Striatal contributions to working memory: a functional magnetic resonance imaging study in humans. European Journal of Neuroscience, 19(3), 755−760.McCarthy, G., Puce, A., Constable, T. R., Krystal, J. H., Gore, J. C., & Goldman-Rakic, P. (1996). Activation of Human Prefrontal Cortex during Spatial and Nonspatial Working Memory Tasks Measured by Functional MRI. Cerebral Cortex, 6(4), 600−611. McNab, F. & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience,11(1), 103−107.O'Reilly, R. C. (2006). Biologically based computational models of high-level cognition. Science, 314(5796), 91−94Persson, J. & Nyberg, L. (2006). Altered brain activity in healthy seniors: what does it mean?. Progress in Brain Research, 157, 45−57. Portas, C. M., Rees, G., Howseman, O., Turner, R., & Frith, C. D.(1998). A Specific Role for the Thalamus in Mediating the Interaction of Attention and Arousal in Humans. The Journal of Neuroscience, 18(21), 8979−8989.Prull, M. W., Gabrieli, J. D. E., & Bunge, S. A. (2000). Age-Related Changes in Memory: A Cognitive Neuroscience Perspective. In: F.I. M., Craik & T. A. Salthouse (Eds.), The Handbook of Aging andCognition (2nd Ed., pp.91−153). Mahwah, NJ: Lawrence Erlbaum Associates.Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., et al. (2000). Age Differences in the Frontal Lateralization of Verbal and Spatial Working Memory Revealed by PET. Journal of Cognitive Neuroscience, 12(1), 174−187. Rypma, B., & D'Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience, 3(5), 509−515.Wager, T. D. & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255−274.Wendelken, C., Bunge, S. A., & Carter, C. S. (2008). Maintaining structured information: An investigation into functions of parietal and lateral prefrontal cortices. Neuropsychologia, 46, 665−678.工作记忆的保持与操控:腹侧和背侧额叶皮层的特异性功能磁共振成像活动 Sara Pudas1,4, Jonas Persson1,4, L-G Nilsson1,4 and Lars Nyberg2,3,4(1 Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden)(2 Departments of Integrative Medical Biology (Physiology) and Radiation Sciences (Diagnostic Radiology), Umeå University, 90187, Umeå,Sweden)(3Umeå Center for Functional Brain Imaging (UFBI); 4Stockholm Brain Institute)摘 要为了进行大样本的老化与记忆的功能磁共振成像(fMRI)研究, 研究者设计了言语工作记忆的方案, 并且对一组健康青年人进行了施测。