辽宁省大连育明高中2017-2018学年高二上学期期中考试数学文试卷Word版
- 格式:doc
- 大小:296.00 KB
- 文档页数:4
大连市2017 2018学年度第一学期期末考试试卷高二数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“031,>⎪⎭⎫ ⎝⎛∈∀x R x ”的否定是( ) A .031,<⎪⎭⎫ ⎝⎛∈∃x R x B .031,≤⎪⎭⎫ ⎝⎛∈∀x R x C .031,<⎪⎭⎫ ⎝⎛∈∀x R x D .031,≤⎪⎭⎫ ⎝⎛∈∃x R x 2.在等比数列{}n a 中,44=a ,则=⋅62a a ( )A .4B .16C .8D .323.命题1:>x p ,命题11:<xq ,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知实数y x ,满足⎪⎩⎪⎨⎧≤+≥-≤8422y x y x y ,则y x z +=2的最大值为( )A .8B .12 C. 14 D .205.双曲线()014222>=-b b y x 的离心率等于b 33,则该双曲线的焦距为( ) A .52 B .8 C. 6 D .626.R b a ∈,,且b a >,则下列结论正确的是( )A .22b a >B .1<a b C.()ba b a ->-1lg lg D .b a --<33 7.21,F F 为椭圆1:2222=+by a x C 左右焦点,A 为椭圆上一点,2AF 垂直于x 轴,且三角形21F AF 为等腰直角三角形,则椭圆的离心率为( )A .12-B .2 C.2 D .22-8.数列{}n a 的前n 项和n n S n 3022-=,当n S 取最小值时n 的值为( )A .7B .8 C. 87或 D .99.已知直线a x y +=与曲线x y ln =相切,则a 的值为( )A .1B .2 C. 1- D .2-10.关于x 的不等式0>-b ax 的解集为()1,-∞-,则关于x 的不等式()()02<+-b ax x 的解集为( )A .()2,1-B .()2,1 C.()()+∞-∞-,21, D .()()+∞∞-,21,11.P 为双曲线136422=-y x 上的任意一点,则P 到两条渐近线的距离乘积为( ) A .518 B .2 C.536 D .1 12.已知函数()()⎩⎨⎧>+≤+-=0,1ln 0,2x x x x x x f ,若()ax x f ≥,则a 的取值范围为( )A .(]0,∞-B .[]0,1- C.(]1,∞- D .[]0,2-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知ab b a b a ,2,0,0=+>>的最大值为.14.函数()()xe x xf 3-=的单调递增区间是. 15.已知抛物线x y =2和点()0,4A ,质点M 在此抛物线上运动,则点M 与点A 距离的最小值为. 16.等差数列{}n a 与{}n b 的前n 项和为分别为n S 和n T ,若1223+-=n n T S n n ,则=66b a . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 过抛物线px y E 2:2=的焦点F 的一条直线与抛物线E 交于()()2211,,,y x Q y x P 两点. 求证:.221p y y -=18.已知函数().4313a x x x f +-=(1)当2=a 时,求()x f 的极大值;(2)当a 为何值时,函数()x f 有3个零点.19.已知()1,0-是椭圆C 的一个顶点,焦点在x 轴上,其右焦点到直线:22+=x y 的距离等于.3(1)求椭圆C 的标准方程;(2)过点⎪⎭⎫ ⎝⎛21,1P 的直线l 与椭圆C 交于N M ,两点,若P 为MN 中点,求直线l 方程.20.已知数列{}n a 的前n 项和210n n S n -=,数列{}n b 的每一项都有n n a b =.(1)求数列{}n a 的通项公式;(2)求数列{}n b 前n 项和.21.已知函数().ln 2x x x f =(1)求()x f 的单调区间;(2)当0>x 时,若x xm ln 2≤恒成立,求m 的取值范围. 22.已知椭圆C 的中心是坐标原点O ,它的短轴长22,焦点()0,c F ,点⎪⎭⎫⎝⎛-0,10c c A ,且.2FA OF = (1)求椭圆C 的标准方程; (2)是否存在过点A 的直线与椭圆C 相交于Q P ,两点,且以线段PQ 为直径的圆过坐标原点O ,若存在,求出直线PQ 的方程;不存在,说明理由.试卷答案一、选择题1-5: DBACB 6-10:DACCD 11、12:AB二、填空题13. 1 14.()+∞,2 15.215 16.2331 三、解答题17.解:当过焦点F 的直线垂直于x 轴时,则221p y y -=成立,当直线不与x 轴垂直时,设⎪⎭⎫ ⎝⎛-=2p x k y ⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=px y p x k y 222得0222=--p py ky 所以221p y y -= .18.解:(1)2()=4,f x x '-由2()=40,f x x '-≥解得2x ≥或-2x ≤,2()=40,f x x '-≤解得22x -≤≤所以当2x =-时()f x 有极大值22(2)3f -= (2)由2()=40,f x x '-=解得122, 2.x x =-=()f x 的单调增区间是(]--2∞,和[)2+.∞,当[]2,2x ∈-时,()f x 是减函数;()f x 的极大值16(2)3f a -=+极小值为16(2)3f a -=- 所以1603a +>且1603a -<所以161633a -<< 19.解:(1)由题知1b =,223,2cd +==22+32, 2.c c ==所以所以2222, 3.a b c a =+=由得22 1.3x y +=所以椭圆的标准方程为 (2)1122,x y x y 设M (),N (,),则有221122221313x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ ()()()()121212120,3x x x x y y y y -++-+=所以 所以12122+103y y x x -⋅=-.12122.3y y k k x x -==--由,得 所以直线方程为()12123y x -=--,即4670x y +-=.(其他方法可参考给分)20.解:(1)111112(2),9n n n a S S n n a S -=-=-≥==又112()n a n n N +=-∈所以(2)56112(),10,10,n a n n N a a +=-∈=>=-<由于易得25,10;n n n n n b a T S n n ≤===-所以当时,5,n n n b a >=-当时,225250(10)1050n n T S S n n n n =-=--=-+2210(5)1050(5)n n n n T n n n ⎧-≤=⎨-+>⎩即 21.解:(1)f (x )定义域为(0,)+∞,312ln '()x f x x -=, '()0f x >,解得120x e <<,'()0f x <,解得12x e >,∴f (x )在12(0,)e 上是增函数,在12(,)e +∞上是减函数;(2)不等式等价于2ln A x x ≤,令2()ln g x x x =,'()2ln (2ln 1)g x x x x x x =+=+, '()0g x >,解得12x e ->,'()0g x <,解得120x e -<<,∴g (x )在12(0,)e-上是减函数,在12(,)e -+∞上是增函数, g (x )在12x e -=时取最小值121()2g e e -=-,∴12m e ≤-, 故A 的最佳取值为1(,]2e-∞- 22.解:(1)由题意知,()⎪⎭⎫ ⎝⎛-=0,10,0,,2c c A c F b ()⎪⎭⎫ ⎝⎛-==0,210,0,c c FA c OF 由FA OF 2=,得c c c 420-=,解得:.2=c ∴=+=∴,6222c b a 椭圆的方程为12622=+y x 离心率为3662=(2)()0,3A ,设直线PQ 的方程为()3-=x k y联立()⎪⎩⎪⎨⎧=+-=126322y x x k y ,得()062718312222=-+-+k x k x k 设()()2211,,,y x Q y x P ,则2221222131627,3118k k x x k k x x +-=+=+ ()[]22222222121221313931543162793k k k k k k k x x x x k y y +=⎥⎦⎤⎢⎣⎡++-+-=++-= 由已知得OQ OP ⊥,得02121=+y y x x ,即03163031331627222222=+-=+++-k k k k k k 解得:55±=k , 符合∴>∆,0直线PQ 的方程为()355-±=x y .。
2017-2018学年辽宁省大连市普兰店二中高二(上)期中数学试卷(文科)一.选择题(每小题5分,共60分)1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|log 2x<0.5},则()A.A∩B=∅B.A∩B=B C.A∪B=R D.∁U(A∩B)=∅2.(5分)下列函数中,既是偶函数又是(0,+∞)上的增函数的是()A.y=x3 B.y=2|x|C.y=﹣x2D.y=log3(﹣x)3.(5分)若sin()=,则cos()的值为()A.B.C.D.4.(5分)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱5.(5分)若△ABC的内角A,B,C满足6sinA=4sinB=3sinC,则cosB=()A.B.C.D.6.(5分)已知实数a=cos224°﹣sin224°,b=1﹣2sin225°,c=,则a,b,c的大小关系为()A.b>a>c B.c>a>b C.a>b>c D.c>b>a7.(5分)设S n是等比数列{a n}的前n项和,S4=5S2,则的值为()A.﹣2 B.2 C.﹣2或2 D.8.(5分)若把函数的图象向右平移φ(φ>0)个单位后所得图象关于坐标原点对称,则φ的最小值为()A.B.C.D.9.(5分)三棱锥D﹣ABC及其正视图和侧视图如右图所示,且顶点A,B,C,D 均在球O的表面上,则球O的表面积为()A.32πB.36πC.128πD.144π10.(5分)下列命题中,正确命题的个数为()①“若xy=0,则x=0或y=0”的逆否命题为“若x≠0且y≠0,则xy≠0;②函数f(x)=e x+x﹣2的零点所在区间是(1,2);③x2﹣5x+6=0是x=2的必要不充分条件.A.0 B.1 C.2 D.311.(5分)若圆(x﹣3)2+(y+5)2=r2上有且只有两个点到直线4x﹣3y﹣2=0的距离等于1,则半径r的取值范围是()A.(4,6) B.[4,6]C.(4,5) D.(4,5]12.(5分)已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC ⊥l,直线m∥α,m∥β,则下面四种位置关系中,不一定成立的是()A.AC⊥βB.AC⊥m C.AB∥βD.AB∥m二、填空题(共4题,每小题5分,共20分)13.(5分)已知实数x,y满足则z=x﹣y的最小值为.14.(5分)若关于x的不等式x2﹣6x﹣m≥0对任意x∈[0,1]恒成立,则实数m的取值范围是.15.(5分)已知实数a,b,c成公差为1的等差数列,b,c,d成等比数列,且b>0,则a+b+c+d的最小值为.16.(5分)在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为.三、解答题(本题共6题,共70分)17.(10分)已知函数.(Ⅰ)求的值;(Ⅱ)求f(x)在区间上的最大值和最小值.18.(12分)已知函数f(x)=|2x+3|+|2x﹣1|.(Ⅰ)求不等式f(x)<8的解集;(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.19.(12分)如图,已知四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,E为PB上任意一点.(1)证明:平面EAC⊥平面PBD;(2)试确定点E的位置,使得四棱锥P﹣ABCD的体积等于三棱锥B﹣ACE体积的4倍.20.(12分)数列{a n}满足a1=﹣1,a n+1+2a n=3.(Ⅰ)证明{a n﹣1}是等比数列,并求数列{a n}通项公式;(Ⅱ)已知符号函数sgn(x)=,设b n=a n•sgn{a n},求数列{b n}的前100项和.21.(12分)临沂市博物馆为了保护一件珍贵文物,需要在馆内一种透明又密封的长方体玻璃保护罩内充入保护液体.该博物馆需要支付的总费用由两部分组成:①罩内该种液体的体积比保护罩的容积少0.5立方米,且每立方米液体费用500元;②需支付一定的保险费用,且支付的保险费用与保护罩容积成反比,当容积为2立方米时,支付的保险费用为4000元.(Ⅰ)求该博物馆支付总费用y与保护罩容积x之间的函数关系式;(Ⅱ)求当容积为多少立方米时该博物馆支付总费用最小,其最小值是多少元?22.(12分)已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x 1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求|PM|的最小值.2017-2018学年辽宁省大连市普兰店二中高二(上)期中数学试卷(文科)参考答案与试题解析一.选择题(每小题5分,共60分)1.(5分)已知集合A={x|x2﹣x﹣2<0},B={x|log2x<0.5},则()A.A∩B=∅B.A∩B=B C.A∪B=R D.∁U(A∩B)=∅【解答】解:集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|log2x<0.5}={x|0<x<},则A∩B={x|0<x<}=B,A∪B={x|﹣1<x<2}=A,∁U(A∩B)=∁U{x|0<x<}={x|x≤0或x≥},故选:B.2.(5分)下列函数中,既是偶函数又是(0,+∞)上的增函数的是()A.y=x3 B.y=2|x|C.y=﹣x2D.y=log3(﹣x)【解答】解:根据题意,依次分析选项:对于A、y=x3为幂函数,为奇函数,不符合题意,对于B、y=2|x|,有f(﹣x)=2|﹣x|=2|x|=f(x),为偶函数,且当x∈(0,+∞),f (x)=2|x|=2x,在(0,+∞)上为增函数,符合题意;对于C、y=﹣x2,为二次函数,在R上为偶函数,在区间(0,+∞)为减函数,不符合题意,对于D、y=log3(﹣x),其定义域为(﹣∞,0),其定义域不关于原点对称,不是偶函数,不符合题意,故选:B.3.(5分)若sin()=,则cos()的值为()A.B.C.D.【解答】解:∵sin()=,∴cos()=cos(π+)=﹣cos()=﹣sin[﹣()]=﹣sin()=.故选:C.4.(5分)《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱【解答】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.5.(5分)若△ABC的内角A,B,C满足6sinA=4sinB=3sinC,则cosB=()A.B.C.D.【解答】解:△ABC的内角A,B,C满足6sinA=4sinB=3sinC,所以6a=4b=3c,不妨令a=2,b=3,c=4,所以由余弦定理:b2=a2+c2﹣2accosB,所以cosB=,故选:D.6.(5分)已知实数a=cos224°﹣sin224°,b=1﹣2sin225°,c=,则a,b,c的大小关系为()A.b>a>c B.c>a>b C.a>b>c D.c>b>a【解答】解:实数a=cos224°﹣sin224°=cos48°,b=1﹣2sin225°=cos50°,c==tan46°>1,再根据余弦函数y=cosx在(0°,90°)上单调递减,且它的值域为(0,1),可得c>a>b,故选:B.7.(5分)设S n是等比数列{a n}的前n项和,S4=5S2,则的值为()A.﹣2 B.2 C.﹣2或2 D.【解答】解:∵S4=5S2,∴公比q≠1,=,化为:1+q2=5,解得q=±2.则=q=±2.故选:C.8.(5分)若把函数的图象向右平移φ(φ>0)个单位后所得图象关于坐标原点对称,则φ的最小值为()A.B.C.D.【解答】解:把函数的图象向右平移φ(φ>0)个单位,可得函数解析式为y=3sin(2x﹣2φ+),∵y=3sin(2x﹣2φ+)的图象关于坐标原点对称,∴3sin(﹣2φ+)=0,得﹣2φ+=kπ,k∈Z.∴φ=﹣+,k∈Z.当k=0时,φ的最小值为.故选:A.9.(5分)三棱锥D﹣ABC及其正视图和侧视图如右图所示,且顶点A,B,C,D 均在球O的表面上,则球O的表面积为()A.32πB.36πC.128πD.144π【解答】解:由三视图可得:DC⊥平面ABC且底面△ABC为正三角形,如图所示,取AC中点F,连BF,则BF⊥AC,在Rt△BCF中,BF=2,CF=2,BC=4,在Rt△BCD中,CD=4,所以BD=4.设球心到平面ABC的距离为d,因为DC⊥平面ABC,且底面△ABC为正三角形,所以d=2,因为△ABC的外接圆的半径为2,所以由勾股定理可得R2=d2+22=8,则该三棱锥外接球的半径R=2,所以三棱锥外接球的表面积是4πR2=32π,故选:A.10.(5分)下列命题中,正确命题的个数为()①“若xy=0,则x=0或y=0”的逆否命题为“若x≠0且y≠0,则xy≠0;②函数f(x)=e x+x﹣2的零点所在区间是(1,2);③x2﹣5x+6=0是x=2的必要不充分条件.A.0 B.1 C.2 D.3【解答】解:①一般地,用p和q分别表示原命题的条件和结论,用¬p或¬q 分别表示p和q的否定,则逆否命题为:若¬q则¬p.由“若xy=0,则x=0或y=0”则逆否命题为:“若x≠0且y≠0,则xy≠0;故本命题正确,②∵函数f(x)=e x+x﹣2,∴f(0)=1+0﹣2=﹣1<0,f(1)=e+1﹣2=e﹣1>0,故有f(0)×f(1)<0,根据函数零点的判定定理可得函数f(x)=e x+x﹣2的零点所在区间是(0,1),故本命题不正确.③x2﹣5x+6=0成立,则有x=2,或者x=3;故③为假命题.故选:B.11.(5分)若圆(x﹣3)2+(y+5)2=r2上有且只有两个点到直线4x﹣3y﹣2=0的距离等于1,则半径r的取值范围是()A.(4,6) B.[4,6]C.(4,5) D.(4,5]【解答】解:∵圆心P(3,﹣5)到直线4x﹣3y=2的距离等于=5,由|5﹣r|<1,解得4<r<6,∴半径r的取值范围是(4,6).故选:A.12.(5分)已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC ⊥l,直线m∥α,m∥β,则下面四种位置关系中,不一定成立的是()A.AC⊥βB.AC⊥m C.AB∥βD.AB∥m【解答】解:由平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,知:在A中,当C∈l时,AC⊥β,当C∉l时,AC不垂直于β,故A错误;在B中,∵直线m∥α,m∥β,平面α⊥平面β,α∩β=l,∴m∥l,∵AC⊥l,∴AC⊥m,故B正确;在C中,由线面平行的判定定理得AB∥β,故C正确;在D中,∵直线AB∥l,m∥l,∴直线AB∥l,故D正确.故选:A.二、填空题(共4题,每小题5分,共20分)13.(5分)已知实数x,y满足则z=x﹣y的最小值为﹣5.【解答】解:由z=x﹣y得y=x﹣z,作出不等式组对应的平面区域如图:平移y=x﹣z,由图象知当直线y=x﹣z经过点B时,直线y=x﹣z的截距最大,此时z最小,由得B(﹣4,1),此时z=﹣4﹣1=﹣5,故答案为:﹣5.14.(5分)若关于x的不等式x2﹣6x﹣m≥0对任意x∈[0,1]恒成立,则实数m的取值范围是(﹣∞,﹣5] .【解答】解:原不等式转化为找f(x)=x2﹣3x在x∈[0,1]上的最小值,让其大于等于m,又因为f(x)=x2﹣6x=(x﹣3)2﹣9,对称轴为:x=3,x∈[0,1]上是减函数,故最小值为f(1)=12﹣6×1=﹣5,所以m≤﹣5.故答案为:(﹣∞,﹣5].15.(5分)已知实数a,b,c成公差为1的等差数列,b,c,d成等比数列,且b>0,则a+b+c+d的最小值为6.【解答】解:根据题意,实数a,b,c成公差为1的等差数列,则a+b+c=3b,且c=b+1,若b,c,d成等比数列,则有c2=bd,又由c=b+1,则d==b++2,则a+b+c+d=3b+b++2=4b++2≥2+2=6,当且仅当b=时成立;则a+b+c+d的最小值为6,故答案为:6.16.(5分)在△ABC中,已知AB=1,AC=2,∠A=60°,若点P满足=+,且•=1,则实数λ的值为﹣或1.【解答】解:【方法一】△ABC中,AB=1,AC=2,∠A=60°,点P满足=+,∴﹣=λ,∴=λ;又=﹣=(+λ)﹣=+(λ﹣1),∴•=λ•[+(λ﹣1)]=λ•+λ(λ﹣1)=λ×2×1×cos60°+λ(λ﹣1)×22=1,整理得4λ2﹣3λ﹣1=0,解得λ=﹣或λ=1,∴实数λ的值为﹣或1.【方法二】建立平面直角坐标系如图所示A(0,0),B(,),C(2,0),设P(x,y)=(x,y),=(,),=(2,0),=(x﹣,y﹣)=(x﹣2,y),∴(x,y)=(,)+λ(2,0)=(+2λ,),∴x=+2λ①,y=②;又(x﹣)(x﹣2)+y(y﹣)=1③;由①②③解得λ=﹣或λ=1.故答案为:﹣或1.三、解答题(本题共6题,共70分)17.(10分)已知函数.(Ⅰ)求的值;(Ⅱ)求f(x)在区间上的最大值和最小值.【解答】解:(Ⅰ)因为,=,=1.(Ⅱ),=,=2sinxcosx+2cos2x﹣1,=sin2x+cos2x,=,因为,所以,所以,故当,即时,f(x)有最大值当,即时,f(x)有最小值﹣1.18.(12分)已知函数f(x)=|2x+3|+|2x﹣1|.(Ⅰ)求不等式f(x)<8的解集;(Ⅱ)若关于x的不等式f(x)≤|3m+1|有解,求实数m的取值范围.【解答】解:(Ⅰ)不等式f(x)<8,即|2x+3|+|2x﹣1|<8,可化为①或②或③,…(3分)解①得﹣<x<﹣,解②得﹣≤x≤,解③得<x<,综合得:﹣<x<,即原不等式的解集为{x|﹣<x<}.…(5分)(Ⅱ)因为∵f(x)=|2x+3|+|2x﹣1|≥|(2x+3)﹣(2x﹣1)|=4,当且仅当﹣≤x≤时,等号成立,即f(x)min=4,…(8分)又不等式f(x)≤|3m+1|有解,则|3m+1|≥4,解得:m≤﹣或m≥1.…(10分)19.(12分)如图,已知四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,E为PB上任意一点.(1)证明:平面EAC⊥平面PBD;(2)试确定点E的位置,使得四棱锥P﹣ABCD的体积等于三棱锥B﹣ACE体积的4倍.【解答】证明:(1)连结AC,BD,∵底面ABCD是菱形,∴AC⊥BD,∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD,∵BD∩PD=D,∴AC⊥平面PBD,∵AC⊂平面EAC,∴平面EAC⊥平面PBD.解:(2)∵四棱锥P﹣ABCD的体积等于三棱锥B﹣ACE体积的4倍,∴=,设P到平面ABCD的距离为h,则===,解得h=PD,故此时E为PB的中点.20.(12分)数列{a n}满足a1=﹣1,a n+1+2a n=3.(Ⅰ)证明{a n﹣1}是等比数列,并求数列{a n}通项公式;(Ⅱ)已知符号函数sgn(x)=,设b n=a n•sgn{a n},求数列{b n}的前100项和.【解答】(I)证明:∵a n+2a n=3,∴a n+1﹣1=﹣2(a n﹣1).a1﹣1=﹣2.+1∴{a n﹣1}是等比数列,首项与公比都为﹣2.∴a n﹣1=(﹣2)n,可得a n=(﹣2)n+1.(II)解:b n=a n•sgn{a n}=,∴数列{b n}的前100项和=(2﹣1)+(22+1)+(23﹣1)+(24+1)+…+(299﹣1)+(2100+1)=2+22+…+2100==2101﹣2.21.(12分)临沂市博物馆为了保护一件珍贵文物,需要在馆内一种透明又密封的长方体玻璃保护罩内充入保护液体.该博物馆需要支付的总费用由两部分组成:①罩内该种液体的体积比保护罩的容积少0.5立方米,且每立方米液体费用500元;②需支付一定的保险费用,且支付的保险费用与保护罩容积成反比,当容积为2立方米时,支付的保险费用为4000元.(Ⅰ)求该博物馆支付总费用y与保护罩容积x之间的函数关系式;(Ⅱ)求当容积为多少立方米时该博物馆支付总费用最小,其最小值是多少元?【解答】解:(Ⅰ)由题意设支付的保险费用,把x=2,y1=4000代入,得k=8000.则有支付的保险费用(x>0.5),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)保护液体的费用y2=500(x﹣0.5),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)故总费用,(x>0.5)﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅱ)因为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)当且仅当且x>0.5,即x=4立方米时不等式取等号,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)所以,当x=4时博物馆支付总费用的最小值为3750元.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)22.(12分)已知圆C:x2+y2+2x﹣4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求|PM|的最小值.【解答】解:(1)∵切线在两坐标轴上的截距相等,∴当截距不为零时,设切线方程为x+y=a,又∵圆C:(x+1)2+(y﹣2)2=2,∴圆心C(﹣1,2)到切线的距离等于圆的半径,即=,解得:a=﹣1或a=3,当截距为零时,设y=kx,同理可得k=2,则所求切线的方程为x+y+1=0或x+y﹣3=0或y=(2)x﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)∵切线PM与半径CM垂直,∴|PM|2=|PC|2﹣|CM|2.∴(x1+1)2+(y1﹣2)2﹣2=x12+y12.∴2x1﹣4y1+3=0.∴动点P的轨迹是直线2x﹣4y+3=0.∴|PM|的最小值就是|PO|的最小值.而|PO|的最小值为原点O到直线2x﹣4y+3=0的距离d==.﹣﹣(12分)。
辽宁省大连市2017-2018学年高二上学期期末数学试卷(文科)一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆的左右焦点分别为F 1,F 2,且点M 在椭圆上,|MF 1|=2,则|MF 2|为( ) A .3B .7C .8D .42.与曲线=1共焦点,而与曲线=1共渐近线的双曲线方程为( )A . =1B . =1C . =1D . =13.下列抽样中,最适宜用系统抽样法的是( )A .某市的4个区共有2000名学生,且4个区的学生人数之比为3:2:8:2,从中抽取200人做样本B .从某厂生产的2000个电子元件中随机抽取5个做样本C .从某厂生产的2000个电子元件中随机抽取200个做样本D .从某厂生产的20个电子元件中随机抽取5个做样本 4.抛物线y=ax 2的准线方程是y=2,则a 的值为( )A .B .C .8D .﹣85.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )A.B.C.D.6.阅读如图的算法程序,此程序的功能是()A.计算3×10的值B.计算310的值C.计算39的值D.计算1×2×3×…×10的值7.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作量由表中数据得到线性回归方程=)A.68度B.52度C.12度D.28度8.如图,样本数为9的四组数据,它们的平均数都是5,频率条形图如下,则标准差最大的一组是()A.第一组B.第二组C.第三组D.第四组9.执行如图所示的程序框图,如果输入的t=0.01,则输出的n=( )A .5B .6C .7D .1210.已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点的坐标为(3,y 1)时,△AEF 为正三角形,则p 为( )A .2B .4C .6D .811.某单位抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x ,y ,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,则该代表中奖的概率为( )A .B .C .D .12.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 2﹣e 1的取值范围是( )A .(,+∞)B .(,+∞)C .(0,)D .(,)二、填空题(每题5分,共20分,把答案填在答题纸的横线上)13.已知菱形ABCD 的边长为4,∠ABC=120°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率______.14.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为______,平均数为______.15.下列说法正确的是______(填上所有正确说法的序号)①残差平方和越大的模型,拟合效果越好;②用相关指数R 2来刻画回归效果时,R 2越小,说明模型的拟合效果越好;③在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高.④一个样本的方差,则这组数据等总和等于60;⑤数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1+1,2a 2+1,…2a n +1的方差为4σ2.16.设F 1、F 2分别为双曲线C :=1(a ,b >0)的左右焦点,A 为双曲线的左顶点,以F 1F 2为直径的圆交双曲线某条渐近线于M 、N 两点,且满足∠MAN=120°,则该双曲线的离心率为______.三、解答题:17.直线l 过点P (﹣2,0)且倾斜角为1500,以直角坐标系的原点为极点,x 轴正方向为极轴建立极坐标系,曲线C 的极坐标方程为ρ2﹣2ρcos θ=15. (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)直线l 交曲线C 于A ,B 两点,求|PA|+|PB|的值. 18.已知圆的参数方程为(θ∈[0,2π],θ为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线C 1;以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为.(Ⅰ)求曲线C 1的普通方程与曲线C 2的直角坐标方程(Ⅱ)设P 为曲线C 1上的动点,求点 P 与曲线C 2上点的距离的最小值,并求此时P 点的坐标. 19.微信是现代生活进行信息交流的重要工具,距据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余每天使用微信在一小时以上,若将员工年龄分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,使用微信的人中75%是青年人,若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中是青年人.(Ⅰ)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表.(Ⅲ)采用分层抽样的方法从“经常使用微信”中抽取6人,从这6人中任选2人,求事件A“选出的2人均是青年人”的概率.K 2=.20.极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=2sin (θ+),曲线C 2的参数方程为,t 为参数,0≤α<π;射线θ=φ,θ=φ+,θ=φ﹣,θ=φ+与曲线C 1分别交异于极点O的四点A ,B ,C ,D .(1)若曲线C 1关于曲线C 2对称,求α的值,并把曲线C 1和C 2化成直角坐标方程; (2)求|OA|•|OC|+|OB|•|OD|的值.21.点F 1(0,﹣),F 2(0,),动点M 到点F 2的距离是4,线段MF 1的中垂线交MF 2于点P . (1)当点M 变化时,求动点P 的轨迹G 的方程;(2)若斜率为的动直线l 与轨迹G 相交于A 、B 两点,Q (1,)为定点,求△QAB 面积的最大值.22.已知椭圆C : =1的离心率为,直线y=x+1被以椭圆的短轴为直径的圆截得弦长为,抛物线D 以原点为顶点,椭圆的右焦点为焦点. (Ⅰ)求椭圆C 与抛物线D 的方程;(Ⅱ)已知A ,B 是椭圆C 上两个不同点,且OA ⊥OB ,判定原点O 到直线AB 的距离是否为定值,若为定值求出定值,否则,说明理由.辽宁省大连市2017-2018学年高二上学期期末试卷文科数学参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆的左右焦点分别为F 1,F 2,且点M 在椭圆上,|MF 1|=2,则|MF 2|为( )A .3B .7C .8D .4 【考点】椭圆的简单性质.【分析】利用椭圆的标准方程及其定义即可得出.【解答】解:由椭圆,可得a=5.∵点M在椭圆上,∴|MF1|+|MF2|=2a=10,∴|MF2|=10﹣|MF1|=8.故选:C.2.与曲线=1共焦点,而与曲线=1共渐近线的双曲线方程为()A. =1 B. =1 C. =1 D. =1【考点】双曲线的标准方程.【分析】根据椭圆方程先求出焦点坐标,再由渐近线相同设出双曲线方程为,根据c值列出方程求出λ的值即可.【解答】解:由题意得,曲线=1是焦点在y轴上的椭圆,且c===5,所以双曲线焦点的坐标是(0、5)、(0,﹣5),因为双曲线与曲线=1共渐近线,所以设双曲线方程为,即,则﹣64λ﹣36λ=25,解得λ=,所以双曲线方程为,故选:A.3.下列抽样中,最适宜用系统抽样法的是()A.某市的4个区共有2000名学生,且4个区的学生人数之比为3:2:8:2,从中抽取200人做样本B.从某厂生产的2000个电子元件中随机抽取5个做样本C.从某厂生产的2000个电子元件中随机抽取200个做样本D.从某厂生产的20个电子元件中随机抽取5个做样本【考点】收集数据的方法.【分析】根据系统抽样的特点,样本是在总体个数比较多的情况下,遵循一定的规则,具有相同的间隔,得到的一系列样本.【解答】解:系统抽样的特点是从比较多比较均衡的个体中抽取一定的样本,并且抽取的样本具有一定的规律性,在所给的四个抽样中,从某厂生产的2000个电子元件中随机抽取5个做样本或从某厂生产的20个电子元件中随机抽取5个做样本,它们都是一个简单随机抽样;对于某市的4个区共有2000名学生,且4个区的学生人数之比为3:2:8:2,从中抽取200人做样本,由于个体是由差别明显的几部分组成,故采用分层抽样,只有在从某厂生产的2000个电子元件中随机抽取200个做样本,这是一个最适宜用系统抽样法的.故选C.4.抛物线y=ax2的准线方程是y=2,则a的值为()A.B.C.8 D.﹣8【考点】抛物线的定义.【分析】首先把抛物线方程转化为标准方程x2=my的形式,再根据其准线方程为y=﹣即可求之.【解答】解:抛物线y=ax2的标准方程是x2=y,则其准线方程为y=﹣=2,所以a=﹣.故选B.5.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()A.B.C.D.【考点】频率分布直方图;茎叶图.【分析】根据题意,由频率与频数的关系,计算可得各组的频率,进而可以做出频率分布表,结合分布表,进而可以做出频率分布直方图.故选:A.6.阅读如图的算法程序,此程序的功能是()A.计算3×10的值B.计算310的值C.计算39的值D.计算1×2×3×…×10的值【考点】伪代码.【分析】逐步分析框图中的各框语句的功能,可知程序的功能.【解答】解:逐步分析框图中的各框语句的功能,变量从1到10,共10个数相乘,输出其结果,即程序的功能是计算1×2×3×…×10的值.故选D.7.某单位为了了解办公楼用电量y(度)与气温x(℃)之间的关系,随机统计了四个工作量由表中数据得到线性回归方程=)A.68度B.52度C.12度D.28度【考点】线性回归方程.【分析】根据所给的表格做出本组数据的样本中心点,根据样本中心点在线性回归直线上,利用待定系数法做出a的值,可得线性回归方程,根据所给的x的值,代入线性回归方程,预报要销售的件数.【解答】解:由表格得==10,=40.∴(,)为:(10,40),又(,)在回归方程=bx+a中的b=﹣2,∴40=10×(﹣2)+a,解得:a=60,∴=﹣2x+60,当x=﹣4时, =﹣2×(﹣4)+60=68.故选:A.8.如图,样本数为9的四组数据,它们的平均数都是5,频率条形图如下,则标准差最大的一组是()A.第一组B.第二组C.第三组D.第四组【考点】极差、方差与标准差.【分析】由频率分布条形图可知,A的9个数据都是5,方差为0,B和C数据分布比较均匀,前者的方差较小,后者的方差较大,D数据主要分布在2和8处,距离平均数是最远的一组,得到最后一个频率分步直方图对应的数据的方差最大,即标准差最大.【解答】解:由所给的几个选项观察数据的波动情况,得到方差之间的大小关系,A的9个数据都是5,方差为0,B和C数据分布比较均匀,前者的方差较小,后者的方差较大,D数据主要分布在2和8处,距离平均数是最远的一组,∴最后一个频率分步直方图对应的数据的方差最大,则标准差最大,故选:D.9.执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5 B.6 C.7 D.12【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n 值为7, 故选:C10.已知抛物线y 2=2px (p >0)的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,过点A 作准线l 的垂线,垂足为E ,当A 点的坐标为(3,y 1)时,△AEF 为正三角形,则p 为( )A .2B .4C .6D .8 【考点】抛物线的简单性质.【分析】过F 作AE 的垂线,垂足为H ,则H 为AE 的中点,利用A 点坐标为 (3,y 1),可求p . 【解答】解:如图所示,过F 作AE 的垂线,垂足为H ,则H 为AE 的中点, 因为A 点坐标为 (3,y 1),所以AE=3+,EH=p ,所以2p=3+, 所以p=2. 故选:A .11.某单位抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x ,y ,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,则该代表中奖的概率为( )A .B .C .D . 【考点】程序框图.【分析】确定满足0≤x ≤1,0≤y ≤1点的区域,由条件得到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.【解答】解:由已知0≤x ≤1,0≤y ≤1,点(x ,y )在如图所示的正方形OABC 内,由条件得到的区域为图中的阴影部分由2x ﹣y ﹣1=0,令y=0可得x=,令y=1可得x=1∴在x ,y ∈[0,1]时满足2x ﹣y ﹣1≤0的区域的面积为S 阴=×(1+)×1=,∴该代表中奖的概率为: =.故选:C .12.已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 2﹣e 1的取值范围是( )A .(,+∞)B .(,+∞)C .(0,)D .(,)【考点】椭圆的简单性质.【分析】设椭圆与双曲线的半焦距为c ,PF 1=r 1,PF 2=r 2.利用三角形中边之间的关系得出c 的取值范围,再根据椭圆或双曲线的性质求出各自的离心率,最后依据c 的范围即可求出e 2﹣e 1的取值范围.【解答】解:设椭圆与双曲线的半焦距为c ,|PF 1|=r 1,|PF 2|=r 2. 由题意知r 1=10,r 2=2c ,且r 1>r 2,2r 2>r 1, ∴2c <10,2c+2c >10, ∴2.5<c <5,∴e 1==;e 2==.∴e 2﹣e 1=﹣==>,故选:A .二、填空题(每题5分,共20分,把答案填在答题纸的横线上)13.已知菱形ABCD 的边长为4,∠ABC=120°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率.【考点】几何概型.【分析】以菱形ABCD 的各个顶点为圆心、半径为1作圆如图所示,可得当该点位于图中阴影部分区域时,它到四个顶点的距离均大于1.因此算出菱形ABCD 的面积和阴影部分区域的面积,利用几何概型计算公式加以计算,即可得到所求的概率.【解答】解:分别以菱形ABCD 的各个顶点为圆心,作半径为1的圆,如图所示. 在菱形ABCD 内任取一点P ,则点P 位于四个圆的外部时, 满足点P 到四个顶点的距离均大于1,即图中的阴影部分区域∵S 菱形ABCD =AB•BCsin120°=4×4×=8,∴S 阴影=S 菱形ABCD ﹣S 空白=8﹣π×12=8﹣π.因此,该点到四个顶点的距离大于1的概率P==,故答案为:.14.某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示,则该小区居民用电量的中位数为 155 ,平均数为 156.8 .【考点】众数、中位数、平均数.【分析】根据频率分布直方图中的数据,求出该组数据的中位数与平均数即可. 【解答】解:根据频率分布直方图,得; (0.005+0.015)×20=0.4<0.5, 0.4+0.020×20=0.8>0.5, ∴中位数落在[150,170), 设中位数为x ,则0.4+(x ﹣150)×0.020=0.5, 解得x=155;该组数据的平均数为=0.005×20×120+0.015×20×140+0.020×20×160+0.005×20×180+0.003×20×200+0.002×20×220=156.8. 故答案为:155、156.8.15.下列说法正确的是 ③④⑤ (填上所有正确说法的序号)①残差平方和越大的模型,拟合效果越好;②用相关指数R 2来刻画回归效果时,R 2越小,说明模型的拟合效果越好;③在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高.④一个样本的方差,则这组数据等总和等于60;⑤数据a 1,a 2,a 3,…,a n 的方差为σ2,则数据2a 1+1,2a 2+1,…2a n +1的方差为4σ2.【考点】命题的真假判断与应用.【分析】①②③④直接利用定义可直接判断;⑤设出数据的平均数,根据表达式得出数据2a 1+1,2a 2+1,…2a n +1的平均数为2m+1,分别计算方差可得.【解答】解:①残差平方和越小的模型,拟合效果越好,故错误;②用相关指数R 2来刻画回归效果时,R 2越接近1,说明模型的拟合效果越好,故错误;③在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,这样的带状区域的宽度越窄,模型拟合精度越高,正确.④一个样本的方差,可知平均数为3,故这组数据等总和等于60,故正确;⑤数据a 1,a 2,a 3,…,a n 的方差为σ2, 设平均数为m ,偏差为a n ﹣m则数据2a 1+1,2a 2+1,…2a n +1的平均数为2m+1,偏差为2a n +1﹣2m ﹣1=2(a n ﹣m ), 故方差为4σ2.故正确. 故答案为③④⑤16.设F 1、F 2分别为双曲线C :=1(a ,b >0)的左右焦点,A 为双曲线的左顶点,以F 1F 2为直径的圆交双曲线某条渐近线于M 、N 两点,且满足∠MAN=120°,则该双曲线的离心率为.【考点】双曲线的简单性质.【分析】先求出M ,N 的坐标,再利用余弦定理,求出a ,c 之间的关系,即可得出双曲线的离心率.【解答】解:设以F 1F 2为直径的圆与渐近线y=x 相交与点M 的坐标为(x 0,y 0)(x 0>0), 根据对称性得N 点的坐标为(﹣x 0,﹣y 0),∴;解得M (a ,b ),N (﹣a ,﹣b ); 又∵A (﹣a ,0),且∠MAN=120°,∴由余弦定理得4c 2=(a+a )2+b 2+b 2﹣2•bcos 120°,化简得7a 2=3c 2,∴e==.故答案为:.三、解答题:17.直线l 过点P (﹣2,0)且倾斜角为1500,以直角坐标系的原点为极点,x 轴正方向为极轴建立极坐标系,曲线C 的极坐标方程为ρ2﹣2ρcos θ=15. (1)写出直线l 的参数方程和曲线C 的直角坐标方程; (2)直线l 交曲线C 于A ,B 两点,求|PA|+|PB|的值. 【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)直线l 过点P (﹣2,0)且倾斜角为150°,利用斜率计算公式及其同角三角函数基本关系式即可得出可得l 的参数方程.由曲线C 的极坐标方程为ρ2﹣2ρcos θ=15,利用即可得出直角坐标方程.(2)把l 的参数方程代入C 得:,设A ,B 对应参数t 1,t 2,利用|PA|+|PB|=|t 1|+|t 2|=|t 1﹣t 2|=,即可得出.【解答】解:(1)直线l 过点P (﹣2,0)且倾斜角为150°,即斜率为tan150°==,可得l 的参数方程为:为参数).∵曲线C 的极坐标方程为ρ2﹣2ρcos θ=15, ∴直角坐标方程C 为:x 2+y 2﹣2x ﹣15=0.(2)把l 的参数方程代入C 得:,设A ,B 对应参数t 1,t 2,则,∴|PA|+|PB|=|t 1|+|t 2|=|t 1﹣t 2|===.18.已知圆的参数方程为(θ∈[0,2π],θ为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线C 1;以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为.(Ⅰ)求曲线C 1的普通方程与曲线C 2的直角坐标方程(Ⅱ)设P 为曲线C 1上的动点,求点 P 与曲线C 2上点的距离的最小值,并求此时P 点的坐标. 【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)由已知可得曲线C 1的参数方程为,消去参数θ可得,由三角函数公式可化极坐标方程为ρcos θ+ρsin θ=8,可得x+y=8;(Ⅱ)由题意可得距离d==,由三角函数的最值可得.【解答】解:(Ⅰ)由已知可得曲线C 1的参数方程为,消去参数θ可得+y2=1,的极坐标方程为,∵曲线C2∴ρcosθ+ρsinθ=8,即x+y=8;上的动点,(Ⅱ)设P(cosθ,sinθ)为曲线C1:x+y=8上点的距离d==,则点P与曲线C2当sin(θ+)=1即θ=时,d取最小值3,此时P(,)19.微信是现代生活进行信息交流的重要工具,距据统计,某公司200名员工中90%的人使用微信,其中每天使用微信时间在一小时以内的有60人,其余每天使用微信在一小时以上,若将员工年龄分成青年(年龄小于40岁)和中年(年龄不小于40岁)两个阶段,使用微信的人中75%是青年人,若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中是青年人.(Ⅰ)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出2×2列联表.(Ⅲ)采用分层抽样的方法从“经常使用微信”中抽取6人,从这6人中任选2人,求事件A“选出的2人均是青年人”的概率.K2=.【考点】独立性检验的应用;分层抽样方法.【分析】(Ⅰ)由已知可得2×2列联表;(Ⅱ)将列联表中数据代入公式可得:K2=≈13.333,与临界值比较,即可得出结论;(III)利用列举法确定基本事件,即可求出事件A“选出的2人均是青年人”的概率.【解答】解:(Ⅰ)由已知可得,该公司员工中使用微信的共:200×0.9=180人经常使用微信的有180﹣60=120人,其中青年人:120×=80人所以可列下面2×2列联表:(Ⅱ)将列联表中数据代入公式可得:K 2=≈13.333>10.828 …所以有99.9%的把握认为“经常使用微信与年龄有关”.…(Ⅲ)从“经常使用微信”的人中抽取6人中,青年人有=4人,中年人有2人设4名青年人编号分别1,2,3,4,2名中年人编号分别为5,6, 则“从这6人中任选2人”的基本事件为: (1,2)(1,3)(1,4)(1,5)(1,6)(2,3)(2,4)(2,5)(2,6)(3,4)(3,5)(3,6)(4,5)(4,6)(5,6)共15个 … 其中事件A“选出的2人均是青年人”的基本事件为:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6个 …故P (A )=. …20.极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知曲线C 1的极坐标方程为ρ=2sin (θ+),曲线C 2的参数方程为,t 为参数,0≤α<π;射线θ=φ,θ=φ+,θ=φ﹣,θ=φ+与曲线C 1分别交异于极点O的四点A ,B ,C ,D .(1)若曲线C 1关于曲线C 2对称,求α的值,并把曲线C 1和C 2化成直角坐标方程; (2)求|OA|•|OC|+|OB|•|OD|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)利用即可把曲线C 1的极坐标方程化为直角坐标方程,由于曲线C 1关于曲线C 2对称,可得圆心在C 2上,即可解出.(2)由已知可得|OA|=2sin (φ+),|OB|=2sin (φ+),|OC|=2sin φ,|OD|=2sin(φ+),化简整理即可得出.【解答】解:(1)曲线C 1的极坐标方程为ρ=2sin (θ+),展开为(ρsin θ+ρcos θ),可得直角坐标方程:x 2+y 2=2x+2y ,化为(x ﹣1)2+(y ﹣1)2=2,∵曲线C 1关于曲线C 2对称,∴圆心(1,1)在C 2上,∴,化为tan α=﹣1,解得α=.∴C 2:为y ﹣3=﹣1(x+1),化为x+y ﹣2=0.(2)|OA|=2sin (φ+),|OB|=2sin (φ+),|OC|=2sin φ,|OD|=2sin (φ+),∴|OA|•|OC|+|OB|•|OD|=8sin φsin (φ+)+8cos φsin (φ+)=8sin φsin (φ+)+8cos φcos (φ+)=8cos=4.21.点F 1(0,﹣),F 2(0,),动点M 到点F 2的距离是4,线段MF 1的中垂线交MF 2于点P . (1)当点M 变化时,求动点P 的轨迹G 的方程;(2)若斜率为的动直线l 与轨迹G 相交于A 、B 两点,Q (1,)为定点,求△QAB 面积的最大值.【考点】直线与圆锥曲线的综合问题;轨迹方程.【分析】(1)连接PF 1,推导出|PF 1|+|PF 2|=4>|F 1F 2|=2,由此利用椭圆的定义能求出动点P 的轨迹G 的方程.(2)设直线l 的方程为y=,代入椭圆方程,得4x 2+2+m 2﹣4=0,由此利用根的判别式、韦达定理、点到直线的距离公式,结合已知条件能求出△QAB 面积的最大值. 【解答】解:(1)如图,连接PF 1, ∵|MF 2|=4,∴|PM|+|PF 2|=4,又∵|PM|=|PF 1|,∴|PF 1|+|PF 2|=4>|F 1F 2|=2,由椭圆的定义可知动点P 的轨迹G 是以F 1(0,﹣),F 2(0,)为焦点、以2为长轴的椭圆,∴设椭圆方程为=1,(a >b >0),则,∴b=,∴动点P 的轨迹G 的方程为.(2)设直线l 的方程为y=,代入椭圆方程,得()2+2x 2=4,即4x 2+2+m 2﹣4=0,由△=8m 2﹣16(m 2﹣4)=8(8﹣m 2)>0,得m 2<8.又点Q 不在直线l 上,则m ≠0.0<m 2<8.设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=﹣,.∴|AB|=|x 1﹣x 2=•=•=.可得,点Q 到直线l 的距离d=,则S △QAB =|AB|d=×=.∵≤=4,则S,当且仅当m 2=4,即m=±2时取等号.故△QAB 面积的最大值为.22.已知椭圆C : =1的离心率为,直线y=x+1被以椭圆的短轴为直径的圆截得弦长为,抛物线D 以原点为顶点,椭圆的右焦点为焦点.(Ⅰ)求椭圆C 与抛物线D 的方程;(Ⅱ)已知A ,B 是椭圆C 上两个不同点,且OA ⊥OB ,判定原点O 到直线AB 的距离是否为定值,若为定值求出定值,否则,说明理由.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程;椭圆的简单性质;抛物线的标准方程.【分析】(Ⅰ)利用离心率a=2c ,椭圆短轴为直径的圆的圆心到直线y=x+1距离d=,求解解得a ,c ,求出p ,即可得到椭圆C 的方程,抛物线D 方程.(Ⅱ)设A (x 1,y 1),B (x 2,y 2),当直线AB 与x 轴垂直时,设AB :x=m ,则,利用OA ⊥OB ,求出m ,推出原点到直线AB 的距离.当直线AB 斜率存在时,设直线AB 的方程为y=kx+m 代入3x 2+4y 2﹣12=0,利用韦达定理以及判别式大于0,利用向量数量积为0,求解即可.【解答】解:(Ⅰ)由题知=,即a=2c ,椭圆短轴为直径的圆的圆心到直线y=x+1距离d=,∴=,解得b=,∴a 2=,解得a 2=4,∴c=1,∴=1,∴p=2,∴椭圆C 的方程为,抛物线D 方程为y 2=4x ; 5分(Ⅱ)设A (x 1,y 1),B (x 2,y 2),当直线AB 与x 轴垂直时,设AB :x=m ,则,∵OA ⊥OB ,∴=x 1x 2+y 1y 2==0,解得m=,∴原点到直线AB 的距离为. 7分. 当直线AB 斜率存在时,设直线AB 的方程为y=kx+m 代入3x 2+4y 2﹣12=0整理得,(3+4k 2)x 2+8kmx+4m 2﹣12=0,则△=(8km )2﹣4(3+4k 2)(4m 2﹣12)>0,即4k 2﹣m 2+3>0,x 1+x 2=,x 1x 2=,∴y 1y 2=(kx 1+m )(kx 2+m )==,∵OA ⊥OB ,∴=x 1x 2+y 1y 2=+=0,即7m 2=12(k 2+1),且满足△>0,10分∴原点到直线AB 的距离为=,11分故原点O 到直线AB 的距离为定值,定值为. 12分.。
大连市20172018学年度第一学期期末考试试卷高二数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 命题“”的否定是()A. B.C. D.【答案】D【解析】全称命题的否定是特称命题,故选D.2. 在等比数列a n中,a4=4,则()A. 4B. 16C. 8D. 32【答案】B【解析】等比数列的性质可知,故选B.<1,则p是q的()3. 命题p:x>1,命题q:1xA. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A<1,反之不成立,所以p是q的充分不必要条件【解析】试题分析:当x>1时可得到1x考点:充分条件与必要条件4. 已知实数x,y满足,则z=2x+y的最大值为()A. 8B. 12C. 14D. 20【答案】C【解析】画出可行域如下图所示,由图可知目标函数在点6,2处取得最大值为14,故选C.5. 双曲线的离心率等于33b,则该双曲线的焦距为()A. 25 B. 8 C. 6 D. 26【答案】B【解析】依题意可知a=2,ca =33b,c=233b,,故选B.6. ,且a>b,则下列结论正确的是()A. a2>b2B. ba<1 C. D.【答案】D【解析】令,代入验证,排除A.令,代入验证,排除B,C,故选D.7. F1,F2为椭圆C:x2a +y2b=1左右焦点,A为椭圆上一点,A F2垂直于x轴,且三角形A F1F2为等腰直角三角形,则椭圆的离心率为()A. B. 2 C. 2 D. 2��?/m:t>【答案】A【解析】由于轴,所以A F2=b2a,依题意可知b2a=2c,即,两边除以a2得,解得.故选A.8. 数列a n的前n项和,当S n取最小值时n的值为()A. 7B. 8C. 7��?/m:t>8D. 9【答案】C【解析】二次函数的开口向上,对称轴为x=152,故当n=7或n=8时,取得最小值.故选C.9. 已知直线y=x+a与曲线y=ln x相切,则的值为()A. 1B. 2C.D.【答案】C【解析】本题考查导数的运算,导数的几何意义及导数的应用.10. 关于x的不等式的解集为,则关于x的不等式的解集为()A. B. 1,2 C. D.【答案】D【解析】,由于解决为,故a<0,且,故的开口向下,两个根为1,2,所以解集为x<1,x>2.故选D.11. P为双曲线上的任意一点,则P到两条渐近线的距离乘积为()A. 185B. 2 C. 365D. 1【答案】A【解析】不妨设P2,0,双曲线渐近线为.点P到的距离为d=610=3105,故成绩为d2=9025=185.【点睛】本小题主要考查双曲线的概念与性质,考查双曲线上的点到渐近线的距离的成绩为定值.由于本题是一个定值问题,再结合题目是一个选择题,故可以采用特殊点,计算点到渐近线的距离然后相乘,即可得到所求的结果.双曲线的渐近线是令求解出来.12. 已知函数,若,则的取值范围为()A. B. C. D.【答案】B【解析】画出函数f x的图象如下图所示.由图可知,当y=a x和相切时,斜率取得最小值,将y=a x代入,化简得,判别式,所以的取值范围是,故选B.【点睛】本小题主要考查函数图象与性质,考查含有绝对值函数图象的画法,考查直线和二次曲线相切的表示方法,即判别式为零. 应用函数零点的存在情况求参数的值或取值范围常用的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知a>0,b>0,a+b=2,a b的最大值为___.【答案】1【解析】由基本不等式得.14. 函数的单调递增区间是___.【答案】【解析】,由题意,解得x>2,所以函数的递增区间是.15. 已知抛物线y2=x和点A4,0,质点M在此抛物线上运动,则点M与点A距离的最小值为___.【答案】152【解析】设M m 2,m ,由两点间的距离公式得.16. 等差数列 a n 与 b n 的前n 项和为分别为S n 和T n ,若,则a6b 6=___.【答案】3123【解析】a 6b 6=2a 62b 6=a 1+a 11b 1+b 11=S11T 11=3123.【点睛】本小题主要考查等差数列前n 项和公式,考查等差数列的性质. 这些题都是等差数列的性质的应用,熟记等差数列的性质,并能灵活运用是解这一类题的关键,注意等差数列与等比数列的性质多与其下标有关,解题需多注意观察,发现其联系,加以应用.另外注意不能直接代入6计算.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 过抛物线E :y 2=2p x 的焦点F 的一条直线与抛物线E 交于P x 1,y 1 ,Q x 2,y 2 两点. 求证:【答案】证明见解析【解析】【试题分析】当直线斜率不存在时,可求得P 1,P 2两点的坐标,可得y 1y 2=−p 2成立.当直线斜率存在时,用点斜式设出直线方程,联立直线方程和抛物线方程,消去x ,用韦达定理证明. 【试题解析】当过焦点F 的直线垂直于x 轴时,则y 1y 2=−p 2成立, 当直线不与x 轴垂直时,设y =k x −p2y =k x −p2 y 2=2p x得k y 2−2p y −p 2=0所以y 1y 2=−p 2 . 18. 已知函数(1)当a =2时,求f x 的极大值; (2)当为何值时,函数f x 有3个零点. 【答案】(1)323;(2).【解析】【试题分析】(1)a =2时,对函数求导,写出单调区间,可得到极大值.(2)对函数求导,得到函数的单调区间和极大值与极小值,只需要极大值大于零,极小值小于零就符合题意,由此解得的取值范围. 【试题解析】 (1)f ′(x )=x 2−4,由解得x ��?/m :t >2或解得所以当x =−2时f (x )有极大值f (−2)=223 (2)由f ′(x )=x 2−4=0,解得x 1=−2,x 2=2.f (x )的单调增区间是和当x ��?/m :t >时,f (x )是减函数;f (x )的极大值f (−2)=a +163极小值为f (−2)=a −163所以a +163>0且a −163<0所以−163<a <16319. 已知 0,?��1 是椭圆C 的一个顶点,焦点在x 轴上,其右焦点到直线:y =x +2 2的距离等于3. (1)求椭圆C 的标准方程;(2)过点P 1,12 的直线与椭圆C 交于M ,N 两点,若P 为MN 中点,求直线方程. 【答案】(1)x 23+y 2=1;(2).【解析】【试题分析】(1)由题知b =1,利用焦点到直线的距离求出,进而得到和椭圆的标准方程.(2)设出M ,N 两点的坐标,代入椭圆方程,利用点差法求得直线的斜率,用点斜式得到直线方程. 【试题解析】(1)由题知b =1,d =2+ 2=3,(2)x 123+y 12=1x 223+y 22=1所��?/m:t>+y1−y2y1+y2=0,所以.所以直线方程为y−12=−23x−1,即4x+6y−7=0.【点睛】本小题主要考查椭圆方程的求法,考查点到直线的距离公式,考查点差法求解有关中点弦的问题. 处理直线与圆锥曲线相交时候的相交弦长和中点问题时,利用根与系数的关系或者中点坐标公式,涉及弦的中点,还可以利用点差法.设点的坐标,并没有求出来,这就是设而不求的思想.20. 已知数列a n的前n项和,数列b n的每一项都有b n=a n.(1)求数列a n的通项公式;(2)求数列b n前n项和.【答案】(1);(2).【解析】【试题分析】(1)利用求得数列的通项公式.(2)数列前5项为正数,从第6项起为负数,故将n分成n��?/m:t>5,n>5两类,求解出数列的前n项和.【试题解析】(1)(2)T n=2S5−S n=50−(10n−n2)=n2−10n+5021. 已知函数f x=ln xx.(1)求f x的单调区间;(2)当x>0时,若恒成立,求m的取值范围.【答案】(1)f(x)在(0,e12)上是增函数,在上是减函数;(2).【解析】【试题分析】(1)求函数的定义域,求导后写出单调区间.(2)原不等式等价于m��?/m:t>ln x恒成,构造函数g(x)=x2ln x,利用导数求得函数g x的最小值,由此求得实数m的取值范围.【试题解析】(1)f(x)定义域为,f′(x)=1−2ln xx3,f′(x)>0,解得0<x<e12,f′(x)<0,解得x>e12,∴f(x)在(0,e12)上是增函数,在上是减函数;(2)不等式等价于A��?/m:t>ln x,令g(x)=x2ln x,g′(x)=2x ln x+x=x(2ln x+1),g′(x)>0,解得x>e−12,g′(x)<0,解得0<x<e−12,∴g(x)在(0,e−12)上是减函数,在上是增函数,g(x)在x=e−12时取最小值g(e−12)=−12e ,∴m��?/m:t>−12e,故A的最佳取值为【点睛】本小题主要考查函数导数与单调性,函数导数与不等式恒成立问题的解法. 不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.22. 已知椭圆C的中心是坐标原点O,它的短轴长22,焦点F c,0,点,且(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P,Q两点,且以线段P Q为直径的圆过坐标原点O,若存在,求出直线P Q的方程;不存在,说明理由.【答案】(1)x26+y22=1;(2)答案见解析.【解析】【试题分析】(1)利用列方程,可求得c=2,由题意可知b=2,由此求得,且出去椭圆的标准方程.(2)设直线P Q的方程为y=k x−3,联立直线的方程和椭圆的方程,写出韦达定理,利用圆的直径所对的圆周角为直角,转化为两个向量的数量积为零建立方程,由此求得k的值.【试题解析】(1)由题意知,b=,F c,0,A10c−c,0由,得c=20c−4c,解得:c=2.椭圆的方程为x26+y22=1离心率为6=63(2)A3,0,设直线P Q的方程为y=k x−3联立y=k x−3x26+y22=1,得1+3k2x2−18k2x+27k2−6=0设P x1,y1,Q x2,y2,则x1+x2=18k21+3k2,x1x2=27k2−61+3k2y1y2=k2x1x2−3x1+x2+9=k227k2−61+3k2−54k21+3k2+9=3k21+3k2由已知得,得x1x2+y1y2=0,即27k2−61+3k2+3k21+3k2=30k2−61+3k2=0解得:,符合直线P Q的方程为.。
2017-2018学年度育明中学高二上学期期末考试考试范围:解三角形、数列、不等式、常用逻辑用语、圆锥曲线、空间向量与立体几何注意事项:考试时间120分钟,按照要求将答案写在指定位置。
姓名:____________________第I卷(单项选择题)一、选择题(将答案写在每道题后的括号内,不得在选项上打对号,注意卷面整洁)已知命题p:∂x≥0,2x=3,则( )A.¬p:∀x<0,2x≠3 B.¬p:∀x≥0,2x≠3 C.¬p:∂x≥0,2x≠3 D.¬p:∂x<0,2x≠32.已知α,β为不重合的两个平面,直线m⊂α,那么“m⊥β”是“α⊥β”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.若集合A={y|y=2x},B={x|x2﹣2x﹣3>0,x∈R},那么A∩(∁U B)=( )A.(0,3] B.[﹣1,3] C.(3,+∞)D.(0,﹣1)∪(3,+∞)4.已知等差数列{a n}的前n项和是S n,若S30=13S10,S10+S30=140,则S20的值是( )A.60 B.70 C.D.5.在△ABC中,已知a:b:c=3:5:7,则这个三角形的最大内角为( )A.300B.1350C.600D.12006.下列不等式一定成立的是( )A.lg(x2+)>lgx(x>0)B.sinx+≥2(x≠kx,k∈Z)C.x2+1≥2|x|(x∈R)D.(x∈R)7.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A.+=1 B.+或+=1C.=1 D.+=1或+=18.已知向量a=(1,0,-1),则下列向量中与a成60°夹角的是( )A.(-1,1,0) B.(1,-1,0)C .(0,-1,1)D .(-1,0,1)9.若P 点是以A (﹣3,0)、B (3,0)为焦点,实轴长为2的双曲线与圆x 2+y 2=9的一个交点,则|PA|+|PB|=( ) A .4B .2C .2D .3 10. 如图,在棱长均相等的四面体O ABC -中,D 为AB 的中点,E 为CD 的中点,设,,OA a OB b OC c === ,则向量OE 用向量,,a b c 表示为( )A .111333OE a b c =++B .111444OE a b c =-+ C .111442OE a b c =+- D .111442OE a b c =++ 11. 设双曲线的左、右焦点分别为F 1,F 2,离心率为e ,过F 2的直线与双曲线的右支交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则e 2=( )A .B .C .D .12. 2121111)(nn n n n f +⋅⋅⋅+++++=,则 A .)(n f 中共有n 项,当2=n 时,3121)2(+=f B .)(n f 中共有1+n 项,当2=n 时,413121)2(++=f C .)(n f 中共有n n -2项,当2=n 时,3121)2(+=f D .)(n f 中共有12+-n n 项,当2=n 时,413121)2(++=f二、填空题(将答案写在每道题后的横线上,注意卷面整洁)13. 已知变量x ,y 满足约束条件,则目标函数z=3x ﹣y 的取值范围是 .14.抛物线28y x =-的焦点与双曲线2221x y a -=的左焦点重合,则双曲线的两条渐近线的夹角为 . 15.已知空间四边形OABC ,如图所示,其对角线为OB ,AC .M ,N 分别为OA ,BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基向量,,表示向量,并设z y x ++=,则x y z ++=______.16.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足,.则△ABC 的面积 .三、解答题(将答案写在每道题后的空白处,注意卷面整洁)已知p :x 2﹣12x+20<0,q :x 2﹣2x+1﹣a 2>0(a >0).若¬q 是¬p 的充分条件,求a 的取值范围.18.设等差数列{a n }满足a 3=5,a 10=﹣9.(Ⅰ)求{a n }的通项公式;(Ⅱ)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.19.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足2bcosA=ccosA+acosC .(1)求角A 的大小;(2)若a=,S △ABC =,试判断△ABC 的形状,并说明理由.。
2017-2018学年度第一学期期中高二数学学科试卷一.选择题(本大题共12小题,每小题5分,共60分) 1.不等式x 2-x -2>0的解集是( )A.{x | x <-1,或x >2}B.{x |2<x <-1}C.RD.∅2. 命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-3. 命题“若x 2<1,则-1<x <1”的逆否命题是( )A .若x 2≥1,则x ≥1,或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1,或x <-1,则x 2>1 D .若x ≥1,或x ≤-1,则x 2≥1 4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( ) A.-2B.2C.-4D.45.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-,3,0,05x y x y x 则z =2x +4y 的最小值是( )A.-6B.-10C.5D.106.设数列{}n a 的前n 项和2n S n =,则8a 的值为( )A.15B.16C. 49D.64 7.等比数列{}n a 中,已知12324a a +=,3436a a +=,则56a a +=( ) A.162B.4C.18D.6488. 已知条件:|1|2p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.设变量,x y 满足约束条件22022010x y x y x y --≤⎧⎪-+≥⎨⎪+-≥⎩,则11y s x +=+的取值范围是( )A. 31,2⎡⎤⎢⎥⎣⎦B. 1,12⎡⎤⎢⎥⎣⎦ C. []1,2 D. 1,22⎡⎤⎢⎥⎣⎦10.已知不等式ax 2+bx +c >0的解集为}231|{<<-x x ,则不等式cx 2+bx +a <0的解集是( )A.{x |-3<x <21}B.{x |x <-3,或x >21}C.{x -2<x <31}D.{x |x <-2,或x >31}11.在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是( )A .S 21B .S 20C .S 11D .S 1012.设x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥≤0y ,0x 0y -x 02-y -x 3,若目标函数z=ax+by(a>0,b>0)的最大值为1,则a 1+b1的最小值为( ) A .625 B .38 C .2 D .4二.填空题(本大题共4小题,每小题5分,共20分) 13.若x >0,则变量xx 9+的最小值是________;取到最小值时,x =________. 14.在ABC ∆中,若1b =,c =23c π∠=,则a= 。
2019-2019学年辽宁省大连市育明高中高三(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z=(m﹣3)+(m+1)i在复平面内对应的点在第二象限,则实数m的取值范围是()A.(﹣3,1)B.(﹣1,3)C.(1,+∞)D.(﹣∞,﹣3)2.已知集合M={0,1,2,3},N={x|x2﹣3x<0},则M∩N=()A.{0} B.{x|x<0} C.{x|0<x<3} D.{1,2}3.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织()尺布.A.B.C.D.4.双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2 B.2C.4 D.45.将某师范大学4名大学四年级学生分成2人一组,安排到A城市的甲、乙两所中学进行教学实习,并推选甲校张老师、乙校李老师作为指导教师,则不同的实习安排方案共有()A.24种 B.12种 C.6种D.10种6.执行如图程序,输出S的值为()A.B.C.D.7.一个几何体的三视图如图所示,则该几何体的表面积是()A.4+2B.4+C.4+2D.4+8.设函数的图象关于直线x=对称,它的周期是π,则()A.f(x)的图象过点(0,)B.f(x)在]上是减函数C.f(x)的一个对称中心是(,0)D.将f(x)的图象向右平移|φ|个单位得到函数y=3sinωx的图象9.已知且,则为()A.2 B.C.3 D.10.给出以下命题:(1)“0<t<1”是“曲线表示椭圆”的充要条件(2)命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”(3)Rt△ABC中,|AC|=2,∠B=90°,∠C=30°.D是斜边AC上的点,|CD|=|CB|.以B为起点任作一条射线BE交AC于E点,则E点落在线段CD上的概率是(4)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(﹣1<ξ<0)=0.6则正确命题有()个.A.0 B.1 C.2 D.311.过双曲线﹣=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O 为坐标原点,若=(+),则双曲线的离心率为()A.B.C.D.12.已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是()A.(0,) B.(,1) C.(1,2) D.(2,3)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.二项式的展开式中常数项是.14.若A为不等式组表示的平面区域,则当a从﹣2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为.15.意大利数学家列昂那多•斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F(1)=F(2)=1,F(n)=F(n﹣1)+F(n﹣2)(n≥3,n∈N*),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{bn },b2019= .16.函数f(x)若f(x)的两个零点分别为x1,x 2,则|x1﹣x2|= .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设函数f(x)=sinx(cosx﹣sinx).(1)求函数f(x)在0,π]上的单调递增区间;(2)设△ABC的三个角A、B、C所对的边分别为a、b、c,且f (B)=0,a、b、c成公差大于零的等差数列,求的值.18.某市需对某环城快速车道进行限速,为了调研该道路车速情况,于某个时段随机对100辆车的速度进行取样,测量的车速制成如下条形图:经计算:样本的平均值μ=85,标准差σ=2.2,以频率值作为概率的估计值.已知车速过慢及过快都被认为是需矫正速度,现规定车速小于μ﹣3σ或车速大于μ+2σ是需矫正速度.(1)从该快速车道上所有车辆中任取1个,求该车辆是需矫正速度的概率;(2)从样本中任取2个车辆,求这2个车辆均是需矫正速度的概率;(3)从该快速车道上所有车辆中任取2个,记其中是需矫正速度的个数为ε,求ε的分布列和数学期望.19.已知直角梯形ABCD中,AD⊥DC,AD⊥AB,△CDE是边长为2的等边三角形,AB=5.沿CE将△BCE折起,使B至B′处,且B′C ⊥DE;然后再将△ADE沿DE折起,使A至A′处,且面A′DE⊥面CDE,△B′CE和△A′DE在面CDE的同侧.(Ⅰ)求证:B′C⊥平面CDE;(Ⅱ)求平面B′A′D及平面CDE所构成的锐二面角的余弦值.20.已知椭圆C1: +=1(a>b>0)的一个焦点及抛物线C2:y2=2px(p>0)的焦点F重合,且点F到直线x﹣y+1=0的距离为,C 1及C2的公共弦长为2.(1)求椭圆C1的方程及点F的坐标;(2)过点F的直线l及C1交于A,B两点,及C2交于C,D两点,求+的取值范围.21.已知函数f(x)=lnx+ax2+bx(x>0,a∈R,b∈R),(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线方程为x﹣2y﹣2=0,求f(x)的极值;(Ⅱ)若b=1,是否存在a∈R,使f(x)的极值大于零?若存在,求出a的取值范围;若不存在,请说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系及参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为它及曲线C:(y﹣2)2﹣x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.选修4-5:不等式选讲]23.已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(Ⅰ)证明:(1+a)(1+b)(1+c)≥8;(Ⅱ)证明:.2019-2019学年辽宁省大连市育明高中高三(上)期末数学试卷(理科)参考答案及试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z=(m﹣3)+(m+1)i在复平面内对应的点在第二象限,则实数m的取值范围是()A.(﹣3,1)B.(﹣1,3)C.(1,+∞)D.(﹣∞,﹣3)【考点】复数的代数表示法及其几何意义.【分析】利用复数的几何意义、不等式的解法即可得出.【解答】解:z=(m﹣3)+(m+1)i在复平面内对应的点在第二象限,∴m﹣3<0,m+1>0,解得﹣1<m<3.则实数m的取值范围是(﹣1,3).故选:B.2.已知集合M={0,1,2,3},N={x|x2﹣3x<0},则M∩N=()A.{0} B.{x|x<0} C.{x|0<x<3} D.{1,2}【考点】交集及其运算.【分析】求出N中不等式的解集确定出N,再找出两集合的交集即可.【解答】解:由N中的不等式变形得:x(x﹣3)<0,解得:0<x<3,即N=(0,3),∵M={0,1,2,3},∴M∩N=1,2}.故选:D.3.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织()尺布.A.B.C.D.【考点】等差数列的通项公式.【分析】利用等差数列的前n项和公式求解.【解答】解:设从第2天起每天比前一天多织d尺布m则由题意知,解得d=.故选:D.4.双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2 B.2C.4 D.4【考点】双曲线的简单性质.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C5.将某师范大学4名大学四年级学生分成2人一组,安排到A城市的甲、乙两所中学进行教学实习,并推选甲校张老师、乙校李老师作为指导教师,则不同的实习安排方案共有()A.24种 B.12种 C.6种D.10种【考点】排列、组合的实际应用.【分析】根据题意,分2步进行分析:1、把4名大四学生分成2组,每2人一组,2、将分好的2组对应甲、乙两所中学,分别求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:1、把4名大四学生分成2组,每2人一组,有C42C22=3种分组方法,2、将分好的2组对应甲、乙两所中学,有A22=2种情况,推选甲校张老师、乙校李老师作为指导教师,则不同的实习安排方案共有3×2A22=12种;故选:B.6.执行如图程序,输出S的值为()A.B.C.D.【考点】程序框图.【分析】模拟执行程序框图,可得程序框图的功能是利用循环结构计算并输出S=++…+的值,由裂项法即可计算得解.【解答】解:模拟执行程序框图,可得程序框图的功能是利用循环结构计算并输出S=++…+的值.由于S=++…+=(1﹣)+()+…(﹣)]=(1﹣)=.故选:B.7.一个几何体的三视图如图所示,则该几何体的表面积是()A.4+2B.4+C.4+2D.4+【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是如图所示的三棱锥,其中侧面SAC⊥面ABC,△SAC,△ABC都是底边长为2,高为2的等腰三角形.据此可计算出表面积.【解答】解:由三视图可知:该几何体是如图所示的三棱锥,其中侧面SAC⊥面ABC,△SAC,△ABC都是底边长为2,高为2的等腰三角形,过D作AB的垂线交AB于E,连SE,则SE⊥AB,在直角三角形ABD中,DE==,在直角三角形SDE中,SE===,于是此几何体的表面积S=S△SAC +S△ABC+2S△SAB=×2×2+×2×2+2×××=4+2.故选A.8.设函数的图象关于直线x=对称,它的周期是π,则()A.f(x)的图象过点(0,)B.f(x)在]上是减函数C.f(x)的一个对称中心是(,0)D.将f(x)的图象向右平移|φ|个单位得到函数y=3sinωx的图象【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的对称性.【分析】由题意通过周期及对称轴,分别求出ω,及φ,推出函数的解析式,然后逐个验证选项,判断正误即可.【解答】解:因为函数的周期为π,所以ω=2,又函数图象关于直线x=对称,所以由,可知2×+φ=kπ+,φ=kπ,,所以k=1时φ=.函数的解析式为:.当x=0时f(0)=,所以A 不正确.当,,函数不是单调减函数,B不正确;当x=时f(x)=0.函数的一个对称中心是(,0)正确;f(x)的图象向右平移|φ|个单位得到函数y=3sin(ωx+φ﹣ωφ)的图象,不是函数y=3sinωx的图象,D不正确;故选C.9.已知且,则为()A.2 B.C.3 D.【考点】三角函数的化简求值.【分析】由得•=0,求出sinα=2cosα,代入计算即可.【解答】解:,且,∴•=4cosα﹣2sinα=0,∴sinα=2cosα,且cosα≠0;=9cos2α故选:B.10.给出以下命题:(1)“0<t<1”是“曲线表示椭圆”的充要条件(2)命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”(3)Rt△ABC中,|AC|=2,∠B=90°,∠C=30°.D是斜边AC上的点,|CD|=|CB|.以B为起点任作一条射线BE交AC于E点,则E点落在线段CD上的概率是(4)设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(﹣1<ξ<0)=0.6则正确命题有()个.A.0 B.1 C.2 D.3【考点】命题的真假判断及应用.【分析】(1),当“t=时,曲线表示圆;(2),命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”(3),如图Rt△ABC中,|AC|=2,∠B=90°,∠C=30°.D是斜边AC上的点,|CD|=|CB|.则∠CBD=75°,所以E点落在线段CD上的概率是,(4),设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(﹣1<ξ<0)=0.3;【解答】解:对于(1),当“t=时,曲线表示圆故错;对于(2),命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1,故错”对于(3),如图Rt△ABC中,|AC|=2,∠B=90°,∠C=30°.D是斜边AC上的点,|CD|=|CB|.则∠CBD=75°,所以E点落在线段CD上的概率是,故不正确;对于(4),设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=0.2,则P(﹣1<ξ<0)=0.3,故错;故选:A.11.过双曲线﹣=1(a>0,b>0)的左焦点F(﹣c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O 为坐标原点,若=(+),则双曲线的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】由题设知|EF|=b,|PF|=2b,|PF'|=2a,再由抛物线的定义和方程,解得P的坐标,进而得到c2﹣ac﹣a2=0,再由离心率公式,计算即可得到.【解答】解:∵|OF|=c,|OE|=a,OE⊥EF,∴|EF|==b,∴E为PF的中点,|OP|=|OF|=c,|PF|=2b,设F'(c,0)为双曲线的右焦点,也为抛物线的焦点,则EO 为三角形PFF'的中位线,则|PF'|=2|OE|=2a ,可令P 的坐标为(m ,n ), 则有n 2=4cm ,由抛物线的定义可得|PF'|=m+c=2a , m=2a ﹣c ,n 2=4c (2a ﹣c ),又|OP|=c ,即有c 2=(2a ﹣c )2+4c (2a ﹣c ), 化简可得,c 2﹣ac ﹣a 2=0, 由于e=,则有e 2﹣e ﹣1=0, 由于e >1, 解得,e=.故选:A .12.已知f (x )是定义在(0,+∞)上的单调函数,且对任意的x ∈(0,+∞),都有ff (x )﹣log 2x]=3,则方程f (x )﹣f′(x )=2的解所在的区间是( )A .(0,)B .(,1)C .(1,2)D .(2,3)【考点】根的存在性及根的个数判断;对数函数图象及性质的综合应用.【分析】根据题意,由单调函数的性质,可得f (x )﹣log 2x 为定值,可以设t=f (x )﹣log 2x ,则f (x )=log 2x+t ,又由f (t )=3,即log 2t+t=3,解可得t 的值,可得f (x )的解析式,对其求导可得f′(x );将f (x )及f′(x )代入f (x )﹣f′(x )=2,变形化简可得log 2x ﹣=0,令h (x )=log 2x ﹣,由二分法分析可得h (x )的零点所在的区间为(1,2),结合函数的零点及方程的根的关系,即可得答案.【解答】解:根据题意,对任意的x ∈(0,+∞),都有ff (x )﹣log 2x]=3,又由f (x )是定义在(0,+∞)上的单调函数, 则f (x )﹣log 2x 为定值,设t=f (x )﹣log 2x ,则f (x )=log 2x+t , 又由f (t )=3,即log 2t+t=3, 解可得,t=2;则f (x )=log 2x+2,f′(x )=,将f (x )=log 2x+2,f′(x )=代入f (x )﹣f′(x )=2,可得log 2x+2﹣=2, 即log 2x ﹣=0,令h (x )=log 2x ﹣,分析易得h (1)=﹣<0,h (2)=1﹣>0,则h (x )=log 2x ﹣的零点在(1,2)之间,则方程log 2x ﹣=0,即f (x )﹣f′(x )=2的根在(1,2)上, 故选C .二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.二项式的展开式中常数项是 ﹣160 .【考点】二项式定理的应用.【分析】利用二项式展开式的通项公式Tr+1,令x的指数等于0,求出常数项.【解答】解:∵二项式的展开式的通项公式是Tr+1=•(2x)6﹣r•=(﹣1)r•26﹣r••x6﹣2r,令6﹣2r=0,解得r=3;∴常数项为T3+1=(﹣1)3•26﹣3•=﹣8×20=﹣160.故答案为:﹣160.14.若A为不等式组表示的平面区域,则当a从﹣2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为.【考点】二元一次不等式(组)及平面区域.【分析】先由不等式组画出其表示的平面区域,再确定动直线x+y=a的变化范围,最后由三角形面积公式解之即可.【解答】解:如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=﹣x+a)在y轴上的截距从﹣2变化到1.知△ADC是斜边为3的等腰直角三角形,△EOC是直角边为1等腰直角三角形,所以区域的面积S阴影=S△ADC﹣S△EOC=故答案为:.15.意大利数学家列昂那多•斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,89,144,233,…,即F (1)=F (2)=1,F (n )=F (n ﹣1)+F (n ﹣2)(n ≥3,n ∈N *),此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,若此数列被3整除后的余数构成一个新数列{b n },b 2019= 1 . 【考点】进行简单的合情推理.【分析】由题意可得数列从第三项开始,后一项为前两项的和,再分别除以3得到一个新的数列,该数列的周期为8,即可求出答案.【解答】解:1,1,2,3,5,8,13,21,34,55,89,144,233,377,…,此数列被3整除后的余数构成一个新数列{b n },则{b n },1,1,2,0,2,2,1,0,1,2,2,0,2,2,…, 其周期为8,故b 2019=b 227×8+1=b 1=1, 故答案为:1 16.函数f (x )若f (x )的两个零点分别为x 1,x 2,则|x 1﹣x 2|= 3 .【考点】函数零点的判定定理.【分析】作出函数y=log 4x 和y=3﹣x 的图象交点A ,作出y=()x及y=x+3的交点B ,y=4x 及y=3﹣x 的交点C ,根据A ,B ,C 之间的对称关系得出x 1,x 2的关系.【解答】解:当x >0时,令f (x )=0得log 4x=3﹣x ,作出函数y=log 4x 和y=3﹣x 的函数图象,设交点为A (x 1,y 1), 当x <0时,令f (x )=0得()x =x+3,作出函数y=()x 和y=x+3的函数图象,设交点为B (x 2,y 2), 显然x 1>x 2.作函数y=4x 的函数图象,及y=3﹣x 的图象交于C (x 0,y 0)点. ∵y=()x 及y=4x 的函数图象关于y 轴对称,y=x+3及y=3﹣x 的图象关于y 轴对称,∴B ,C 关于y 轴对称,∴x 0=﹣x 2,y 0=y 2, ∵y=4x 及y=log 4x 互为反函数,∴y=4x 及y=log 4x 的函数图象关于直线y=x 对称,又y=3﹣x 关于y=x 对称,∴A ,C 关于直线y=x 对称.∴x 0=y 1,y 0=x 1. ∴x 2=﹣y 1,∴|x 1﹣x 2|=x 1﹣x 2=x 1+y 1,又A (x 1,y 1)在直线y=3﹣x 上,∴x 1+y 1=3. 故答案为:3.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设函数f (x )=sinx (cosx ﹣sinx ). (1)求函数f (x )在0,π]上的单调递增区间;(2)设△ABC 的三个角A 、B 、C 所对的边分别为a 、b 、c ,且f (B )=0,a 、b 、c 成公差大于零的等差数列,求的值.【考点】正弦函数的单调性.【分析】(1)由二倍角公式以及变形、两角和的正弦公式化简解析式,由整体思想和正弦函数的增区间求出f(x)的增区间,再求出函数f(x)在0,π]上的单调递增区间;(2)由(1)化简f(B)=0,由内角的范围、特殊角的三角函数值求出B,由等差中项的性质列出式子求出b,并表示出边的大小关系,由余弦定理化简后结合条件求出的值,由正弦定理求出答案.【解答】解:(1)=sinxcosx﹣sin2x=sin2x﹣•(1﹣cos2x)=sin(2x+)﹣,令2kπ﹣≤2x+≤2kπ+(k∈Z),得kπ﹣≤x≤kπ+(k∈Z),∴函数的增区间为kπ﹣,kπ+],k∈Z.∵x∈0,π],∴函数的增区间为0,],,π].(2)由(1)得,f(B)=sin(2B+)﹣=0,∴sin(2B+)=,由0<B<π得,2B+=,解得B=,由A+B+C=π得,A+C=,∵成公差大于零的等差数列,∴c>a,b>a,且2b=a+c,则b=,由余弦定理得,b2=a2+c2﹣2accosB化简得,,即,解得=或,又c>a,则,∴由正弦定理得, =.18.某市需对某环城快速车道进行限速,为了调研该道路车速情况,于某个时段随机对100辆车的速度进行取样,测量的车速制成如下条形图:经计算:样本的平均值μ=85,标准差σ=2.2,以频率值作为概率的估计值.已知车速过慢及过快都被认为是需矫正速度,现规定车速小于μ﹣3σ或车速大于μ+2σ是需矫正速度.(1)从该快速车道上所有车辆中任取1个,求该车辆是需矫正速度的概率;(2)从样本中任取2个车辆,求这2个车辆均是需矫正速度的概率;(3)从该快速车道上所有车辆中任取2个,记其中是需矫正速度的个数为ε,求ε的分布列和数学期望.【考点】离散型随机变量的期望及方差;离散型随机变量及其分布列.【分析】(1)记事件A为“从该快速车道上所有车辆中任取1个,该车辆是需矫正速度”,因为μ﹣3σ=78.4,μ+2σ=89.4,由样本条形图可得所求的概率.(2)记事件B为“从样本中任取2个车辆,这2个车辆均是需矫正速度”由题设可知样本容量为100,又需矫正速度个数为5个,可得所求概率.(3)需矫正速度的个数ε服从二项分布,即ɛ~B,即可得出.【解答】解:(1)记事件A为“从该快速车道上所有车辆中任取1个,该车辆是需矫正速度”,因为μ﹣3σ=78.4,μ+2σ=89.4,由样本条形图可知,所求的概率为.(2)记事件B为“从样本中任取2个车辆,这2个车辆均是需矫正速度”由题设可知样本容量为100,又需矫正速度个数为5个,故所求概率为.(3)需矫正速度的个数ε服从二项分布,即ɛ~B,因此ε的分布列为ε012P由ɛ~B,可知数学期望E(ɛ)=2×=.19.已知直角梯形ABCD中,AD⊥DC,AD⊥AB,△CDE是边长为2的等边三角形,AB=5.沿CE将△BCE折起,使B至B′处,且B′C ⊥DE;然后再将△ADE沿DE折起,使A至A′处,且面A′DE⊥面CDE,△B′CE和△A′DE在面CDE的同侧.(Ⅰ)求证:B′C⊥平面CDE;(Ⅱ)求平面B′A′D及平面CDE所构成的锐二面角的余弦值.【考点】用空间向量求平面间的夹角;直线及平面垂直的判定;二面角的平面角及求法.【分析】(Ⅰ)在原平面图形中,利用根据变的关系利用勾股定理得到BC⊥CE,即立体图中B′C⊥CE,结合已知B′C⊥DE,利用线面垂直的判定定理可得结论;(Ⅱ)以C为原点,CE为y轴,CB为z轴建立空间直角坐标系,然后求出平面B′A′D及平面CDE的法向量,利用法向量所成角的余弦值得平面B′A′D及平面CDE所构成的锐二面角的余弦值.【解答】(Ⅰ)证明:如图,在直角梯形ABCD中,由,△CDE是边长为2的等边三角形,AB=5,得:AD=,,CE=2,BE=4,所以.即B′C⊥CE,又B′C⊥DE,DE∩CE=E,所以B′C⊥平面CDE.(Ⅱ)解:以C为原点,CE为y轴,CB为z轴建立空间直角坐标系,则C(0,0,0),,D(),E(0,2,0)作A′H⊥DE,因为面A′DE⊥面CDE,所以A′H⊥面CDE,且.在平面图形中可求解得:,所以.易知面CDE的法向量,设面PAD的法向量为,且,.由,则,取y=2,得,所以.所以.所以平面B′A′D及平面CDE所构成的锐二面角的余弦值为.20.已知椭圆C1: +=1(a>b>0)的一个焦点及抛物线C2:y2=2px(p>0)的焦点F重合,且点F到直线x﹣y+1=0的距离为,C 1及C2的公共弦长为2.(1)求椭圆C1的方程及点F的坐标;(2)过点F的直线l及C1交于A,B两点,及C2交于C,D两点,求+的取值范围.【考点】椭圆的简单性质.【分析】(1)求得抛物线的焦点,可得c=,再由点到直线的距离公式可得c=1,可得焦点F,求得抛物线的方程,设出设C1及C2的公共弦端点为(m,n),(m,﹣n),(m,n>0),由弦长求得交点坐标,代入椭圆方程,解得a,b,进而得到椭圆方程;(2)设过F(1,0)的直线为x=my+1,代入抛物线的方程y2=4x,椭圆方程,运用韦达定理和弦长公式,可得|CD|,|AB|,求得+,化简整理,即可得到所求范围.【解答】解:(1)抛物线C2:y2=2px(p>0)的焦点F(,0),即有c=,点F到直线x﹣y+1=0的距离为,可得d==,即有c=1,p=2,即F(1,0);即有y2=4x,设C1及C2的公共弦端点为(m,n),(m,﹣n),(m,n>0),则2n=2,可得n=,m=,将(,)代入椭圆方程可得, +=1,又a2﹣b2=1,解得a=3,b=2,即有椭圆的方程为+=1;(2)设过F(1,0)的直线为x=my+1,代入抛物线的方程y2=4x,可得y2﹣4my﹣4=0,由弦长公式可得|CD|=•=4(1+m2),由x=my+1代入椭圆方程8x2+9y2=72,可得(8m2+9)y2+16my﹣64=0,由弦长公式可得|AB|=•可得+=+=+,由1+m2≥1,可得0<≤,即有+的取值范围为(,].21.已知函数f(x)=lnx+ax2+bx(x>0,a∈R,b∈R),(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线方程为x﹣2y﹣2=0,求f(x)的极值;(Ⅱ)若b=1,是否存在a∈R,使f(x)的极值大于零?若存在,求出a的取值范围;若不存在,请说明理由.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),得到关于a,b的方程组,解出即可求出f(x)的表达式,从而求出函数的单调区间,进而求出函数f(x)的极值即可;(Ⅱ)求出f(x)的导数,通过讨论a的范围,判断函数的单调性,从而确定a的范围即可.【解答】解:(Ⅰ)依题意,,f'(1)=1+2a+b﹣﹣﹣﹣﹣又由切线方程可知,,斜率,所以解得,所以﹣﹣﹣﹣﹣所以,当x>0时,x,f'(x),f(x)的变化如下:x(0,2)2(2,+∞)f'(x)+0﹣f(x)↗极大值↘所以f(x)=f(2)=ln2﹣1,无极小值.﹣﹣﹣﹣﹣极大值(Ⅱ)依题意,f(x)=lnx+ax2+x,所以①当a≥0时,f'(x)>0在(0,+∞)上恒成立,故无极值;﹣﹣﹣﹣②当a<0时,令f'(x)=0,得2ax2+x+1=0,则△=1﹣8a>0,且两根之积,不妨设x1<0,x2>0,则,即求使f(x2)>0的实数a的取值范围.﹣﹣﹣﹣﹣由方程组消去参数a后,得,﹣﹣﹣﹣构造函数,则,所以g(x)在(0,+∞)上单调递增,又g(1)=0,所以g(x)>0解得x>1,即,解得﹣1<a<0.由①②可得,a的范围是﹣1<a<0.﹣﹣﹣﹣﹣﹣请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系及参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为它及曲线C:(y﹣2)2﹣x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P 的极坐标为,求点P到线段AB中点M的距离.【考点】直线的参数方程;点到直线的距离公式;柱坐标刻画点的位置.【分析】(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得 7t2﹣12t﹣5=0,求出t1+t2和t1•t2,根据|AB|=•|t1﹣t2|=5,运算求得结果.(Ⅱ)根据中点坐标的性质可得AB中点M对应的参数为=.由t的几何意义可得点P到M的距离为|PM|=•||,运算求得结果.【解答】解:(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得 7t2﹣12t﹣5=0,设A,B对应的参数分别为 t1和t2,则 t1+t2=,t1•t2=﹣.所以|AB|=•|t1﹣t2|=5 =.(Ⅱ)易得点P在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB中点M对应的参数为=.所以由t的几何意义可得点P到M的距离为|PM|=•||=.选修4-5:不等式选讲]23.已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(Ⅰ)证明:(1+a)(1+b)(1+c)≥8;(Ⅱ)证明:.【考点】不等式的证明.【分析】(Ⅰ)利用,相乘即可证明结论.(Ⅱ)利用,,,,相加证明即可.【解答】证明:(Ⅰ),相乘得:(1+a)(1+b)(1+c)≥8abc=8.实数a,b,c满足a>0,b>0,c>0,且abc=1.(1+a)(1+b)(1+c)≥8﹣﹣﹣﹣﹣﹣相加得:﹣﹣﹣﹣﹣﹣。
2017-2018学年高二上学期期中数学试卷一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.103.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=04.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=16.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.2017-2018学年高二上学期期中数学试卷参考答案与试题解析一.选择题(每小题5分,共40分)1.(5分)已知两条相交直线a,b,a∥平面α,则b与α的位置关系是()A.b⊂平面αB.b⊥平面αC.b∥平面αD.b与平面α相交,或b∥平面α考点:空间中直线与平面之间的位置关系.专题:阅读型.分析:根据空间中直线与平面的位置关系可得答案.解答:解:根据空间中直线与平面的位置关系可得:b可能与平面α相交,也可能b与平面相交α,故选D.点评:解决此类问题的关键是熟练掌握空间中点、直线以及平面之间的位置关系.2.(5分)已知过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,则m的值为()A.0 B.﹣8 C.2 D.10考点:斜率的计算公式.专题:计算题.分析:因为过点A(﹣2,m)和B(m,4)的直线与直线2x+y﹣1=0平行,所以,两直线的斜率相等.解答:解:∵直线2x+y﹣1=0的斜率等于﹣2,∴过点A(﹣2, m)和B(m,4)的直线的斜率K也是﹣2,∴=﹣2,解得,故选 B.点评:本题考查两斜率存在的直线平行的条件是斜率相等,以及斜率公式的应用.3.(5分)过点M(﹣1,5)作圆(x﹣1)2+(y﹣2)2=4的切线,则切线方程为()A.x=﹣1 B.5x+12y﹣55=0C.x=﹣1或5x+12y﹣55=0 D.x=﹣1或12x+5y﹣55=0考点:圆的切线方程.专题:直线与圆.分析:首先讨论斜率不存在的情况,直线方程为x=﹣1满足条件.当斜率存在时,设直线方程为:y﹣5=k (x+1).利用圆心到直线的距离等于半径解得k的值,从而确定圆的切线方程.解答:解:①斜率不存在时,过点M(﹣1,5)的直线方程为x=﹣1.此时,圆心(1,2)到直线x=﹣1的距离d=2=r.∴x=﹣1是圆的切线方程.②斜率存在时,设直线斜率为k,则直线方程为:y﹣5=k(x+1).即kx﹣y+k+5=0.∵直线与圆相切,∴圆心到直线的距离.解得,.∴直线方程为5x+12y﹣55=0.∴过点M(﹣1,5)且与圆相切的直线方程为x=﹣1或5x+12y﹣55=0.故选:C.点评:本题考查直线与圆相切的性质,点到直线的距离公式等知识的运用.做题时容易忽略斜率不存在的情况.属于中档题.4.(5分)设m,n表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是()A.m⊥α,m⊥β,则α∥βB.m∥n,m⊥α,则n⊥αC.m⊥α,n⊥α,则m∥n D.m∥α,α∩β=n,则m∥n考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:充分利用线面平行和线面垂直的性质和判定定理对四个选项逐一解答.A选项用垂直于同一条直线的两个平面平行判断即可;B选项用两个平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;C选项用线面垂直的性质定理判断即可;D选项由线面平行的性质定理判断即可.解答:解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.点评:本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.5.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y﹣2)2=1 D.(x+2)2+(y﹣1)2=1考点:轨迹方程.专题:直线与圆.分析:设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.解答:解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.点评:本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.6.(5分)在△ABC中,AB=4,BC=3,∠ABC=90°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.36πB.28πC.20πD.16π考点:旋转体(圆柱、圆锥、圆台).专题:空间位置关系与距离.分析:使△ABC绕直线BC旋转一周,则所形成的几何体是一个底面半径为4,高为3的一个圆锥,代入圆锥体积公式,可得答案.解答:解:将△ABC绕直线BC旋转一周,得到一个底面半径为4,高为3的一个圆锥,故所形成的几何体的体积V=×π×42×3=16π,故选:D点评:本题考查的知识点是旋转体,其中分析出旋转得到的几何体形状及底面半径,高等几何量是解答的关键.7.(5分)某正三棱柱的三视图如图所示,其中正(主)视图是边长为2的正方形,该正三棱柱的表面积是()A.B.C.D.考点:由三视图求面积、体积.专题:计算题.分析:利用三视图的数据,直接求解三棱柱的表面积.解答:解:因为正三棱柱的三视图,其中正(主)视图是边长为2的正方形,棱柱的侧棱长为2,底面三角形的边长为2,所以表面积为:2×+2×3×2=12+2.故选C.点评:本题考查几何体的三视图的应用,几何体的表面积的求法,考查计算能力.8.(5分)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1考点:抛物线的应用.专题:函数的性质及应用.分析:本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.解答:解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A点评:本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二.填空题(每小题5分,共30分)9.(5分)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为x2+(y﹣1)2=1.考点:圆的标准方程.专题:直线与圆.分析:利用点(a,b)关于直线y=x±k的对称点为(b,a),求出圆心,再根据半径求得圆的方程.解答:解:圆心与点(1,0)关于直线y=x对称,可得圆心为(0,1),再根据半径等于1,可得所求的圆的方程为x2+(y﹣1)2=1,故答案为:x2+(y﹣1)2=1.点评:本题主要考查求圆的标准方程,利用了点(a,b)关于直线y=x±k的对称点为(b,a),属于基础题.10.(5分)棱锥的高为16cm,底面积为512cm2,平行于底面的截面积为50cm2,则截面与底面的距离为11cm.考点:棱柱、棱锥、棱台的体积.专题:计算题.分析:利用面积之比是相似比的平方,求出截取棱锥的高,然后求出截面与底面的距离.解答:解:设截取棱锥的高为:h,则,∴h=5,所以截面与底面的距离:16﹣5=11cm故答案为:11cm点评:本题是基础题,考查面积之比是选上比的平方,考查计算能力,空间想象能力.11.(5分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则球O的表面积为12π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.解答:解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球O的表面积为4π×3=12π.故答案为:12π.点评:本题考查球的表面积的求法,考查空间想象能力、计算能力.12.(5分)如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=.考点:平面与平面垂直的性质.专题:计算题;空间位置关系与距离.分析:由题意,两个矩形的对角线长分别为5,=2,利用余弦函数,即可求出cosα:cosβ.解答:解:由题意,两个矩形的对角线长分别为5,=2,∴cosα==,cosβ=,∴cosα:cosβ=,故答案为:.点评:本题考查平面与平面垂直的性质,考查学生的计算能力,比较基础.13.(5分)已知直线ax+y﹣2=0与圆心为C的圆(x﹣2)2+(y﹣2)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=±.考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.解答:解:圆心C(2,2),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d==,解得a=±,故答案为:±.点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.14.(5分)在平面直角坐标系xOy中,圆C的方程为x2+y2﹣8x+15=0,若直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是.考点:圆与圆的位置关系及其判定;直线与圆的位置关系.专题:直线与圆.分析:由于圆C的方程为(x﹣4)2+y2=1,由题意可知,只需(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.解答:解:∵圆C的方程为x2+y2﹣8x+15=0,整理得:(x﹣4)2+y2=1,即圆C是以(4,0)为圆心,1为半径的圆;又直线y=kx﹣2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,∴只需圆C′:(x﹣4)2+y2=1与直线y=kx﹣2有公共点即可.设圆心C(4,0)到直线y=kx﹣2的距离为d,则d=≤2,即3k2﹣4k≤0,∴0≤k≤.∴k的最大值是.故答案为:.点评:本题考查直线与圆的位置关系,将条件转化为“(x﹣4)2+y2=4与直线y=kx﹣2有公共点”是关键,考查学生灵活解决问题的能力,属于中档题.三.解答题(公3小题,共30分)15.(10分)在平面直角坐标系xOy内有三个定点A(2,2).B(1,3),C(1,1),记△ABC的外接圆为E.(I)求圆E的方程;(Ⅱ)若过原点O的直线l与圆E相交所得弦的长为,求直线l的方程.考点:圆的标准方程;直线与圆的位置关系.专题:计算题;直线与圆.分析:(I)设圆E的方程为x2+y2+Dx+Ey+F=0,将A、B、C的坐标代入,建立关于D、E、F的方程组,解之即可得到△ABC的外接圆E的方程;(II)化圆E为标准方程,得圆心为E(1,2),半径r=1.设直线l方程为y=kx,由点到直线的距离公式和垂径定理建立关于k的方程,解之得到k=1或7,由此即可得到直线l的方程.解答:解:(I)设圆E的方程为x2+y2+Dx+Ey+F=0∵A(2,2)、B(1,3)、C(1,1)都在圆E上∴,解之得因此,圆E的方程为x2+y2﹣2x﹣4y+4=0;(II)将圆E化成标准方程,可得(x﹣1)2+(y﹣2)2=1∴圆心为E(1,2),半径r=1设直线l方程为y=kx,则圆心E到直线l的距离为d=∵直线l与圆E相交所得弦的长为,∴由垂径定理,得d2+()2=r2=1可得d2=,即=,解之得k=1或7∴直线l的方程是y=x或y=7x.点评:本题给出三角形ABC三个顶点,求它的外接圆E的方程,并求截圆所得弦长为的直线方程.着重考查了直线的方程、圆的方程和直线与圆的位置关系等知识,属于中档题.16.(10分)如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.(Ⅰ)求证:DE∥面PBC;(Ⅱ)求证:AB⊥PE;(Ⅲ)求三棱锥B﹣PEC的体积.考点:直线与平面垂直的性质;直线与平面平行的判定.专题:计算题;证明题;空间位置关系与距离.分析:(I)根据三角形中位线定理,证出DE∥BC,再由线面平行判定定理即可证出DE∥面PBC;(II)连结PD,由等腰三角形“三线合一”,证出PD⊥AB,结合DE⊥AB证出AB⊥平面PDE,由此可得AB ⊥PE;(III)由面面垂直性质定理,证出PD⊥平面ABC,得PD是三棱锥P﹣BEC的高.结合题中数据算出PD=且S△BEC=,利用锥体体积公式求出三棱锥P﹣BEC的体积,即得三棱锥B﹣PEC的体积.解答:解:(I)∵△ABC中,D、E分别为AB、AC中点,∴DE∥BC∵DE⊄面PBC且BC⊂面PBC,∴DE∥面PBC;(II)连结PD∵PA=PB,D为AB中点,∴PD⊥AB∵DE∥BC,BC⊥AB,∴DE⊥AB,又∵PD、DE是平面PDE内的相交直线,∴AB⊥平面PDE∵PE⊂平面PDE,∴AB⊥PE;(III)∵PD⊥AB,平面PAB⊥平面ABC,平面PAB∩平面ABC=AB∴PD⊥平面ABC,可得PD是三棱锥P﹣BEC的高又∵PD=,S△BEC=S△ABC=∴三棱锥B﹣PEC的体积V=V P﹣BEC=S△BEC×PD=点评:本题在三棱锥中求证线面平行、线线垂直,并求锥体的体积.着重考查了线面平行、线面垂直的判定与性质和锥体体积公式等知识,属于中档题.17.(10分)在四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,底面ABCD为菱形,O为A1C1与B1D1交点,已知AA1=AB=1,∠BAD=60°.(Ⅰ)求证:A1C1⊥平面B1BDD1;(Ⅱ)求证:AO∥平面BC1D;(Ⅲ)设点M在△BC1D内(含边界),且OM⊥B1D1,说明满足条件的点M的轨迹,并求OM的最小值.考点:直线与平面平行的判定;直线与平面垂直的判定;直线与平面垂直的性质.专题:空间位置关系与距离.分析:(Ⅰ)先根据线面垂直的性质证明出BB1⊥A1C1.进而根据菱形的性质证明出A1C1⊥B1D1.最后根据线面垂直的判定定理证明出A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.先证明OC1∥AE和OC1=AE,推断出AOC1E为平行四边形,进而推断AO∥C1E,最后利用线面平行的判定定理证明出AO∥平面BC1D.(Ⅲ)先由E为BD中点,推断出BD⊥C1E,进而根据C1D=C1B,推断出ME⊥BD,进而根据OM⊥BD,推断出BD∥B1D1.直角三角形OC1E中利用射影定理求得OM.解答:解:(Ⅰ)依题意,因为四棱柱ABCD﹣A1B1C1D1中,AA1⊥底面ABCD,所以BB1⊥底面A1B1C1D1.又A1C1⊂底面A1B1C1D1,所以BB1⊥A1C1.因为A1B1C1D1为菱形,所以A1C1⊥B1D1.而BB1∩B1D1=B1,所以A1C1⊥平面B1BDD1.(Ⅱ)连接AC,交BD于点E,连接C1E.依题意,AA1∥CC1,且AA1=CC1,AA1⊥AC,所以A1ACC1为矩形.所以OC1∥AE.又,,A1C1=AC,所以OC1=AE,所以AOC1E为平行四边形,则AO∥C1E.又AO⊄平面BC1D,C1E⊂平面BC1D,所以AO∥平面BC1D.(Ⅲ)在△BC1D内,满足OM⊥B1D1的点M的轨迹是线段C1E,包括端点.分析如下:连接OE,则BD⊥OE.由于BD∥B1D1,故欲使OM⊥B1D1,只需OM⊥BD,从而需ME⊥BD.又在△BC1D中,C1D=C1B,又E为BD中点,所以BD⊥C1E.故M点一定在线段C1E上.当OM⊥C1E时,OM取最小值.在直角三角形OC1E中,OE=1,,,所以.点评:本题主要考查了线面平行和线面垂直的判定定理的应用.考查了学生基础知识的综合运用.四.填空题(每小题4分,共20分)18.(4分)已知(ax+1)5的展开式中x3的系数是10,则实数a的值是1.考点:二项式系数的性质.专题:计算题;二项式定理.分析:在展开式的通项公式,令x的指数为3,利用(ax+1)5的展开式中x3的系数是10,即可实数a的值.解答:解:(ax+1)5的展开式的通项公式为T r+1=,则∵(ax+1)5的展开式中x3的系数是10,∴=10,∴a=1.故答案为:1.点评:二项展开式的通项公式解决二项展开式的特定项问题的重要方法.19.(4分)已知正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,E,F分别是PB,PC上的点,则△AEF的周长的最小值为4.考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据侧面展开图求解得出,再利用直角三角形求解.解答:解:∵正三棱锥P﹣ABC的每个侧面是顶角为30°,腰长为4的三角形,∴侧面展开为下图连接AA得:RT△中,长度为4,∴△AEF的周长的最小值为4,故答案为:4,点评:本题考查了空间几何体中的最小距离问题,属于中档题.20.(4分)空间四边形ABCD中,若AB=BC=CD=DA=BD=1,则AC的取值范围是(0,].考点:棱锥的结构特征.专题:空间位置关系与距离.分析:运用图形得||=||,再根据向量求解.解答:解:0为BD中点,∵AB=BC=CD=DA=BD=1,∴|OA|=|OB|=,||=||==,θ∈(0°,180°]∴AC的取值范围是(0,]故答案为:(0,]点评:本题考查了向量的运用求解距离,属于中档题.21.(4分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:根据直线和圆的位置关系,利用数形结合即可得到结论.解答:解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.(4分)设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y).则|PA|•|PB| 22.的最大值是5.考点:点到直线的距离公式.专题:直线与圆.分析:先计算出两条动直线经过的定点,即A和B,注意到两条动直线相互垂直的特点,则有PA⊥PB;再利用基本不等式放缩即可得出|PA|•|PB|的最大值.解答:解:有题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),注意到动直线x+my=0和动直线mx﹣y﹣m+3=0始终垂直,P又是两条直线的交点,则有PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.故|PA|•|PB|≤=5(当且仅当时取“=”)故答案为:5点评:本题是直线和不等式的综合考查,特别是“两条直线相互垂直”这一特征是本题解答的突破口,从而有|PA|2+|PB|2是个定值,再由基本不等式求解得出.直线位置关系和不等式相结合,不容易想到,是个灵活的好题.五.解答题(共3题,共30分)23.(10分)如图,在三棱柱ABC﹣A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱BC、CC1的中点.(Ⅰ)求证:AB⊥平面AA1 C1C;(Ⅱ)若线段AC上的点D满足平面DEF∥平面ABC1,试确定点D的位置,并说明理由;(Ⅲ)证明:EF⊥A1C.考点:直线与平面垂直的判定.专题:空间位置关系与距离.分析:(I)由线面垂直得A1A⊥AB,再由AB⊥AC,能证明AB⊥面A1CC1.(II)由AB∥DE,在△ABC中,E是棱BC的中点,推导出D是线段AC的中点.(III)由已知条件推导出A1C⊥AC1,AB⊥A1C,从而得到A1C⊥面ABC1,由此能证明EF⊥AC1.解答:(I)证明:∵AA1⊥底面ABC,∴A1A⊥AB,(2分)∵AB⊥AC,A1A∩AC=A,∴AB⊥面A1CC1.(4分)(II)解:∵面DEF∥面ABC1,面ABC∩面DEF=DE,面ABC∩面ABC1=AB,∴AB∥DE,(7分)∵在△ABC中,E是棱BC的中点,∴D是线段AC的中点.(8分)(III)证明:∵三棱柱ABC﹣A1B1C1中,A1A=AC,∴侧面A1ACC1是菱形,∴A1C⊥AC1,(9分)由(Ⅰ)得AB⊥A1C,∵AB∩AC1=A,∴A1C⊥面ABC1,(11分)∴A1C⊥BC1.(12分)又∵E,F分别为棱BC,CC1的中点,∴EF∥BC1,(13分)∴EF⊥AC1.(14分)点评:本题考查直线与平面垂直的证明,考查点的位置的确定,考查异面直线垂直的证明,解题时要认真审题,注意空间思维能力的培养.24.(10分)已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.(Ⅰ)若直线l过点P且与圆心C的距离为1,求直线l的方程;(Ⅱ)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆的方程;(Ⅲ)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.考点:直线与圆的位置关系.专题:综合题.分析:(Ⅰ)分两种情况:当直线l的斜率存在时,设出直线l的斜率为k,由P的坐标和设出的k写出直线l的方程,利用点到直线的距离公式表示出P到直线l的距离d,让d等于1列出关于k的方程,求出方程的解即可得到k的值,利用求出的k和P写出直线l的方程即可;当直线l的斜率不存在时,得到在线l的方程,经过验证符合题意;(Ⅱ)由利用两点间的距离公式求出圆心C到P的距离,再根据弦长|MN|的一半及半径,利用勾股定理求出弦心距d,发现|CP|与d相等,所以得到P为MN的中点,所以以MN为直径的圆的圆心坐标即为P的坐标,半径为|MN|的一半,根据圆心和半径写出圆的方程即可;(Ⅲ)把已知直线的方程代入到圆的方程中消去y得到关于x的一元二次方程,因为直线与圆有两个交点,所以得到△>0,列出关于a的不等式,求出不等式的解集即可得到a的取值范围,利用反证法证明:假设符合条件的a存在,由直线l2垂直平分弦AB得到圆心必在直线l2上,根据P与C的坐标即可求出l2的斜率,然后根据两直线垂直时斜率的乘积为﹣1,即可求出直线ax﹣y+1=0的斜率,进而求出a的值,经过判断求出a的值不在求出的范围中,所以假设错误,故这样的a不存在.解答:解:(Ⅰ)设直线l的斜率为k(k存在)则方程为y﹣0=k(x﹣2).又圆C的圆心为(3,﹣2),半径r=3,由,解得.所以直线方程为,即3x+4y﹣6=0;当l的斜率不存在时,l的方程为x=2,经验证x=2也满足条件;(Ⅱ)由于,而弦心距,所以d=,所以P为MN的中点,所以所求圆的圆心坐标为(2,0),半径为|MN|=2,故以MN为直径的圆Q的方程为(x﹣2)2+y2=4;(Ⅲ)把直线ax﹣y+1=0即y=ax+1.代入圆C的方程,消去y,整理得(a2+1)x2+6(a﹣1)x+9=0.由于直线ax﹣y+1=0交圆C于A,B两点,故△=36(a﹣1)2﹣36(a2+1)>0,即﹣2a>0,解得a<0.则实数a的取值范围是(﹣∞,0).设符合条件的实数a存在,由于l2垂直平分弦AB,故圆心C(3,﹣2)必在l2上.所以l2的斜率k PC=﹣2,而,所以.由于,故不存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB.点评:此题考查学生掌握直线与圆的位置关系,灵活运用点到直线的距离公式及两点间的距离公式化简求值,考查了分类讨论的数学思想,以及会利用反证法进行证明,是一道综合题.25.(10分)设圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,直线l的方程为y=x+m﹣1.(Ⅰ)求C1关于l对称的圆C2的方程;(Ⅱ)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程.考点:直线与圆相交的性质.专题:直线与圆.分析:(Ⅰ)由圆的方程找出圆心坐标,设出圆心关于直线l的对称点的坐标,由直线l的斜率,根据两直线垂直时斜率的乘积为﹣1求出直线C1C2的斜率,由圆心及对称点的坐标表示出斜率,等于求出的斜率列出一个关系式,然后利用中点坐标公式,求出两圆心的中点坐标,代入直线l的方程,得到另一个关系式,两关系式联立即可用m表示出a与b,把表示出的a与b代入圆C2的方程即可;(Ⅱ)由表示出的a与b消去m,得到a与b的关系式,进而得到圆C2的圆心在定直线上;分公切线的斜率不存在和存在两种情况考虑,当公切线斜率不存在时,容易得到公切线方程为x=0;当公切线斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,根据点到直线的距离公式表示出圆心(a,b)到直线y=kx+b的距离d,当d等于圆的半径2|m|,化简后根据多项式为0时各项的系数为0,即可求出k与b的值,从而确定出C2所表示的一系列圆的公切线方程,这样得到所有C2所表示的一系列圆的公切线方程.解答:解:(Ⅰ)∵圆C1的方程为(x﹣2)2+(y﹣3m)2=4m2,∴圆心为(2,3m),设它关于直线l:y=x+m﹣1的对称点为(a,b),则,解得a=2m+1,b=m+1,∴圆C2的圆心为(2m+1,m+1),∴圆C2的方程为:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2,∴C1关于l对称的圆C2的方程:(x﹣2m﹣1)2+(y﹣m﹣1)2=4m2.(Ⅱ)根据(Ⅰ)得圆C2的圆心为(2m+1,m+1),令,消去m得x﹣2y+1=0,它表示一条直线,故C2的圆心在一条定直线上,①当公切线的斜率不存在时,易求公切线的方程为x=0;②当公切线的斜率存在时,设直线y=kx+b与圆系中的所有圆都相切,∴=2|m|,即:(1﹣4k)m2+2(2k﹣1)(k+b﹣1)m+(k+b﹣1)2=0∵直线y=kx+b与圆系中的所有圆都相切,所以上述方程对所有的m值都成立,∴所以有:,解得,∴C2所表示的一系列圆的公切线方程为:y=,∴故所求圆的公切线为x=0或y=.点评:此题考查了直线与圆的位置关系,以及关于点与直线对称的圆的方程.此题的综合性比较强,要求学生审清题意,综合运用方程与函数的关系,掌握直线与圆相切时圆心到直线的距离等于半径,在作(Ⅱ)时先用消去参数的方法求定直线的方程,然后采用分类讨论的数学思想分别求出C2所表示的一系列圆的公切线方程.。
辽宁省大连市高二上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)圆的圆心坐标和半径分别为()A .B .C .D .2. (2分) (2016高二上·清城期中) 下列说法中正确的是()A . 一个命题的逆命题为真,则它的逆否命题一定为真B . “a>b”与“a+c>b+c”不等价C . “a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D . 一个命题的否命题为真,则它的逆命题一定为真3. (2分)已知抛物线的焦点与椭圆的一个焦点重合,它们在第一象限内的交点为,且与轴垂直,则椭圆的离心率为()A .B .C .D .4. (2分)(2014·福建理) 直线l:y=kx+1与圆O:x2+y2=1相交于A,B 两点,则“k=1”是“△OAB的面积为”的()A . 充分而不必要条件B . 必要而不充分条件C . 充分必要条件D . 既不充分又不必要条件5. (2分)在三棱柱ABC﹣A1B1C1中,各侧面均为正方形,侧面AA1C1C的对角线相交于点M,则BM与平面AA1C1C所成角的大小是()A . 30°B . 45°C . 60°D . 90°6. (2分) (2020高二上·金华期末) 已知且,则二次曲线与必有()A . 不同的顶点B . 不同的焦距C . 相同的离心率D . 相同的焦点7. (2分)如图,梯形ABCD中,AB∥CD,且AB⊥平面α,AB=2BC=2CD=4,点P为α内一动点,且∠APB=∠DPC,则P点的轨迹为()A . 直线B . 圆C . 椭圆D . 双曲线8. (2分)(2020·济宁模拟) 已知抛物线的焦点为F,过点F的直线与抛物线C的两个交点分别为A,B,且满足为AB的中点,则点E到抛物线准线的距离为()A .B .C .D .二、填空题 (共7题;共8分)9. (2分) (2019高二下·丽水期末) 已知向量,,若,则________,若 ,则 ________.10. (1分) (2018高二上·台州月考) 已知为椭圆的下焦点,点为椭圆上任意一点,点的坐标为,则当的最大时点的坐标为________.11. (1分) (2016高二上·吉林期中) 如图,已知两个正四棱锥P﹣ABCD与Q﹣ABCD的高分别为2和4,AB=4,E、F分别为PC、AQ的中点,则直线EF与平面PBQ所成角的正弦值为________.12. (1分)(2017·武汉模拟) 若直线2x+y+m=0过圆x2+y2﹣2x+4y=0的圆心,则m的值为________.13. (1分) (2016高二上·临川期中) 已知椭圆的方程为 =1,其左右焦点分别为F1 , F2 ,过其左焦点且斜率为1的直线与该椭圆相交与A,B两点,则 =________.14. (1分) (2019高二上·吉林月考) 已知直线与相交于A,B两点,O是坐标原点,在弧AOB上求一点P,使的面积最大,则P的坐标为________ .15. (1分) (2017高三上·九江开学考) 有下列五个命题:①函数y=4cos2x,x∈[﹣10π,10π]不是周期函数;②已知定义域为R的奇函数f(x),满足f(x+3)=f(x),当x∈(0,)时,f(x)=sinπx,则函数f (x)在区间[0,6]上的零点个数是9;③为了得到函数y=﹣cos2x的图象,可以将函数y=sin(2x﹣)的图象向左平移;④已知函数f(x)=x﹣sinx,若x1 ,x2∈[﹣, ]且f(x1)+f(x2)>0,则x1+x2>0;⑤设曲线f(x)=acosx+bsinx的一条对称轴为x= ,则点(,0)为曲线y=f(﹣x)的一个对称中心.其中正确命题的序号是________.三、解答题 (共5题;共40分)16. (10分) (2019高三上·大冶月考) 已知,设命题:实数满足,命题:实数满足.(1)若,为真命题,求的取值范围;(2)若是的充分不必要条件,求实数的取值范围.17. (5分)已知直线l过点P(0,2),斜率为k,圆Q:x2+y2﹣12x+32=0.(1)若直线l和圆相切,求直线l的方程;(2)若直线l和圆交于A、B两个不同的点,问是否存在常数k,使得+与共线?若存在,求出k的值;若不存在,请说明理由.18. (5分)(2019·河西模拟) 如图,椭圆的离心率为,以椭圆的上顶点为圆心作圆,圆与椭圆在第一象限交于点,在第二象限交于点.(Ⅰ)求椭圆的方程;(Ⅱ)求的最小值,并求出此时圆的方程;(Ⅲ)设点是椭圆上异于,的一点,且直线,分别与轴交于点,,的坐标原点,求证:为定值.19. (10分)(2019·桂林模拟) 已知三棱柱中,,,,.(1)求证:平面平面;(2)若,为线段上一点,且平面和平面所成角的余弦值为,求的值.20. (10分)(2017·宁化模拟) 已知椭圆 + =1(a>b>0)的离心率为,且过点(,).(1)求椭圆的标准方程;(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,设A(x1 , y1),B(x2 , y2),满足4y1y2=x1x2 .①试证kAB+kBC的值为定值,并求出此定值;②试求四边形ABCD面积的最大值.参考答案一、选择题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共7题;共8分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共5题;共40分)答案:16-1、答案:16-2、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、。
大连育明高级中学2017~2018学年(上)期中考试
高二 数学试题(文)
注意事项:
1. 答题前:先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证条码粘贴在答题卡上指定位置。
2. 选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
3. 非选择题,用0.5mm 黑色签字笔写在答题卡上对应的答题区域,写在非答题区域无效。
4. 画图清晰,并用2B 铅笔加深。
第Ⅰ卷(共60分)
一.选择题(每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 已知椭圆C 的一个焦点坐标为(2,0),离心率2
1=e ,则椭圆C 的标准方程是( ) A. 141622=+y x B.1121622=+y x C.14822=+y x D.112
162
2=-y x 2. 设Z x ∈,集合A 是奇数集,集合B 是偶数集.若命题∈∀x p :A ,B x ∈2,则( )
A. ¬ B x A x p ∉∉∃2,:
B.¬B x A x p ∈∈∃2,:
C.¬B x A x p ∉∈∀2,:
D. ¬B x A x p ∉∉∀2,:
3. 已知函数f(x)=cosx+2f ’(2
π)·x,则f ’(0)=( ) A. 2 B. 1 C. -3 D. 4
4. 与椭圆9x 2+4y 2
=36有相同焦点,且一条渐进线平行于直线y=2x-1的双曲线的标准方程是( ) A. 1422
=-y x B. 1422=-y x C. 1422=-x y D. 142
2=-x y 5. 不等式512>+x 成立的一个必要而不充分条件是( )
A. x>2
B. -4<x<-3
C. x<-3或x>2
D. x ≠1
6. 若函数f (x)=x 3=ax 2
+1在(0,1)上为减函数,则实数a 的取值范围为( )
A. a>23
B.a ≥23
C. a ≤23
D.0<a<2
3 7. 下列说法错误的是( )
A. “42≠x ”是“2≠x ”的充分不必要条件
B. 命题“是b a ,偶数,则b a +是偶数”的逆否命题是“若b a +不是偶数,则b a ,不都是偶数”
C. 已知命题p 为:“奇函数的图像关于原点对称”则¬P 是“奇函数的图像都不关于原点对称”
D. 命题“45,2=+∈∃x x R x ”的否定是“45,2≠+∈∀x x R x ”
8.已知P (x ,y)满足OP y x y x ,8)1()1(2
222=++++-(0为坐标原点)的最大值等于
A.4
B.22
C.2
D.2 9. 设1F ,2F 是双曲线122
2=-b
y a x z (a>0,b>0)的两个焦点,直线x y 62=是一条渐进线,p 是双曲线上的一点,且2143PF PF =,21F PF
∆的面积等于24,则实轴长为( ) A. 1 B. 2 C. 6 D. 62
10. ⎩
⎨⎧>≤-+-=)1(1)1(34)(2x nx x x x x f ,若)1()(-≥x a x f 恒成立,则实数a 的取值范围是( ) A. (]0,∞- B.(]1,8- C.[]1,2- D []0,2-
11. 已知点A 是抛物线241x y =
的对称轴与准线的交点,点F 为该抛物线的焦点,点P 在抛物线上,且P 在第一象限,当PA PF
取最小值时,点P 的坐标为( )
A. (2, 1)
B.( 4,4)
C.(1, 41)
D.(2
1,2) 12. 已知函数)(x f 是定义在(0,∞+)的可导函数,)('x f 为其导函数,当0>x 且2
≠x 时,
02)(')(2>-+x x xf x f ,若曲线)(x f y =在2=x 处的切线的斜率为2
1,则)2(f =( ) A. 41- B.21 C.21- D.83-
第Ⅱ卷(共90分)
二、填空题(本题共4小题,每小题5分,共20分,把答案填在题中横线上)
13. 命题44:<-<-a x p ,命题0)3)(2(:<--x x q ,若¬p 是¬q 的充分条件,则实数a 的取值范围是 .
14. 已知抛物线型拱桥的顶点距离水面2米时,测量水面的宽为 8米,当水面上升4
1米后,水面的宽度是 米. 15. 椭圆116
25:2
2=+y x C 的右焦点F ,P 为椭圆上的任意一点,点M 的坐标(1,3),则PF PM +的最小值为 .
16. 关于x 的方程02=+m xe x 恰有1个实数根,则实数m 的取值范围是 .
三、解答题(本大题共6小题,共70分.解答题应用写出文字说明、证明过程或演算步骤)
17. (本小题满分10分)命题:p 函数x a y )1(=在R 上是增函数,命题q :当⎥⎦
⎤⎢⎣⎡∈2,21x 时,a
x x 112>+恒成立,如果q p ∨为真命题,且q p ∧为假命题,求实数a 的取值范围. 18. (本小题满分12分)函数bx ax x x f 332)(2
3++=在1=x 及2=x 处取得极值.
(1)求曲线)(x f y =在))(,3(x f 处的切线方程;
(2)求函数)(x f 在区间[])1(,1>m m 上的最小值)(m g 的表达式.
19. (本小题满分12分)已知函数)(1)(R a nx ax x f ∈-=.
(1)讨论函数)(x f 的极值; (2)若a=e ,(e 为自然对数的底数),且在区间 ⎥⎦
⎤
⎢⎣⎡e e ,1内存在x ,使不等式m x x f +<)(成立,求实数m 的取值范围
20. (本小题满分12分)已知抛物线)0(2:2>=p py x C 的焦点为F ,过焦点F 且斜率为2的直线交C 于A ,B 两点,线段AB 长为20.
(1)求抛物线C 的方程;
(2)若过F 的直线与抛物线C 交于M ,N 两点,过M 、N 分别作抛物线C 的切线21l l ,求直线21l l 的交点Q 的轨迹方程.
21. (本小题满分12分)已知椭圆1:22
22=+b
y a x C (a>b>0),过原点的直线交椭圆C 于两M 、N 两点,点P 是椭圆上不同于M 、N 的任意一点,
PM 、PN 的斜率分别为1K 和2K ,且2
121-=K K (1)求椭圆C 的离心率e ;
(2)若过C 的右焦点F 且不与坐标轴垂直的直线1交C 于A 、B 两点,点A 关于x 轴的对称点1A ,直线B A 1与x 轴交于点)0,4(Q ,求椭圆C 的方程.
22. (本小题满分12分)已知函数1)21(1)(2+-+-=x m mx nx x f
(1)当1=m 时,求函数)(x f 的单调区间;
(2)若Z m ∈,关于x 的不等式0)(≤x f 恒成立,求m 的最小值.。