1.2015~2016东城区理科数学试卷
- 格式:doc
- 大小:1.06 MB
- 文档页数:12
1C1B1AABC北京市东城区2015-2016学年度第二学期高三综合练习(二)数学(理科)2016.5一、选择题:本大题共8小题,每小题5分,共40分,在四个选项中,选出符合题目要求的一项1.集合{}1234A =, , , ,{}3B x R x =∈≤,则A B =( )A .{}1234, , , B .{}123, , C .{}23, D .{}14, 2.已知命题:p x R ∃∈有sin 1x ≥,则p ⌝为( )A .sin 1x R x ∀∈≤,B .sin 1x R x ∃∈<,C .sin 1x R x ∀∈<,D .sin 1x R x ∃∈≤, 3.如图ABC ∆为正三角形,111////AA BB CC ,1CC ABC ⊥∆底面,若1122BB AA ==,113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影面积为( )A .274 B .92 C .9 D .2724.若向量()10a =, ,()21b =, ,()1C x =, 满足条件3a b -与c 共线,则x 的值为( )A .1B .3-C .2-D .1- 5.成等差数列的三个正数和等于6,并且这三个数分别加上3、6、13后成为 等比数列{}n b 中的3b 、4b 、5b ,则数列{}n b 的通项公式为( )A .12n n b -=B .13n n b -=C .22n n b -=D .23n n b -=6.一名顾客计划到商场购物,他有三张优惠券,每张优惠券只能购买一件商品,根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券1:若标价超过50元,则付款是减免标价的10%; 优惠券2:若标价超过100元,则付款时减免20元; 优惠券3:若标价超过100元,则超过100的部分减免18%.若顾客购买某商品后,使用优惠券1比优惠券2、优惠券3减免的都多,则他购买的商品的标价可能为( ) A .179元 B .199元 C .219元 D .239元7.已知函数()()2414xx f x f x x ⎧≥⎪=⎨+<⎪⎩,,,则()22log 3f +的值为( )A .24B .16C .12D .8 8.集合(){}A x y x y R =∈,,,若x y A ∈,,已知()11x x y =,,()22y x y =,,定义集合A 中元素间的运算x y *,称作“*”运算,此运算满足一下运算规律: ①任意x y A ∈,有x y y x *=*;②任意x y z A ∈,,有()x y z x z y z +*=*+*(其中()1212x y x x y y +=++,); ③任意x A ∈有0x x *≥,且0x x *=成立的充分必要条件是()00x =, 为向量. 如果()11x x y =,,()22y x y =,,那么,下列运算属于“*”运算正确的是( )A .11222x y x y x y *=+B .1122x y x y x y -*=C .1122+1x y x y x y *=+D .12122x y x x y y *=+二、填空题(本大题共6小题,每小题5分,共30分) 9.i 是虚数单位,复数12aii+-所对应的点在第一象限,则实数a 的取值范围为________. 10.设变量x y ,满足约束条件201x y x y y +≤⎧⎪-≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为________.11.已知直线113:24x tl y t=+⎧⎨=-⎩(t 为参数)与直线2:245l x y -=相交于点B ,又点()12A , ,则AB =_____.12.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[)[)[)[)[)45555565657575858595, ,, ,, ,, ,, 由此得到频率分布直方图如图,则产品数量位于[)5565, 范围的频率为_______;这20名工人中一天生产该产品数量在[)5575, 的人数是_______.13.若点O 和点()20F 分别为双曲线()22210x y a a-=>的对称中心和左焦点,点P 为双曲线右支上的任意一点,则222+1PF OP 的取值范围为_____________.()()sin nx①()()n f x n N *∈为周期函数; ②()()nf x n N *∈有对称轴;③02⎛⎫⎪⎝⎭, π为()()n f x n N *∈的对称中心; ④()()n f x n n N *≤∈.三、解答题(本大题共6小题,共80分,解答题应写出文字说明,演算步骤或证明过程) 15.(本小题共13分)已知函数()()2111cos 2cos 0222f x x x x ⎛⎫⎛⎫⎛⎫=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ωωωω的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求()f x 在区间02⎡⎤⎢⎥⎣⎦, π上的最大值和最小值.16.(本小题共14分)如图,ABC ∆是等腰直角三角形,902o CAB AC a E F ∠==,,,分别为AC BC ,的中点,沿EF将CEF ∆折起,得到如图所示的四棱锥'C ABFE -. (Ⅰ)求证:AB ⊥平面'AEC ;(Ⅱ)当四棱锥'C ABFE -的体积取最大值时: ①若G 为'BC 中点,求异面直线GF 与'AC 所成的角;②在'.C ABFE -中AE 交BF 于点C ,求二面角'A CC B --的余弦值.17.(本小题共13分)在20152016-赛季CBA 联赛中,某队甲、乙两名球员在前10场比赛中投篮命中情况统计如下表(注:表中分数n,N表示投篮次数,n表示命中次数),假设各场比赛相互独立:根据统计表的信息:(Ⅰ)从上述比赛中等可能随机选择一场,求甲球员在该场比赛中投篮命中概率大于0.5的概率;(Ⅱ)试估计甲、乙两名运动员在下一场比赛中恰有一人命中率超过0.5的概率;(Ⅲ)在接下来的3场比赛中,用X表示这3场比赛中乙球员命中率超过0.5的场次,试写出X的分布列,并求X的数学期望.18.(本小题共13分)已知()()()()()22ln 211f x x x g x k x =+-+=+, (Ⅰ)求()f x 的单调区间;(Ⅱ)当2k =时,求证:对于()()1x f x g x ∀>-<,恒成立; (Ⅲ)若存在01x >-,使得当()01x x ∈-,时,恒有()()f x g x >成立,试求k 的取值范围.已知椭圆()222210x y a b a b+=>>过点)1 ,且以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形.(Ⅰ)求椭圆的标准方程;(Ⅱ)设()M x y ,是椭圆上的动点,()0P p , 是轴上的定点,求MP 的最小值及取最小值时点M的坐标.:C C x数列{}n a 中,定义:()21121n n n n d a a a n N a *++=+-∈=,(Ⅰ)若1222n n n d a a a +=-=,求n a ;(Ⅱ)若221n a d =-≥,,求证此数列{}n a 满足()5n a n N *≥-∈;(Ⅲ)若1,12==a d n 211n d a ==,且数列{}n a 的周期为4,即()4n n a a n N *+=∈,写出所有符合条件的{}n d .数学(理科)答案一、选择(本大题共8小题,每小题5分,共40分)15.解析:(1)2111()sin()cos()2cos ()(0),222f x x x x ωωωω=+>1cos x x ωω=++2sin()16x πω=++2, 2.T ππωω===(2)由(1)可知:()2sin(2)16f x x π=++ 当02x π≤≤时,72666x πππ≤+≤;当2,626x x πππ+==时,取最大值,max ()3f x =当72,662x x πππ+==时,取最小值,min ()0f x =16.解析:由题意可知ABC 是等腰直角三角形,90o CAB ∠= ∴AB AC ⊥即在图2中',AB AE AB EC ⊥⊥又∵'AE EC E ⋂=且',AE EC 都在面'AEC 上 ∴'AB AEC ⊥得证。
2015-2016学年北京市东城区高二(下)期末数学试卷(理科)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i2.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>03.(2x﹣3x2)dx=()A.﹣6 B.﹣1 C.0 D.14.用数学归纳法证明:1+2+22+…+2n﹣1=2n﹣1(n∈N)的过程中,第二步假设当n=k时等式成立,则当n=k+1时应得到()A.1+2+22+…+2k﹣2+2k+1﹣1B.1+2+22+…+2k+2k+1=2k﹣1+2k+1C.1+2+22+…+2k﹣1+2k+1=2k+1﹣1D.1+2+22+…+2k﹣1+2k=2k﹣1+2k5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.函数y=在x=1处的导数等于()A.0 B.1 C.e D.2e7.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有()A.8种B.15种C.35种 D.53种8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.甲乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为,则甲以3:1的比分获胜的概率为()A.B.C.D.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.(x﹣)6的展开式中常数项为_______.12.曲线y=sinx(0≤x≤π)与x轴围成的封闭区域的面积为_______.13.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.知总收益R与年产量x的关系为R=R(x)=,则总利润最大时,每年生产的产品数量是_______.16.已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是_______;(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n﹣1(m,n为正整数),则m,n的值分别为_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.用数字0,1,2,3,4组成没有重复数字的五位数.(I)能够组成多少个奇数?(II)能够组成多少个1和3不相邻的正整数?(III)能够组成多少个1不在万位,2不在个位的正整数?18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.某校高一年级开设A,B,C,D,E五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A课程,不选B课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(Ⅰ)求甲同学选中C课程且乙同学未选中C课程的概率;(Ⅱ)用X表示甲、乙、丙选中C课程的人数之和,求X的分布列和数学期望.20.已知函数f(x)=aln(2x+1)+bx+1.(1)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y﹣3=0平行,求a和b的值;(2)若b=,试讨论函数y=f(x)的单调性.21.定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M 成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.(1)设f(x)=,判断f(x)在[﹣,]上是否有有界函数,若是,说明理由,并写出f(x)上所有上界的值的集合,若不是,也请说明理由;(2)若函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,求实数a的取值范围.2015-2016学年北京市东城区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足(1﹣i)z=2i,则z=()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【考点】复数代数形式的乘除运算.【分析】根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.【解答】解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.2.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D3.(2x﹣3x2)dx=()A.﹣6 B.﹣1 C.0 D.1【考点】定积分.【分析】根据定积分的计算法则,即可求出.【解答】解:(2x﹣3x2)dx=(x2﹣x3)|=1﹣1=0,故选:C.4.用数学归纳法证明:1+2+22+…+2n﹣1=2n﹣1(n∈N)的过程中,第二步假设当n=k时等式成立,则当n=k+1时应得到()A.1+2+22+…+2k﹣2+2k+1﹣1B.1+2+22+…+2k+2k+1=2k﹣1+2k+1C.1+2+22+…+2k﹣1+2k+1=2k+1﹣1D.1+2+22+…+2k﹣1+2k=2k﹣1+2k【考点】数学归纳法.【分析】只要将n=k+1代入式子:1+2+22+…2n﹣1=2n﹣1中即可,注意左边中最后一项是2k.【解答】解:∵将式子:1+2+22+…2n﹣1=2n﹣1中n用k+1替换得:当n=k+1时,有1+2+22+…+2k﹣1+2k=2k﹣1+2k故选D.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.函数y=在x=1处的导数等于()A.0 B.1 C.e D.2e【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:y′=,∴y′|x=1=0,故选:A.7.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有()A.8种B.15种C.35种 D.53种【考点】计数原理的应用.【分析】每个邮件选择发的方式有3种不同的情况,利用乘法原理,可得要发5个电子邮件,发送的方法的种数.【解答】解:∵每个邮件选择发的方式有3种不同的情况,∴要发5个电子邮件,发送的方法的种数有3×3×3×3×3=35种,故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:班组与成绩统计表A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.甲乙两人进行羽毛球比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为,则甲以3:1的比分获胜的概率为()A.B.C.D.【考点】n次独立重复试验中恰好发生k次的概率.【分析】以甲3胜1败而结束比赛,甲只能在1、2、3次中失败1次,第4次胜,即可得出结论.【解答】解:甲以3:1的比分获胜,甲只能在1、2、3次中失败1次,第4次胜,因此所求概率为:P==.故选:A.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.(x﹣)6的展开式中常数项为﹣.【考点】二项式系数的性质.【分析】利用二项展开式的通项公式求出二项展开式的第r+1项,令x的指数为0得常数项.【解答】解:展开式的通项公式为T r+1=(﹣)r C6r x6﹣2r,令6﹣2r=0得r=3,得常数项为C63(﹣)3=﹣.故答案为:﹣.12.曲线y=sinx(0≤x≤π)与x轴围成的封闭区域的面积为2.【考点】定积分.【分析】先确定积分区间,进而求定积分,即可求得曲线y=sinx(0≤x≤π)与x轴围成的封闭图形的面积.【解答】解:曲线y=sinx(0≤x≤π)与x轴围成的封闭区域的面积为==﹣cosπ+cos0=2.故答案为:2.13.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.14.已知离散型随机变量X的分布列如表.若EX=0,DX=1,则a=,b=.【考点】离散型随机变量及其分布列.【分析】根据题目条件中给出的分布列,可以知道a、b、c和之间的关系,根据期望为0和方差是1,又可以得到两组关系,这样得到方程组,解方程组得到要求的值.【解答】解:由题知,﹣a+c+=0,,∴,故答案为:;.15.某公司生产某种产品,固定成本为20000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系为R=R(x)=,则总利润最大时,每年生产的产品数量是300.【考点】利用导数求闭区间上函数的最值.【分析】先根据题意得出总成本函数,从而写出总利润函数,它是一个分段函数,下面求其导数P′(x),令P′(x)=0,从而得出P的最大值即可.【解答】解析:由题意,总成本为C=20000+100x.∴总利润为:P=R﹣C=,P′=.令P′=0,即可得到正确答案,即x=300.故答案:300.16.已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c,在a,b,c三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是255;(2)若p>q>0,经过6次操作后扩充所得的数为(q+1)m(p+1)n﹣1(m,n为正整数),则m,n的值分别为8,13.【考点】进行简单的合情推理.【分析】(1)a=1,b=3,按规则操作三次,第一次:c=7;第二次c=31;第三次c=255;(2)p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)﹣1;第二次得:c2=(p+1)2(q+1)﹣1;所得新数大于任意旧数,故经过6次扩充,所得数为:(q+1)8(p+1)13﹣1,故可得结论【解答】解:(1)a=1,b=3,按规则操作三次,第一次:c=ab+a+b=1×3+1+3=7第二次,7>3>1所以有:c=3×7+3+7=31第三次:31>7>3所以有:c=7×31+7+31=2552、p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)﹣1因为c>p>q,所以第二次得:c2=(c1+1)(p+1)﹣1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)﹣1所得新数大于任意旧数,所以第三次可得c3=(c2+1)(c1+1)﹣1=(p+1)3(q+1)2﹣1第四次可得:c4=(c3+1)(c2﹣1)﹣1=(p+1)5(q+1)3﹣1故经过6次扩充,所得数为:(q+1)8(p+1)13﹣1∴m=8,n=13故答案为:255;8,13三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.用数字0,1,2,3,4组成没有重复数字的五位数.(I)能够组成多少个奇数?(II)能够组成多少个1和3不相邻的正整数?(III)能够组成多少个1不在万位,2不在个位的正整数?【考点】相互独立事件的概率乘法公式.【分析】(I)奇数末尾是1,3,首位不能是0,可得奇数的个数;(II)1和3不相邻,利用间接法;(III)1不在万位,2不在个位,考虑1在个位与1不在个位,即可得出结论.【解答】解:(I)奇数末尾是1,3,首位不能是0,所以奇数共有个.…(II)1和3不相邻,利用间接法,共有个.…(III)1不在万位,2不在个位,考虑1在个位与1不在个位,共有个.…10分18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.某校高一年级开设A,B,C,D,E五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A课程,不选B课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.(Ⅰ)求甲同学选中C课程且乙同学未选中C课程的概率;(Ⅱ)用X表示甲、乙、丙选中C课程的人数之和,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)设事件A为“甲同学选中C课程”,事件B为“乙同学选中C课程”.求出A,B的概率,然后求解甲同学选中C课程且乙同学未选中C课程的概率.(Ⅱ)X的可能取值为:0,1,2,3.求出概率,得到X为分布列,然后求解期望.【解答】(共13分)解:(Ⅰ)设事件A为“甲同学选中C课程”,事件B为“乙同学选中C课程”.则,.因为事件A与B相互独立,所以甲同学选中C课程且乙同学未选中C课程的概率为.…(Ⅱ)设事件C为“丙同学选中C课程”.则.X的可能取值为:0,1,2,3..=.=..20.已知函数f(x)=aln(2x+1)+bx+1.(1)若函数y=f(x)在x=1处取得极值,且曲线y=f(x)在点(0,f(0))处的切线与直线2x+y﹣3=0平行,求a和b的值;(2)若b=,试讨论函数y=f(x)的单调性.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,由题意得,列出a,b的方程,解出即可;(2)求出b=的函数的导数,对a讨论,分a≥0,a<0,令导数大于0,得增区间;令导数小于0,得减区间,注意函数的定义域.【解答】解:(1)∵f(x)=aln(2x+1)+bx+1,∴f′(x)=,x>﹣,由题意可得,即解得;(2)b=时,f(x)=aln(2x+1)+x+1∴f′(x)=,x>﹣,∵4x+2>0,∴当a≥0时,在定义域(﹣,+∞)内f′(x)>0恒成立,函数单调递增,当a<0时,由f′(x)>0得x>﹣2a﹣,由f′(x)<0得﹣<x<﹣2a﹣,综上:当a≥0时,函数y=f(x)在(﹣,+∞)上是增函数;当a<0时,函数y=f(x)在(﹣,﹣2a﹣)上为减函数,在(﹣2a﹣,+∞)上是增函数.21.定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M 成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.(1)设f(x)=,判断f(x)在[﹣,]上是否有有界函数,若是,说明理由,并写出f(x)上所有上界的值的集合,若不是,也请说明理由;(2)若函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,求实数a的取值范围.【考点】函数的最值及其几何意义;函数的值域.【分析】(1)化简f(x)==1﹣,从而可得﹣1≤f(x)≤;从而确定|f(x)|≤1;从而解得;(2)由题意知|g(x)|≤3在[0,2]上恒成立;从而可得﹣﹣≤a≤﹣;从而换元令t=,则t∈[,1];从而可得﹣4t2﹣t≤a≤2t2﹣t在[,1]上恒成立;从而化为最值问题.【解答】解:(1)f(x)==1﹣,则f(x)在[﹣,]上是增函数;故f(﹣)≤f(x)≤f();故﹣1≤f(x)≤;故|f(x)|≤1;故f(x)是有界函数;故f(x)上所有上界的值的集合为[1,+∞);(2)∵函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,∴|g(x)|≤3在[0,2]上恒成立;即﹣3≤g(x)≤3,∴﹣3≤1+2x+a•4x≤3,∴﹣﹣≤a≤﹣;令t=,则t∈[,1];故﹣4t2﹣t≤a≤2t2﹣t在[,1]上恒成立;故(﹣4t2﹣t)max≤a≤(2t2﹣t)min,t∈[,1];即﹣≤a≤﹣;故实数a的取值范围为[﹣,﹣].2016年9月12日。
北京市东城区2015-2016学年度第二学期高三综合练习(二)数学参考答案及评分标准 (理科)第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)1.B2.C3.A4.D5.A6.C7.A8.D第Ⅱ卷(共110分)二、填空题(本大题共6小题,每小题5分,共30分) 9. 122a -<< 10. 5 11. 52 12. 0.4;13. 13. 31,22⎛⎤+ ⎥⎝⎦14. ①②④ 三、解答题(本大题共6小题,共80分)15.(本小题共13分)解:(Ⅰ)因为()3sin cos 12sin()+16f x x x x πωωω=++=+, 又()f x 的最小正周期为π,所以π2πω=,即ω=2. --------------------------------------------------------------------6分 (Ⅱ)由(Ⅰ)可知()2sin(2)+16f x x π=+, 因为02x π≤≤, 所以72666x πππ≤+≤. 由正弦函数的性质可知,当262x ππ+=,即6x π=时,函数()f x 取得最大值,最大值为f (6π)=3; 当7266x ππ+=时,即2=x π时,函数()f x 取得最小值,最小值为f (2π)=0. ------13分16.(本小题共14分)证明:(Ⅰ)因为ABC ∆是等腰直角三角形90CAB ∠=o ,E F ,分别为AC BC ,的中点, GD F EC 'CB A所以EF AE ⊥,EF C E '⊥.又因为AE C E E '⋂=,所以EF AEC '⊥平面.由于EF AB P ,所以有AB AEC '⊥平面. -------------------------4分 解:(Ⅱ)(i)取AC '中点D ,连接,,,DE EF FG GD ,由于GD 为ABC '∆中位线,以及EF 为ABC ∆中位线,所以四边形DEFG 为平行四边形.直线GF 与AC '所成角就是DE 与AC '所成角.所以四棱锥C ABFE '-体积取最大值时,C E '垂直于底面ABFE .此时AEC '∆为等腰直角三角形,ED 为中线,所以直线ED AC '⊥.又因为ED GF P ,所以直线GF 与AC '所成角为π2. -------------------------------------------------------10分 (ii) 因为四棱锥C ABFE '-体积取最大值,分别以EA EF EC '、、所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系如图,则(0,0,)C a ',(,2,0)B a a ,(0,,0)F a ,(,2,)C B a a a '-,(0,,)C F a a '-.设平面C B F '的一个法向量为n =(x,y,z),由0,0C B C F ⎧⎪⎨⎪⎩'⋅='⋅=n n uuu r uuu r 得⎩⎨⎧=-=-+002az ay az ay ax , 取y =1,得x =-1,z =1.由此得到n =(-1,1,1). zy x F E C 'CB A同理,可求得平面C AE '的一个法向量m =(0,1,0). 所以 13cos 33⋅==n m .故平面C'AE 与平面C'BF 的平面角的夹角的余弦值为33.--------------------------------------14分17.(本小题共13分)解:(Ⅰ)根据投篮统计数据,在10场比赛中,甲球员投篮命中率超过0.5的场次有5场, 分别是4,5,6,7,10,所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是12. 在10场比赛中,乙球员投篮命中率超过0.5的场次有4场,分别是3,6,8,10, 所以在随机选择的一场比赛中,甲球员的投篮命中率超过0.5的概率是25. ---------------------------------------3分(Ⅱ)设在一场比赛中,甲、乙两名运动员恰有一人命中率超过0.5为事件A ,甲队员命中率超过0.5且乙队员命中率不超过0.5为事件1B ,乙队员命中率超过0.5且甲队员命中率不超过0.5为事件2B .则1213121()()()25252P A P B P B =+=⨯+⨯=.------------------------------------------------7分 (Ⅲ)X 的可能取值为0,1,2,3.00332327(0)()()55125P X C ===; 11232354(1)()()55125P X C ===; 22132336(2)()()55125P X C ===; 33328(3)()5125P X C ===; X 的分布列如下表: X0 1 2 3 P27125 54125 36125 812526355EX np ==⨯=. --------------------------------------------------------13分 18.(本小题共14分)解:(Ⅰ)222(31)()2(1)(2)22x x f x x x x x -++'=-+=>-++ , 当()0f x '>时,所以 2310x x ++<.解得 3522x -+-<<. 当()0f x '>时, 解得 352x -+>. 所以 ()f x 单调增区间为35(2,)2-+-,单调减区间为35(,)2-++∞.------------4分 (Ⅱ) 设2()()()2ln(2)(1)(1)(1)h x f x g x x x k x x =-=+-+-+>-, 当2k =时,由题意,当(1,)x ∈-+∞时,()0h x <恒成立.22(31)2(3)(1)()222x x x x h x x x -++-++'=-=++, ∴ 当1x >-时,()0h x '<恒成立,()h x 单调递减. 又(1)0h -=,∴ 当(1,)x ∈-+∞时,()(1)0h x h <-=恒成立,即()()0f x g x -<. ∴ 对于1x ∀>-,()()f x g x <恒成立. ---------------------------------8分(Ⅲ) 因为 222(31)2(6)22()22x x x k x k h x k x x -++++++'=-=-++.由(II)知,当k = 2时,f (x) < g (x)恒成立, 即对于∀x > –1,2 ln (x + 2) – (x + 1)2 < 2 (x + 1),不存在满足条件的x 0;当k > 2时,对于∀x > –1,x + 1 > 0,此时2 (x + 1) < k (x + 1).∴ 2 ln (x + 2) – (x + 1)2 < 2 (x + 1) < k (x + 1),即f (x) < g (x)恒成立, 不存在满足条件的x 0;当k < 2时,令t (x) = –2x 2 – (k + 6)x – (2k + 2),可知t (x)与h ' (x)符号相同,当x ∈ (x 0 , +∞)时,t (x) < 0,h ' (x) < 0,h (x)单调递减.∴ 当x ∈ (–1 , x 0)时,h (x) > h (–1) = 0,即f (x) – g (x) > 0恒成立.综上,k 的取值范围为(–∞ , 2). -------------------------------------------------------14分19.(本小题共13分)解:(Ⅰ)由题意,以椭圆短轴的两个端点和一个焦点为顶点的三角形是等腰直角三角形,所以 b c =, 222b a =, 则椭圆C 的方程为122222=+b y b x . 又因为椭圆C:过点A(2,1),所以112222=+bb ,故a=2,b=.2 所以 椭圆的的标准方程为12422=+y x . --------------------------------------------------------4分 (Ⅱ)222)(y p x MP +-=.因为 M(x,y)是椭圆C 上的动点,所以12422=+y x , 故 22)41(2222x x y -=-=. 所以 222222211()222(2) 2.222x MP x p x px p x p p =-+-=-++=--+ 因为M(x,y)是椭圆C 上的动点,所以 2≤x .(1) 若22≤p 即1≤p ,则当2x p =时MP 取最小值22p -,此时M 2(2,22)p p ±-.(2)若1p >,则当2x =时,MP 取最小值2-p ,此时M )0,2(.(3)若1p <-,则当2x =-时,MP 取最小值2+p ,此时M )0,2(-. -------13分20.(本小题共13分)(Ⅰ)由212(1)n n n n d a a a n ++=+-≥以及n n d a =可得:2120(1)n n a a n ++-=≥所以从第二项起为等比数列. 经过验证{}n a 为等比数列12n n a -=. -------------------2分(Ⅱ)由于1n d ≥所以有2121n n n a a a +++-≥.令1n n n c a a +=-则有11n n c c +-≥叠加得:4n c n ≥-所以有14n n a a n +-≥-,叠加可得:29102n n n a -+≥, 所以最小值为-5. --------------------------------------------------------6分(Ⅲ)由于1n d =,11a =, 21a =若11d =可得32a =,若11d =-可得30a =同理,若21d =可得44a =或42a =,若21d =-可得40a =或42a =-具体如下表所示7452321111010325⎧⎧⎧⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎪⎩⎨⎧⎧⎪⎨⎪⎪-⎪⎩⎪⎨⎪-⎧⎪-⎪⎨⎪-⎩⎪⎩⎩所以{}n a 可以为112211221122L L或110011001100L L此时相应的{}n d 为 11111111----L L或11111111----L L------------------------------------------------------13分。
北京市东城区2015-2016学年度第二学期高三综合练习(二)数学 (理科) 2016.5学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.集合{1234}A =,,,,{|3}B x R x =∈≤,则=A B I A.{1234},,, B. {123},, C. {23}, D.{14}, 2.已知命题p :∃x ∈R 有sinx ≥1,则﹁p 为A. sin 1x R x ∀∈≤,B.sin 1x R x ∃∈<,C. sin 1x R x ∀∈<,D.,sin 1x R x ∃∈≤3.如图,ABC V 为正三角形,111////AA BB CC ,1CC ⊥底面ABC V ,若1122BB AA ==,113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影的面积为A.274 B. 92 C. 9 D. 2724.若向量=(1,0)a ,=(2,1)b ,=(,1)x c 满足条件3a -b 与c 共线,则x 的值A. 1B. -3C. -2D. -15.成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后 成 为等比数列{}n b 中的b 、b 、b ,则数列{}n b 的通项公式为A. 12n n b -= B. 13n n b -= C. 22n n b -=D. 23n n b -=6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品。
北京市东城区2015-2016学年度第二学期高三综合练习(二)数学 (理科)学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.集合{1234}A =,,,,{|3}B x R x =∈≤,则=A B I A.{1234},,, B. {123},, C. {23}, D.{14}, 2.已知命题p :∃x ∈R 有sinx ≥1,则﹁p 为A. sin 1x R x ∀∈≤,B.sin 1x R x ∃∈<,C. sin 1x R x ∀∈<,D.,sin 1x R x ∃∈≤3.如图,ABC V 为正三角形,111////AA BB CC ,1CC ⊥底面ABC V ,若1122BB AA ==,113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影的面积为A.274 B. 92 C. 9 D. 2724.若向量=(1,0)a ,=(2,1)b ,=(,1)x c 满足条件3a -b 与c 共线,则x 的值A. 1B. -3C. -2D. -15.成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后 成 为等比数列{}n b 中的b 、b 、b ,则数列{}n b 的通项公式为A. 12n n b -= B. 13n n b -= C. 22n n b -=D. 23n n b -=6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品。
市东城区2015-2016学年度第二学期高三综合练习(一)数学 (理科)学校_____________班级_____________________________考号___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知复数(1+)i a i ⋅为纯虚数,那么实数a 的值为(A )1- (B )0 (C ) 1 (D )2(2)集合2{},{50}A x x a B x x x =≤=-< | | ,若AB B =,则a 的取值围是(A )5a ≥ (B ) 4a ≥ (C ) 5a < (D )4a < (3)某单位共有职工150名,其中高级职称45人, 中级职称90人,初级职称15人.现采用分层 抽样方法从中抽取容量为30的样本,则各职称 人数分别为(A )9,18,3 (B ) 10,15,5 (C )10,17,3 (D )9,16,5 (4)执行如图所示的程序框图,输出的S 值为 (A )21(B )1 (C ) 2 (D )4(5)在极坐标系中,直线1cos sin =-θρθρ被曲线1=ρ截得的线段长为 (A )21 (B )1 (C )22 (D何体的最长棱长为 (A )2 (B)(C )3 (D(7)已知三点P (5,2)、1F (-6,0)、2F (6,0)那么以1F 、2F 为焦点且过点 P 的椭圆的短轴长为 (A )3(B )6(C )9(D )12(8)已知12e ,e 为平面上的单位向量,1e 与2e 的起点均为坐标原点O ,1e 与2e 夹角为3π. 平面区域D 由所有满足OP λμ=+12e e 的点P 组成,其中1,0,0λμλμ+≤⎧⎪≤⎨⎪≤⎩,那么平面区域D 的面积为(A )12(B(C)2 (D)4第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
北京市东城区2015-2016学年度第二学期高三综合练习(二)数学 (理科) 2016.5学校_____________班级_______________姓名______________考号___________ 本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.集合{1234}A =,,,,{|3}B x R x =∈≤,则=A BA.{1234},,, B. {123},, C. {23}, D.{14}, 2.已知命题p :∃x ∈R 有sinx ≥1,则﹁p 为A. sin 1x R x ∀∈≤,B.sin 1x R x ∃∈<,C. sin 1x R x ∀∈<,D.,sin 1x R x ∃∈≤3.如图,ABC 为正三角形,111////AA BB CC ,1CC ⊥底面ABC ,若1122BB AA ==,113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影的面积为A.274 B. 92 C. 9 D. 2724.若向量=(1,0)a ,=(2,1)b ,=(,1)x c 满足条件3a -b 与c 共线,则x 的值A. 1B. -3C. -2D. -15.成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后 成 为等比数列{}n b 中的b 、b 、b ,则数列{}n b 的通项公式为A. 12n n b -=B. 13n n b -=C. 22n n b -=D. 23n n b -=6.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品。
根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠劵1:若标价超过50元,则付款时减免标价的10%; 优惠劵2:若标价超过100元,则付款时减免20元;优惠劵3:若标价超过100元,则超过100元的部分减免18%。
北京市东城区2015-2016学年度第二学期高三综合练习题(二)数学理科北京市东城区2015-2016学年度第二学期高三综合练习(二)2016.5数学(理科)本试卷共6页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项)1. 集合{}1,2,3,4A =,{}3B x R x =∈≤,则A B = ( )A .{}1,2,3,4B.{}1,2,3C.{}2,3D.{}1,42.已知命题:p x R ∃∈有sin 1x ≥,则p ⌝为( )A.,sin 1x R x ∀∈≤B.,sin 1x R x ∃∈<C.,sin 1x R x ∀∈<D.,sin 1x R x ∃∈≤北京市东城区2015-2016学年度第二学期高三综合练习题(二)数学理科1C1B1AABC113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影面积为( )A.274B.92C.9D.2724.若向量()1,0a = ,()2,1b =,(),1C x =满足条件3a b -与c 共线,则x 的值为( )A.1B.3-C.2-D.1-5.成等差数列的三个正数和等于6,并且这三个数分别加上3、6、13后成为等比数列{}n b 中的3b 、4b 、5b ,则数列{}n b 的通项公式为( )A.12n n b -=B.13n n b -=C.22n n b -=D.23n n b -=6.一名顾客计划到商场购物,他有三张优惠券,每张优惠券只能购买一件商品,根据购买商品的标价,三张优惠券的优惠方式不同,具体如下: 优惠券1:若标价超过50元,则付款是减免标价的10%; 优惠券2:若标价超过100元,则付款时减免20元; 优惠券3:若标价超过100元,则超过100的部分减免18%。
市东城区2015-2016学年度第二学期高三综合练习(二)数学 (理科) 2016.5学校_____________班级_____________________________考号___________本试卷分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项)1.集合{1234}A =,,,,{|3}B x R x =∈≤,则=A B A.{1234},,, B. {123},, C. {23}, D.{14}, 2.已知命题p :∃x ∈R 有sinx ≥1,则﹁p 为A. sin 1x R x ∀∈≤,B.sin 1x R x ∃∈<,C. sin 1x R x ∀∈<,D.,sin 1x R x ∃∈≤3.如图,ABC 为正三角形,111////AA BB CC ,1CC ⊥底面ABC ,若1122BB AA ==,113AB CC AA ==,则多面体111ABC A B C -在平面11A ABB 上的投影的面积为A.274 B. 92 C. 9 D. 2724.若向量=(1,0)a ,=(2,1)b ,=(,1)x c 满足条件3a -b 与c 共线,则x 的值A. 1B. -3C. -2D. -15.成等差数列的三个正数的和等于6,并且这三个数分别加上3、6、13后 成 为等比数列{}n b 中的b 、b 、b ,则数列{}n b 的通项公式为A. 12n n b -= B. 13n n b -= C. 22n n b -=D. 23n n b -=6.一名顾客计划到商场购物,他有三优惠劵,每优惠券只能购买一件商品。
根据购买商品的标价,三优惠券的优惠方式不同,具体如下:优惠劵1:若标价超过50元,则付款时减免标价的10%; 优惠劵2:若标价超过100元,则付款时减免20元;优惠劵3:若标价超过100元,则超过100元的部分减免18%。
2015-2016学年北京市东城区高二(上)期末数学试卷(理科)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知A(﹣1,﹣3),B(3,5),则直线AB的斜率为()A.2 B.1 C.D.不存在2.圆心为(﹣3,2)且过点A(1,﹣1)的圆的方程是()A.(x﹣3)2+(y﹣2)2=5 B.(x+3)2+(y﹣2)2=5 C.(x﹣3)2+(y﹣2)2=25 D.(x+3)2+(y﹣2)2=253.已知直线x﹣2y+5=0与直线2x+my﹣6=0互相垂直,则m=()A.﹣1 B.C.1 D.44.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α5.双曲线2x2﹣y2=8的实轴长是()A.4B.4 C.2D.26.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.47.在平面直角坐标系xOy中,M为不等式组,所表示的区域上一动点,则直线OM斜率的最小值为()A. B. C.1 D.28.已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.89.过点P(﹣,﹣1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.(0,]B.(0,]C.[0,]D.[0,]10.点P到图形C上每一个点的距离的最小值称为点P到图形C的距离,那么平面内到定圆C的距离与到定点A的距离相等的点的轨迹不可能是()A.圆B.椭圆 C.双曲线的一支 D.直线二、填空题(本大题共6小题,每小题3分,共18分)11.双曲线的两条渐近线方程为.12.以等腰直角三角形的一条直角边所在直线为旋转轴,将该三角形旋转一周,若等腰直角三角形的直角边长为1,则所得圆锥的侧面积等于.13.已知=(1,1,0),=(﹣1,0,2),则|2﹣|=.14.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为米.15.设F1、F2是椭圆E:=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则椭圆E的离心率为.16.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PA=PB,且侧面PAB⊥平面ABCD,点E是AB的中点.(Ⅰ)求证:CD∥平面PAB;(Ⅱ)求证:PE⊥AD.18.已知圆C经过A(1,3),B(﹣1,1)两点,且圆心在直线y=x上.(Ⅰ)求圆C的方程;(Ⅱ)设直线l经过点(2,﹣2),且l与圆C相交所得弦长为,求直线l的方程.19.已知平行四边形的两条边所在直线的方程分别为x+y﹣1=0,3x﹣y+4=0,且它的对角线的交点是M(3,3),求这个平行四边形其他两边所在直线的方程.20.如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.(Ⅰ)求证:AM⊥平面PBC;(Ⅱ)求二面角A﹣PC﹣B的余弦值;(Ⅲ)证明:在线段PC上存在点D,使得BD⊥AC,并求的值.21.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.2015-2016学年北京市东城区高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知A(﹣1,﹣3),B(3,5),则直线AB的斜率为()A.2 B.1 C.D.不存在【考点】直线的斜率.【专题】方程思想;综合法;直线与圆.【分析】根据两点坐标求出直线AB的斜率即可.【解答】解:直线AB的斜率k==2,故选:A.【点评】此题考查学生会根据两点坐标求过两点直线的斜率,是一道基础题.2.圆心为(﹣3,2)且过点A(1,﹣1)的圆的方程是()A.(x﹣3)2+(y﹣2)2=5 B.(x+3)2+(y﹣2)2=5 C.(x﹣3)2+(y﹣2)2=25 D.(x+3)2+(y﹣2)2=25【考点】圆的标准方程.【专题】计算题;方程思想;数学模型法;直线与圆.【分析】由已知利用两点间的距离公式求出圆的半径,代入圆的标准方程得答案.【解答】解:∵圆心为(﹣3,2)且过点A(1,﹣1),∴圆的半径,则圆的方程为(x+3)2+(y﹣2)2=25.故选:D.【点评】本题考查圆的方程的求法,是基础的会考题型.3.已知直线x﹣2y+5=0与直线2x+my﹣6=0互相垂直,则m=()A.﹣1 B.C.1 D.4【考点】直线的一般式方程与直线的垂直关系.【专题】方程思想;综合法;直线与圆.【分析】由直线的垂直关系可得1×2+(﹣2)m=0,解方程可得.【解答】解:∵直线x﹣2y+5=0与直线2x+my﹣6=0互相垂直,∴1×2+(﹣2)m=0,解得m=1故选:C【点评】本题考查直线的一般式方程和垂直关系,属基础题.4.已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【考点】空间中直线与直线之间的位置关系.【专题】空间位置关系与距离.【分析】A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.【解答】解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选B.【点评】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.5.双曲线2x2﹣y2=8的实轴长是()A.4B.4 C.2D.2【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,即可确定实轴长.【解答】解:双曲线2x2﹣y2=8,可化为∴a=2,∴双曲线2x2﹣y2=8的实轴长是4故选B.【点评】本题考查双曲线的几何性质,考查学生的计算能力,属于基础题.6.一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.4【考点】由三视图求面积、体积.【专题】计算题;图表型.【分析】由三视图及题设条件知,此几何体为一个四棱锥,其较长的侧棱长已知,底面是一个正方形,对角线长度已知,故先求出底面积,再求出此四棱锥的高,由体积公式求解其体积即可【解答】解:由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为=2由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形由于此侧棱长为,对角线长为2,故棱锥的高为=3此棱锥的体积为=2故选B.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是四棱锥的体积,其公式为×底面积×高.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”,三视图是新课标的新增内容,在以后的高考中有加强的可能.7.在平面直角坐标系xOy中,M为不等式组,所表示的区域上一动点,则直线OM斜率的最小值为()A. B. C.1 D.2【考点】简单线性规划.【专题】作图题;对应思想;数形结合法;不等式.【分析】由约束条件作出可行域,求出可行域内使直线OM斜率取最小值的点M,由两点求斜率公式得答案.【解答】解:由约束条件作出可行域如图,联立,解得M(3,﹣1),∴直线OM斜率的最小值为k=.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.8【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用抛物线的定义、焦点弦长公式即可得出.【解答】解:抛物线C:y2=x的焦点为F,∵A(x0,y0)是C上一点,AF=|x0|,∴=x0+,解得x0=1.故选:A.【点评】本题考查了抛物线的定义、焦点弦长公式,属于基础题.9.过点P(﹣,﹣1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.(0,]B.(0,]C.[0,]D.[0,]【考点】直线与圆的位置关系.【分析】用点斜式设出直线方程,根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤1,由此求得斜率k的范围,可得倾斜角的范围.【解答】解:由题意可得点P(﹣,﹣1)在圆x2+y2=1的外部,故要求的直线的斜率一定存在,设为k,则直线方程为y+1=k(x+),即kx﹣y+k﹣1=0.根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤1,即3k2﹣2k+1≤k2+1,解得0≤k≤,故直线l的倾斜角的取值范围是[0,],故选:D.【点评】本题主要考查用点斜式求直线方程,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.10.点P到图形C上每一个点的距离的最小值称为点P到图形C的距离,那么平面内到定圆C的距离与到定点A的距离相等的点的轨迹不可能是()A.圆B.椭圆 C.双曲线的一支 D.直线【考点】轨迹方程.【专题】压轴题;运动思想.【分析】根据题意“点P到图形C上每一个点的距离的最小值称为点P到图形C的距离”,将平面内到定圆C的距离转化为到圆上动点的距离,再分点A现圆C的位置关系,结合圆锥曲线的定义即可解决.【解答】解:排除法:设动点为Q,1.当点A在圆内不与圆心C重合,连接CQ并延长,交于圆上一点B,由题意知QB=QA,又QB+QC=R,所以QA+QC=R,即Q的轨迹为一椭圆;如图.2.如果是点A在圆C外,由QC﹣R=QA,得QC﹣QA=R,为一定值,即Q的轨迹为双曲线的一支;3.当点A与圆心C重合,要使QB=QA,则Q必然在与圆C的同心圆,即Q的轨迹为一圆;则本题选D.故选D.【点评】本题主要考查了轨迹方程,以及分类讨论的数学思想,属于中档题.二、填空题(本大题共6小题,每小题3分,共18分)11.双曲线的两条渐近线方程为.【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=4,b=3,焦点在x轴上而双曲线的渐近线方程为y=±x∴双曲线的渐近线方程为故答案为:【点评】本题考查了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想12.以等腰直角三角形的一条直角边所在直线为旋转轴,将该三角形旋转一周,若等腰直角三角形的直角边长为1,则所得圆锥的侧面积等于.【考点】旋转体(圆柱、圆锥、圆台).【专题】数形结合;数形结合法;立体几何.【分析】圆锥的底面半径为1,高为1,母线为.【解答】解:∵等腰直角三角形的斜边长为,∴圆锥的母线l=.∵圆锥的底面半径r=1,∴圆锥的侧面积S=πrl=.故答案为.【点评】本题考查了圆锥的结构特征和侧面积计算,属于基础题.13.已知=(1,1,0),=(﹣1,0,2),则|2﹣|=.【考点】空间向量的加减法.【专题】计算题;转化思想;综合法;空间向量及应用.【分析】利用平面向量坐标运算公式求出﹣,由此能求出|2﹣|.【解答】解:∵=(1,1,0),=(﹣1,0,2),∴﹣=(2,2,0)﹣(﹣1,0,2)=(3,2,﹣2),∴|2﹣|==.故答案为:.【点评】本题考查向量的模的求法,是基础题,解题时要认真审题,注意空间向量坐标运算法则的合理运用.14.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为2米.【考点】抛物线的应用.【专题】计算题;压轴题.【分析】先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=﹣3代入抛物线方程求得x0进而得到答案.【解答】解:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,﹣2)代入x2=my,得m=﹣2∴x2=﹣2y,代入B(x0,﹣3)得x0=,故水面宽为2m.故答案为:2.【点评】本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.15.设F1、F2是椭圆E:=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则椭圆E的离心率为.【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点建立方程,由此可求椭圆的离心率.【解答】解:设x=交x轴于点M,∵△F2PF1是底角为30°的等腰三角形∴∠PF2F1=120°,|PF2|=|F2F1|,且|PF2|=2|F2M|∵P为直线x=上一点,∴2(﹣c)=2c,解之得3a=4c∴椭圆E的离心率为e==故答案为:【点评】本题给出与椭圆有关的等腰三角形,在已知三角形形状的情况下求椭圆的离心率.着重考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.16.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点E,F分别是棱BC,CC1的中点,P是侧面BCC1B1内一点,若A1P∥平面AEF,则线段A1P长度的取值范围是[]..【考点】直线与平面平行的性质.【专题】空间位置关系与距离.【分析】分别取棱BB1、B1C1的中点M、N,连接MN,易证平面A1MN∥平面AEF,由题意知点P必在线段MN上,由此可判断P在M或N处时A1P最长,位于线段MN中点处时最短,通过解直角三角形即可求得.【解答】解:如下图所示:分别取棱BB1、B1C1的中点M、N,连接MN,连接BC1,∵M、N、E、F为所在棱的中点,∴MN∥BC1,EF∥BC1,∴MN∥EF,又MN⊄平面AEF,EF⊂平面AEF,∴MN∥平面AEF;∵AA1∥NE,AA1=NE,∴四边形AENA1为平行四边形,∴A1N∥AE,又A1N⊄平面AEF,AE⊂平面AEF,∴A1N∥平面AEF,又A1N∩MN=N,∴平面A1MN∥平面AEF,∵P是侧面BCC1B1内一点,且A1P∥平面AEF,则P必在线段MN上,在Rt△A1B1M中,A1M===,同理,在Rt△A1B1N中,求得A1N=,∴△A1MN为等腰三角形,当P在MN中点O时A1P⊥MN,此时A1P最短,P位于M、N处时A1P最长,A1O===,A1M=A1N=,所以线段A1P长度的取值范围是[].故答案为:[].【点评】本题考查点、线、面间的距离问题,考查学生的运算能力及推理转化能力,属中档题,解决本题的关键是通过构造平行平面寻找P点位置.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PA=PB,且侧面PAB⊥平面ABCD,点E是AB的中点.(Ⅰ)求证:CD∥平面PAB;(Ⅱ)求证:PE⊥AD.【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】(Ⅰ)由已知CD∥AB,由此能证明CD∥平面PAB.(Ⅱ)推导出PE⊥AB,从而PE⊥平面ABCD,由此能证明PE⊥AD.【解答】证明:(Ⅰ)∵底面ABCD是菱形,∴CD∥AB.又∵CD⊄平面PAB,且AB⊂平面PAB,∴CD∥平面PAB.(Ⅱ)∵PA=PB,点E是AB的中点,∴PE⊥AB.∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PE⊂平面PAB,∴PE⊥平面ABCD.∵AD⊂平面ABCD,∴PE⊥AD.【点评】本题考查线面平行的证明,考查线线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.18.已知圆C经过A(1,3),B(﹣1,1)两点,且圆心在直线y=x上.(Ⅰ)求圆C的方程;(Ⅱ)设直线l经过点(2,﹣2),且l与圆C相交所得弦长为,求直线l的方程.【考点】直线与圆的位置关系.【专题】综合题;分类讨论;综合法;直线与圆.【分析】(Ⅰ)设圆C的圆心坐标为(a,a),利用CA=CB,建立方程,求出a,即可求圆C的方程;(Ⅱ)分类讨论,利用圆心到直线的距离公式,求出斜率,即可得出直线方程.【解答】解:(Ⅰ)设圆C的圆心坐标为(a,a),依题意,有,即a2﹣6a+9=a2+2a+1,解得a=1,所以r2=(1﹣1)2+(3﹣1)2=4,所以圆C的方程为(x﹣1)2+(y﹣1)2=4.(Ⅱ)依题意,圆C的圆心到直线l的距离为1,所以直线x=2符合题意.设直线l方程为y+2=k(x﹣2),即kx﹣y﹣2k﹣2=0,则,解得,所以直线l的方程为,即4x+3y﹣2=0.综上,直线l的方程为x﹣2=0或4x+3y﹣2=0.【点评】本题考查圆的标准方程,考查直线与圆的位置关系,考查学生的计算能力,正确运用点到直线的距离公式是关键.19.已知平行四边形的两条边所在直线的方程分别为x+y﹣1=0,3x﹣y+4=0,且它的对角线的交点是M(3,3),求这个平行四边形其他两边所在直线的方程.【考点】直线的一般式方程与直线的平行关系;直线的一般式方程.【专题】计算题.【分析】依题意,由方程组可解得平行四边形ABCD的顶点A的坐标,再结合对角线的交点是M(3,3),可求得C点坐标,利用点斜式即可求得其他两边所在直线的方程.【解答】解:联立方程组解得,所以平行四边形ABCD的顶点A(﹣,).设C(x0,y0),由题意,点M(3,3)是线段AC的中点,所以,解得所以C(,).由已知,直线AD的斜率k AD=3.因为直线BC∥AD,所以,直线BC的方程为3x﹣y﹣16=0.由已知,直线AB的斜率k AB=﹣1.因为直线CD∥AB,所以,直线CD的方程为x+y﹣11=0.因此,其他两边所在直线的方程是3x﹣y﹣16=0,x+y﹣11=0.【点评】本题考查直线的一般式方程与直线的平行关系,考查方程思想与运算能力,属于中档题.20.如图,PA⊥平面ABC,AB⊥BC,AB=PA=2BC=2,M为PB的中点.(Ⅰ)求证:AM⊥平面PBC;(Ⅱ)求二面角A﹣PC﹣B的余弦值;(Ⅲ)证明:在线段PC上存在点D,使得BD⊥AC,并求的值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【专题】空间位置关系与距离;空间角.【分析】(Ⅰ)根据线面垂直的判定定理即可证明AM ⊥平面PBC ;(Ⅱ)建立空间坐标系,求出平面的法向量,利用向量法即可求二面角A ﹣PC ﹣B 的余弦值;(Ⅲ)根据向量关系,以及直线垂直,利向量法进行求解即可.【解答】证明:(Ⅰ)因为PA ⊥平面ABC ,BC ⊂平面ABC ,所以PA ⊥BC .因为BC ⊥AB ,PA ∩AB=A ,所以BC ⊥平面PAB .又AM ⊂平面PAB ,所以AM ⊥BC .因为PA=AB ,M 为PB 的中点,所以AM ⊥PB .又PB ∩BC=B ,所以AM ⊥平面PBC .(Ⅱ)如图,在平面ABC 内,作AZ ∥BC ,则AP ,AB ,AZ 两两互相垂直,建立空间直角坐标系A ﹣xyz .则A (0,0,0),P (2,0,0),B (0,2,0),C (0,2,1),M (1,1,0).,,设平面APC 的法向量为,则即令y=1,则z=﹣2.所以=(0,1,﹣2).由(Ⅰ)可知=(1,1,0)为平面 的法向量,设,的夹角为α,则cos α=.因为二面角A ﹣PC ﹣B 为锐角,所以二面角A ﹣PC ﹣B 的余弦值为.(Ⅲ)设D (u ,v ,w )是线段PC 上一点,且,(0≤λ≤1). 即(u ﹣2,v ,w )=λ(﹣2,2,1).所以u=2﹣2λ,v=2λ,w=λ.所以.由,得.因为, 所以在线段PC 存在点D ,使得BD ⊥AC .此时=.【点评】本题主要考查空间位置关系的判断,以及利用向量法求二面角的大小以及空间线面垂直的判定,考查学生的推理能力.21.已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.(1)求椭圆的方程;(2)当直线l的斜率为1时,求△POQ的面积;(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.【考点】椭圆的标准方程;直线的斜率;直线与圆锥曲线的综合问题.【专题】压轴题.【分析】(1)设椭圆方程为.由两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,由此能够求出a,b,c的值,从而得到所求椭圆方程.(2)右焦点F(1,0),直线l的方程为y=x﹣1.设P(x1,y1),Q(x2,y2),由题设条件得.由此入手可求出.(3)假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形.因为直线与x轴不垂直,设直线l的方程为y=k(x﹣1)(k≠0).由题意知(1+2k2)x2﹣4k2x+2k2﹣2=0.由此可知.【解答】解:(1)由已知,椭圆方程可设为.∵两个焦点和短轴的两个端点恰为正方形的顶点,且短轴长为2,∴.所求椭圆方程为.(2)右焦点F(1,0),直线l的方程为y=x﹣1.设P(x1,y1),Q(x2,y2),由得3y2+2y﹣1=0,解得.∴.(3)假设在线段OF上存在点M(m,0)(0<m<1),使得以MP,MQ为邻边的平行四边形是菱形.因为直线与x轴不垂直,所以设直线l的方程为y=k(x﹣1)(k≠0).由可得(1+2k2)x2﹣4k2x+2k2﹣2=0.∴..其中x2﹣x1≠0以MP,MQ为邻边的平行四边形是菱形⇔(x1+x2﹣2m,y1+y2)(x2﹣x1,y2﹣y1)=0⇔(x1+x2﹣2m)(x2﹣x1)+(y1+y2)(y2﹣y1)=0⇔(x1+x2﹣2m)+k(y1+y2)=0⇔2k2﹣(2+4k2)m=0.∴.【点评】本题考查圆锥曲线的位置关系,解题时要认真审题,仔细解答.2016年3月13日。
东城区2015-2016学年第一学期期末教学统一检测高三数学 (理科) 2016.1学校___________班级_____________姓名____________考号___________ 本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.(1)已知集合{1,2,3,4}U =,集合{1,3,4}A =,{2,4}B =,那么集合()U C A B =I(A ){2} (B ){4} (C ){1,3} (D ){2,4} (2)已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于侧(左)视图俯视图(A )32cm 3 (B )2 cm 3 (C )3 cm 3 (D )9 cm 3 (3)设i 为虚数单位,如果复数z 满足(12)5i z i -=,那么z 的虚部为(A )1- (B )1 (C ) i (D )i - (4)已知(0,1)m ∈,令log 2m a =,2b m =,2mc =,那么,,a b c 之间的大小关系为(A )b c a << (B )b a c << (C )a b c << (D )c a b <<(5)已知直线l 的倾斜角为α,斜率为k ,那么“3πα>”是“k >(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件(6)已知函数11,02()ln ,2x f x x x x ⎧+<≤⎪=⎨⎪>⎩,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是(A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞(7)过抛物线220)y px p =>(的焦点F 的直线交抛物线于,A B 两点,点O 是原点,如果3BF =,BF AF >,23BFO π∠=,那么AF 的值为 ()A 1 ()B 32()C 3 (D ) 6(8)如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,)1,0(∈x ,给出以下四个命题:① 四边形MENF 为平行四边形;② 若四边形MENF 面积)(x f s =,)1,0(∈x ,则)(x f 有最小 值;③ 若四棱锥A MENF 的体积)(x p V =,)1,0(∈x ,则)(x p 常函数;④ 若多面体MENF ABCD -的体积()V h x =,1(,1)2x ∈, 则)(x h 为单调函数. 其中假.命题..为 ()A ①()B ②()C ③(D )④第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9) 在ABC ∆中,a b 、分别为角A B 、的对边,如果030B =,0105C =,4a =,那么b = .(10)在平面向量a,b 中,已知(1,3)=a ,(2,y)=b .如果5⋅=a b ,那么y = ;如果-=a +b a b ,那么y = .(11)已知,x y 满足满足约束条件+10,2,3x y x y x ≤⎧⎪-≤⎨⎪≥⎩,那么22z x y =+的最大值为___.(12)如果函数2()sin f x x x a =+的图象过点(π,1)且()2f t =.那么a = ; ()f t -= .(13)如果平面直角坐标系中的两点(1,1)A a a -+,(,)B a a 关于直线l 对称,那么直线l 的 方程为__.(14)数列{}n a 满足:*112(1,)n n n a a a n n N -++>>∈,给出下述命题:①若数列{}n a 满足:21a a >,则*1(1,)n n a a n n N ->>∈成立; ②存在常数c ,使得*()n a c n N >∈成立;③若*(,,,)p q m n p q m n N +>+∈其中,则p q m n a a a a +>+; ④存在常数d ,使得*1(1)()n a a n d n N >+-∈都成立.上述命题正确的是____.(写出所有正确结论的序号)三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)设{}n a 是一个公比为(0,1)q q q >≠等比数列,1234,3,2a a a 成等差数列,且它的前4项和415s =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2,(1,2,3......)n n b a n n =+=,求数列{}n b 的前n 项和.(16)(本小题共13分)已知函数22()sincos cos ()f x x x x x x =+-∈R .(Ⅰ)求()f x 的最小正周期和在[0,π]上的单调递减区间; (Ⅱ)若α为第四象限角,且3cos 5α=,求7π(212f α+的值.(17)(本小题共14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.(Ⅰ)证明:AE CD ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM AC ⊥,若存在, 求出PMMC的值,若不存在,说明理由.(18)(本小题共13分)已知椭圆22221x y a b +=(0a b >>)的焦点是12F F 、,且122F F =,离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过椭圆右焦点2F 的直线l 交椭圆于A ,B 两点,求22||||AF F B g 的取值范围.(19)(本小题共14分)已知函数()(ln )xe f x a x x x=--.(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若()f x 在(0,1)内有极值,试求a 的取值范围.(20)(本小题共13分)已知曲线n C 的方程为:*1()nnx y n N +=∈.(Ⅰ)分别求出1,2n n ==时,曲线n C 所围成的图形的面积;(Ⅱ)若()n S n N *∈表示曲线n C 所围成的图形的面积,求证:()n S n N *∈关于n 是递增的;(III) 若方程(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解,求证:曲线(2,)n C n n N *>∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.(9) 22 (10) 21;3-(11) 58 (12) 1;0 (13) 01=+-y x(14)①④三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)(本小题共13分)设{}n a 是一个公比为(0,1)q q q >≠等比数列,1234,3,2a a a 成等差数列,且它的前4项和415s =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2,(1,2,3......)n n b a n n =+=,求数列{}n b 的前n 项和. 解:(Ⅰ)因为{}n a 是一个公比为(0,1)q q q >≠等比数列, 所以11n n a a q-=.因为1234,3,2a a a 成等差数列,所以213642,a a a =+即2320q q -+=. 解得2,1()q q ==舍.又它的前4和415s =,得41(1)15(0,1)1a q q q q-=>≠-,解得11a = . 所以12n n a -= . …………………9分(Ⅱ)因为2n n b a n =+, 所以11122(n 1)1n n nn i i i i i b a i n ====+=++-∑∑∑. ………………13分(16)(本小题共13分)已知函数22()sincos cos ()f x x x x x x =+-∈R .(Ⅰ)求()f x 的最小正周期和在[0,π]上的单调递减区间; (Ⅱ)若α为第四象限角,且3cos 5α=,求7π()212f α+的值. 解:(Ⅰ)由已知22()sin cos cos f x x x x x =+-2cos 2π2sin(2).6x xx =-=- 所以 最小正周期2π2ππ.2T ω===由ππ3π2π22π,.262k x k k z +???得2π10πππ,36k x k k z +#+?故函数()f x 在[0,π]上的单调递减区间15π,π36⎡⎤⎢⎥⎣⎦ …………9分(Ⅱ)因为α为第四象限角,且3cos 5α=,所以4sin 5α=-. 所以7π()212f α+=7ππ2sin()2sin 66αα+-=-85=.…………………13分(17)(本小题共14分)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,AB AP =,E 为棱PD 的中点.(Ⅰ)证明:AE CD ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)若F 为AB 中点,棱PC 上是否存在一点M ,使得FM求出PMMC的值,若不存在,说明理由. (Ⅰ)证明:因为PA ⊥底面ABCD ,所以PA ⊥CD . 因为AD CD ⊥,所以CD PAD ⊥面. 由于AE PAD ⊂面, 所以有CD AE ⊥.…………………4分 (Ⅱ)解:依题意,以点A 为原点建立空间直角坐标系(如图), 不妨设2AB AP ==,可得(2,0,0)B ,(2,2,0)C ,()0,2,0D , ()0,0,2P .由E 为棱PD 的中点,得(0,1,1)E . (0,1,1)AE =uu u v向量(2,2,0)BD =-u u u r ,(2,0,2)PB =-u u r.设(,,)n x y z =r为平面PBD 的法向量,则⎩⎨⎧=⋅=⋅00PB n BD n 即⎩⎨⎧=-=+-022022z x y x .不妨令1y =,可得=n(1,1,1)为平面PBD 的一个法向量.所以cos ,3AE EF =uu u v uu u v .所以,直线EF 与平面PBD…………………11分(Ⅲ)解:向量(2,2,2)CP =--u u r ,(2,2,0)AC =u u u r ,(2,0,0)AB =u u u r. 由点M 在棱PC 上,设,(01)CM CP λλ=≤≤u u u r u u r. 故 (12,22,2)FM FC CM λλλ=+=--u u u r u u u r u u u r.由AC FM⊥,得0=⋅AC FM ,因此,(1-2)2(2-2)20λλ⨯+⨯=,解得34λ=. 所以 13PM MC =. …………………13分(18)(本小题共13分)已知椭圆22221x y a b +=(0a b >>)的焦点是12F F 、,且122F F =,离心率为12.zC(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆右焦点2F 的直线l 交椭圆于A ,B 两点,求22||||AF F B g 的取值范围.解(Ⅰ)因为椭圆的标准方程为22221(0)x y a b a b+=>>,由题意知2221222a b c c a c ⎧=+⎪⎪=⎨⎪=⎪⎩,,解得2,a b ==所以椭圆的标准方程为22143x y +=. ……………………………5分 (Ⅱ)因为2(1,0)F ,当直线l 的斜率不存在时,3(1,)2A ,3(1,)2B -,则229||||4AF F B =g,不符合题意. 当直线l 的斜率存在时,直线l 的方程可设为(1)y k x =-.由22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩ 消y 得2222(34)84120k x k x k +-+-= (*).设),(11y x A ,),(22y x B ,则1x 、2x 是方程(*)的两个根,所以2222834k x x k +=+,212241234k x x k -=+.所以21||1AF ==-,所以22||1F B ==-所以2221212||||(1)()1AF F B k x x x x =+-++g222224128(1)13434k k k k k -=+-+++229(1)34k k =++2229(1)3491(1).434k k k =++=++当20k =时,22||||AF F B g 取最大值为3,所以 22||||AF F B g 的取值范围9,34⎛⎤ ⎥⎝⎦.又当k 不存在,即AB x ⊥轴时,22||||AF F B g 取值为94. 所以22||||AF F B g 的取值范围9,34⎡⎤⎢⎥⎣⎦. …………13分 (19)(本小题共14分)已知函数e ()(ln )xf x a x x x=--.(Ⅰ)当1a =时,试求()f x 在(1,(1))f 处的切线方程; (Ⅱ)当0a ≤时,试求()f x 的单调区间;(Ⅲ)若()f x 在(0,1)内有极值,试求a 的取值范围.解:(Ⅰ)当1a =时,/2e (1)1()1x x f x x x-=-+,/(1)0f =,(1)e 1f =-. 方程为e 1y =-. …………………4分(Ⅱ)2e (1)1()(1)x x f x a x x -'=-- 2e (1)(1)x x ax x x---=, 2(e )(1)xa x x x--= .当0a ≤时,对于(0,)x ∀∈+∞,e 0x ax ->恒成立,所以 '()0f x > ⇒1x >;'()0f x < ⇒ 01x <<0.所以 单调增区间为(1,)+∞,单调减区间为(0,1) . …………………8分(Ⅲ)若()f x 在(0,1)内有极值,则'()f x 在(0,1)x ∈内有解.令'2(e )(1)()0x ax x f x x --== ⇒e 0xax -= ⇒e x a x= . 设e ()xg x x= (0,1)x ∈,所以 'e (1)()x x g x x-=, 当(0,1)x ∈时,'()0g x <恒成立,所以()g x 单调递减.又因为(1)e g =,又当0x →时,()g x →+∞, 即()g x 在(0,1)x ∈上的值域为(e,)+∞,所以 当e a >时,'2(e )(1)()0x ax x f x x--== 有解. 设()e x H x ax =-,则 ()e 0x H x a '=-< (0,1)x ∈,所以()H x 在(0,1)x ∈单调递减. 因为(0)10H =>,(1)e 0H a =-<, 所以()e x H x ax =-在(0,1)x ∈有唯一解0x . 所以有:所以 当e a >时,()f x 在(0,1)内有极值且唯一.当e a ≤时,当(0,1)x ∈时,'()0f x ≥恒成立,()f x 单调递增,不成立.综上,a 的取值范围为(e,)+∞. …………………14分(20)(本小题共13分)已知曲线n C 表示,x y 满足*1()nnx y n N +=∈的方程.(Ⅰ)求出1,2n =时,曲线n C 所围成的图形的面积;(Ⅱ)若()n S n N *∈表示曲线n C 所围成的图形的面积,求证:()n S n N *∈关于n 是递增的;(III) 若方程(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解,求证:曲线(2,)n C n n N *>∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数. 解:(Ⅰ)当1,2n = 时, 由图可知1141122C =⨯⨯⨯=, 2πC =. …………………3分(Ⅱ)要证()n S n N *∈是关于n 递增的,只需证明:1(n )n n S S N *+<∈.由于曲线n C 具有对称性,只需证明曲线n C 在第一象限的部分与坐标轴所围成的面积递 增.现在考虑曲线n C 与1n C +,因为 1()(1)nnx y n N *+=∈L L因为 111()(2)n n x y n N ++*+=∈L L在(1)和(2)中令00,(0,1)x x x =∈,当0(0,1)x ∈,存在12,(0,1)y y ∈使得011n n x y +=, 11021n n x y +++=成立,此时必有21y y >.因为当0(0,1)x ∈时100n n x x +>, 所以121n n y y +>.两边同时开n 次方有,1221n ny y y +>>.(指数函数单调性) 这就得到了21y y >,从而()n S n N *∈是关于n 递增的. …………………10分(III)由于(2,)n n n x y z n n N +=>∈可等价转化为()()1n n x yz z+=,反证:若曲线*(2,)n C n n N >∈上存在一点对应的坐标(,)x y ,,x y 全是有理数, 不妨设,q tx y p s==,*,,,p q s t N ∈,且,p q 互质,,s t 互质. 则由1nnx y +=可得,1nnq tp s+=.即nnnqs ptps +=.这时,,qs pt ps 就是*(2,)nnnx y z n n N +=>∈的一组解,这与方程*(2,)n n n x y z n n N +=>∈,0xyz ≠,没有正整数解矛盾,所以曲线*(2,)n C n n N >∈上任一点对应的坐标(,)x y ,,x y 不能全是有理数.…………………13分。