数字图像处理
- 格式:pdf
- 大小:400.61 KB
- 文档页数:10
数字图像处理技术解析第一章:数字图像处理基础知识数字图像处理是一门研究如何处理和操作数字图像的学科。
数字图像是离散的表示了光的强度和颜色分布的连续图像。
数字图像处理技术可以应用于许多领域,如医学影像、机器视觉、遥感图像等。
1.1 数字图像表示与存储数字图像可以使用像素(pixel)来表示,每个像素包含一定数量的位元(bit),用于表示图像的灰度值或颜色信息。
常见的像素表示方法有灰度图像和彩色图像。
在计算机中,数字图像可以以不同的方式进行存储,如位图存储、压缩存储等。
1.2 数字图像处理的基本操作数字图像处理的基本操作包括图像增强、图像恢复、图像压缩和图像分割等。
图像增强可以改善图像的质量,使其更适于人眼观察或用于其他应用。
图像恢复是指通过去除图像中的噪声、模糊等不良因素,使图像恢复到原始清晰状态。
图像压缩可以减少图像的存储空间和传输带宽。
图像分割是将图像分成几个具有独立特征的区域,用于目标检测、目标跟踪等应用。
第二章:数字图像增强技术数字图像增强技术可以提高图像的质量和信息内容,使其更适合进行后续处理或人眼观察。
常用的图像增强方法包括灰度变换、直方图均衡化和空域滤波等。
2.1 灰度变换灰度变换是通过对图像的灰度值进行变换,来改变图像的对比度和亮度。
常见的灰度变换方法包括线性变换、非线性变换和直方图匹配等。
线性变换通过对灰度值进行线性和平移变换,可改变图像的对比度和亮度。
非线性变换使用非线性函数对灰度值进行变换,如对数变换、反转变换等。
直方图匹配是将图像的直方图变换为期望直方图,以达到对比度和亮度的调整。
2.2 直方图均衡化直方图均衡化是一种常用的图像增强方法,可以通过对图像的直方图进行变换,使得图像的灰度分布更加均匀。
直方图均衡化可以增加图像的对比度,使得图像细节更加清晰。
该方法适用于灰度图像和彩色图像。
2.3 空域滤波空域滤波是一种基于像素的图像处理方法,通过对图像的局部像素进行加权平均或非线性操作,来改变图像的特征。
数字图像处理技术数字图像处理技术是一种针对数字图像进行处理和分析的技术。
随着计算机技术的不断发展和普及,数字图像处理技术在图像处理领域中扮演着越来越重要的角色。
本文将详细介绍数字图像处理技术的概念、原理、应用及未来发展方向。
概念数字图像处理技术是指利用计算机对数字图像进行处理和分析的技术。
数字图像是通过像素表示的图像,而像素是图像最小的单元,每个像素都有其特定的数值表示颜色和亮度。
数字图像处理技术可以对图像进行各种操作,如增强图像的质量、提取图像特征、恢复图像信息等。
原理数字图像处理技术的原理主要包括图像获取、图像预处理、图像增强、图像分割、特征提取和图像识别等基本步骤。
1.图像获取:通过相机或扫描仪等设备获取数字图像,将图像转换为数字信号。
2.图像预处理:对原始图像进行去噪、几何校正、尺度变换等预处理操作,以提高后续处理的效果。
3.图像增强:通过直方图均衡化、滤波等方法增强图像的对比度、亮度等特征。
4.图像分割:将图像分割成若干个区域或对象,以便更好地分析和处理图像。
5.特征提取:提取图像中的特征信息,如颜色、纹理、形状等,为图像识别和分类提供依据。
6.图像识别:利用机器学习、深度学习等算法对图像进行分类、识别和分析。
应用数字图像处理技术在各个领域都有广泛的应用,如医疗影像分析、无人驾驶、安防监控、智能交通等。
以下列举一些典型的应用场景:•医疗影像分析:利用数字图像处理技术分析医学影像,辅助医生进行疾病诊断和治疗。
•安防监控:通过视频监控系统、人脸识别技术等实现对安全领域的监控和警报。
•智能交通:通过交通监控系统、车辆识别技术等提高交通管理效率和道路安全。
未来发展数字图像处理技术在人工智能、物联网等新兴技术的推动下不断发展和创新,未来的发展方向主要包括以下几个方面:1.深度学习在图像处理中的应用:深度学习技术在图像分类、目标检测等方面取得重大突破,将在数字图像处理领域得到更广泛的应用。
2.虚拟现实与增强现实:数字图像处理技术将与虚拟现实、增强现实技术结合,实现更加沉浸式的用户体验。
第一章概论一、数字图像与像素数字图像是由一个个的像素(Pixel)构成的,各像素的值(灰度,颜色)一般用整数表示。
二、数字图像处理的目的1、提高图像的视觉质量。
2、提取图像中的特征信息。
3、对图像数据进行变换、编码和压缩。
三、工程三层次图像处理、图像分析和图像理解图像理解符号目标像素高层中层低层高低抽象程度数据量操作对象小大语义图像分析图像处理四、图像处理硬件系统组成图像输入设备(采集与数字化设备,如数码相机),图像处理设备(如PC机)和图像输出设备(如显示器,打印机)第二章数字图像处理基础一、图像数字化过程----采样与量化模拟图像的数字化包括采样和量化两个过程。
细节越多,采样间隔应越小。
把采样后得到的各像素的灰度值进一步转换为离散量的过程就是量化。
一般,灰度图像的像素值量化后用一个字节(8bit)来表示。
二、采样、量化与图像质量的关系采样点数越多,图像质量越好;量化级数越多,图像质量越好。
为了得到质量较好的图像采用如下原则:对缓变图像,细量化,粗采样,以避免假轮廓。
对细节化图像,细采样,粗量化,以避免模糊。
三、图像尺寸、数据量、颜色数量的计算灰度图像的像素值量化后用一个字节(8bit)来表示。
彩色图像的像素值量化后用三个字节(24bit)来表示。
一幅512X512(256K)的真彩色图像,计算未压缩的图像数据量是多少?(必考)图像总像素:512px*512px=256K总数据量:256K*3Byte=768KB一幅256X256(64K)的真彩色图像,计算未压缩的图像数据量是多少?图像总像素:256px*256px=64K总数据量:64K*1Byte=64KB四、数字图像类型二值图像、灰度图像、索引颜色图像)和真彩色图像。
五、数字图像文件的类型jpg、bmp、tif、gifJPEG采用基于DCT变换的压缩算法,为有损压缩。
六、图像文件三要素文件头、颜色表、图像数据七、读取一个图像,并将其尺寸缩小0.5倍,将缩小后的图像旋转30度。
数字图像处理数字图像,即将连续的模拟图像经过离散化处理后变成计算机能够辨识的点阵图像。
严格的数字图像是一个经过等距离矩形网格采样,对幅度进行等间隔量化的二维函数,因此,数字图像实际上就是被量化的二维采样数组。
而数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,由于图像处理是利用计算机实现的.因此也被称为计算机图像处理。
图像处理最早出现于 20 世纪 50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
数字图像处理作为一门学科大约形成于 20 世纪 60 年代初期。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。
例如可以用数码相机将难以看清的的资料拍摄下来输入计算机,将原始的资料变为数字图象,再用数字图象处理的方法将其处理还原,以达到人眼可以看清内容,进行研究的效果。
数字图象处理一般有两种基本的方法:一种方法是在图象的空间域中处理.即在图象空间中对图象本身直接进行各种处理优化,达到改善图象质量的目的;另一种方法是把空间图象进行某些转化,从空间域转到频率域里,再在频率域中进行各种处理,然后再转到空间域,形成处理后的图象,从而达到改善图象质量的目的。
而数字图像处理主要分为:图像变换,图像编码压缩,图像增强和复原,图像分割,图像描述和图像分类数字图像处理有以下几个基本特点:①处理精度高,再现性好。
②易于控制处理效果。
③处理具有多样性。
④数字图像中各个像素间的相关性和压缩的潜力大。
⑤图像数据量庞大。
⑥占用的频带较宽。
⑦图像质量评价受主观因素的影响。
⑧图像处理技术综合性强。
21世纪的图像技术要向高质量化方面发展,主要体现在以下几点:高分辨率、高速度:图像处理技术发展的最终目标是要实现图像的实时处理,移动目标的生成、识别和跟踪。
立体化:立体化所包括的信息最为完整和丰富,未来采用数字全息技术将有利于达到这个目的。
数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。
数字图像解决技术一. 数字图像解决概述数字图像解决是指人们为了获得一定的预期结果和相关数据运用计算机解决系统对获得的数字图像进行一系列有目的性的技术操作。
数字图像解决技术最早出现在上个世纪中期, 随着着计算机的发展, 数字图像解决技术也慢慢地发展起来。
数字图像解决初次获得成功的应用是在航空航天领域, 即1964年使用计算机对几千张月球照片使用了图像解决技术, 并成功的绘制了月球表面地图, 取得了数字图像解决应用中里程碑式的成功。
最近几十年来, 科学技术的不断发展使数字图像解决在各领域都得到了更加广泛的应用和关注。
许多学者在图像解决的技术中投入了大量的研究并且取得了丰硕的成果, 使数字图像解决技术达成了新的高度, 并且发展迅猛。
二. 数字图象解决研究的内容一般的数字图像解决的重要目的集中在图像的存储和传输, 提高图像的质量, 改善图像的视觉效果, 图像理解以及模式辨认等方面。
新世纪以来, 信息技术取得了长足的发展和进步, 小波理论、神经元理论、数字形态学以及模糊理论都与数字解决技术相结合, 产生了新的图像解决方法和理论。
比如, 数学形态学与神经网络相结合用于图像去噪。
这些新的方法和理论都以传统的数字图像解决技术为依托, 在其理论基础上发展而来的。
数字图像解决技术重要涉及:⑴图像增强图像增强是数字图像解决过程中经常采用的一种方法。
其目的是改善视觉效果或者便于人和机器对图像的理解和分析, 根据图像的特点或存在的问题采用的简朴改善方法或加强特性的措施就称为图像增强。
⑵图像恢复图像恢复也称为图像还原, 其目的是尽也许的减少或者去除数字图像在获取过程中的降质, 恢复被退化图像的本来面貌, 从而改善图像质量, 以提高视觉观测效果。
从这个意义上看, 图像恢复和图像增强的目的是相同的, 不同的是图像恢复后的图像可当作时图像逆退化过程的结果, 而图像增强不用考虑解决后的图像是否失真, 适应人眼视觉和心理即可。
⑶图像变换图像变换就是把图像从空域转换到频域, 就是对原图像函数寻找一个合适变换的数学问题, 每个图像变换方法都存在自己的正交变换集, 正是由于各种正互换集的不同而形成不同的变换。
数字图像处理技术数字图像处理技术是一门探讨如何利用计算机对数字图像进行处理、分析、存储、传输和显示等的学科。
由于其在各个领域中的广泛应用,数字图像处理技术已经成为一个独立的学科。
本文将从数字图像处理技术的基础知识、常见应用以及未来趋势三个方面来探讨这门技术的深度和广度。
一、基础知识数字图像的基本概念图像是人类感知现实的一种方式,而数字图像是指通过数字化技术将图像转换成数字表示形式的图像。
数字图像的特点是可以被存储、传输、处理和复制等,因此具有很高的应用价值。
数字图像由像素组成,每个像素包括亮度和颜色信息。
数字图像的获取与处理数字图像的获取是通过数字相机、扫描仪等设备实现的,并通过数字化技术将图像转换成数字信号。
数字图像的处理可以通过计算机进行,处理过程包括图像增强、滤波、分割、特征提取、识别等。
其应用领域包括影像处理、医学影像、遥感图像、安防监控等。
二、常见应用数字图像处理技术的应用范围非常广泛,下面将介绍一些常见的应用领域。
医学影像数字图像处理技术在医学影像领域起着重要作用。
医学影像的处理包括去噪、增强、分割、配准等,这些处理方法可以提高医生对病情的诊断。
数字图像处理技术广泛应用于X光透视、CT、MRI、PET等医学影像的处理。
遥感图像遥感图像处理是指利用计算机处理卫星、飞机或直升机等遥感平台获取的图像数据。
数字图像处理技术可以处理海量的遥感数据,包括遥感图像的增强、滤波、特征提取、分类等等。
其应用领域包括农业、林业、城市规划等。
安防监控数字图像处理技术在安防监控领域的应用越来越广泛。
数字图像处理技术通过视频分析、图像匹配、车牌识别等手段,可以提高监控系统的检测准确率和处理能力,增强监控系统的实时性和可靠性。
三、未来趋势随着技术的不断发展,数字图像处理技术也面临着新的挑战和机遇。
人工智能数字图像处理技术与人工智能的结合将成为未来的发展趋势。
人工智能可以通过强大的计算能力和算法优势,提高数字图像处理技术的处理效率和准确性。
实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。
因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所示。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。
图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
若图像是double类,则像素取值就是浮点数。
规定双精度型归一化亮度图像的取值范围是[0,1](2) 二值图像一幅二值图像是一个取值只有0和1的逻辑数组。
而一幅取值只包含0和1的uint8类数组,在MATLAB中并不认为是二值图像。
使用logical 函数可以把数值数组转化为二值数组或逻辑数组。
创建一个逻辑图像,其语法为:B=logical(A)其中,B是由0和1构成的数值数组。
要测试一个数组是否为逻辑数组,可以使用函数:islogical(c)若C是逻辑数组,则该函数返回1;否则,返回0。
(3) 索引图像索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。
一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。
(4) RGB图像一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色相似点都是在特定空间位置的彩色图像相对应的红、绿、蓝三个分量。
按照惯例,形成一幅RGB彩色图像的三个图像常称为红、绿或蓝分量图像。
令fR,fG和fB分别代表三种RGB分量图像。
一幅RGB图像就利用cat(级联)操作将这些分量图像组合成彩色图像:rgb_image=cat(3,fR,fG,fB)在操作中,图像按顺序放置。
2、数据类和图像类型间的转化表1中列出了MATLAB和IPT为表示像素所支持的各种数据类。
表中的前8项称为数值数据类,第9项称为字符类,最后一项称为逻辑数据类。
工具箱中提供了执行必要缩放的函数(见表2)。
以在图像类和类型间进行转化。
表1-1 MATLAB和IPT支持数据类型名称描述double双精度浮点数,范围为uint8无符号8比特整数,范围为[0 255]uint16无符号16比特整数,范围为[0 65536]uint32无符号32比特整数,范围为[0 4294967295]int8有符号8比特整数,范围为[-128 127]int16有符号16比特整数,范围为[-32768 32767]int32有符号32比特整数,范围为[-21474836482147483647]single单精度浮点数,范围为char字符logical值为0或1表1-2 格式转换函数名称将输入转化为有效的输入图像数据类im2uint8uint8logical,uint8,uint16和doulbeim2uint16uint16logical,uint8,uint16和doulbemat2gray double,范围为[0 1]doubleim2double double logical,uint8,uint16和doulbeim2bw logical uint8,uint16和double下面给出读取、压缩、显示一幅图像的程序(%后面的语句属于标记语句,编程时可不用输入)I=imread(‘原图像名.tif’); % 读入原图像,tif格式whos I % 显示图像I的基本信息imshow(I) % 显示图像% 这种格式知识用于jpg格式,压缩存储图像,q是0-100之间的整数imfinfo filename imwrite(I,'filename.jpg','quality',q);imwrite(I,'filename.bmp'); % 以位图(BMP)的格式存储图像% 显示多幅图像,其中n为图形窗口的号数figure(n), imshow('filename');gg=im2bw('filename'); % 将图像转为二值图像figure, imshow(gg) % 显示二值图像三、实验内容及步骤1.利用imread( )函数读取一幅图像,假设其名为flower.tif,存入一个数组中;I=imread(‘hjx.tif’);2.利用whos 命令提取该读入图像flower.tif的基本信息;Whos IName Size Bytes ClassI107x122 13054logical array 3.利用imshow()函数来显示这幅图像;imshow(I)4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;imfinfo hjx.tifans =Filename: 'hjx.tif'FileModDate: '04-Dec-2000 12:57:58'FileSize: 1074Format: 'tif'FormatVersion: []Width: 122Height: 107BitDepth: 1ColorType: 'grayscale'FormatSignature: [73 73 42 0]ByteOrder: 'little-endian'NewSubfileType: 0BitsPerSample: 1Compression: 'CCITT 1D'PhotometricInterpretation: 'WhiteIsZero'StripOffsets: [2x1 double]SamplesPerPixel: 1RowsPerStrip: 67StripByteCounts: [2x1 double]XResolution: 72YResolution: 72ResolutionUnit: 'Inch'Colormap: []PlanarConfiguration: 'Chunky'TileWidth: []TileLength: []TileOffsets: []TileByteCounts: []Orientation: 1FillOrder: 1GrayResponseUnit: 0.0100MaxSampleValue: 1MinSampleValue: 0Thresholding: 15.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
imwrite(I,'hjx.jpg','quality',14);6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。
imwrite(I,'hjx.bmp');7.用imread()读入图像:Lenna.jpg 和camema.jpg;imread('hjx.jpg');8.用imfinfo()获取图像Lenna.jpg和camema.jpg 的大小;imfinfo hjx.jpgans =Filename: 'hjx.jpg'FileModDate: '26-Apr-2016 10:58:13'FileSize: 1947Format: 'jpg'FormatVersion: ''Width: 122Height: 107BitDepth: 8ColorType: 'grayscale'FormatSignature: ''NumberOfSamples: 1CodingMethod: 'Huffman'CodingProcess: 'Sequential'Comment: {}imfinfo hhjjxx.jpgans =Filename: 'hhjjxx.jpg'FileModDate: '26-Apr-2016 11:16:35'FileSize: 17311Format: 'jpg'FormatVersion: ''Width: 447Height: 301BitDepth: 8ColorType: 'grayscale'FormatSignature: ''NumberOfSamples: 1CodingMethod: 'Huffman'CodingProcess: 'Sequential'Comment: {}9.用figure,imshow()分别将Lenna.jpg和camema.jpg显示出来,观察两幅图像的质量。
10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。