高中数学知识框架图
- 格式:docx
- 大小:506.89 KB
- 文档页数:6
高中数学知识体系框架第一章集合、映射、函数、导数及微积分集合学习要点:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义。
映射学习要点:((1)了解映射的概念,理解函数的概念;(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法;(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数;(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质;(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质;(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
函数学习要点:数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数。
导数学习要点:(1)了解导数概念的某些实际背景;(2)理解导数的几何意义;(3)掌握函数,y=c(c为常数)、y=xn(n∈N+)的导数公式,会求多项式函数的导数;(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值;(5)会利用导数求某些简单实际问题的最大值和最小值.微积分学习要点:(1)微积分基本定理揭示了导数与定积分之间的联系,同时它也提供了计算定积分的一种有效方法;(2)根据定积分的定义求定积分往往比较困难,而利用微积分基本定理求定积分比较方便。
知识体系框架结构图:第二章三角函数与平面向量三角函数学习要点:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算;(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义;(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式;(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明;(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义;(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx表示;(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形;(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα•cosα=1”。
x^n=a,则x叫做a的n次根,求方根的过程叫做开方运算,正数a的正n次方根
理数指数幂适用于有理数指数幂的法则
数函数的底判断是增函数还是减函数;实际问题中函数
叫做真数,读作以a为
,自然常数e,叫做ln
性质:
1.值域是实数集R
2.在定义域内,当a>1时是增函数,当0<a小于1时是减
函数
3.图象都通过点(1,0)
指数函数和对数函数的关系当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,称之为反函数
反函数。
高一数学知识点总结归纳图数学是一门基础学科,也是高中学习中不可或缺的一部分。
高一学年,学生们接触到了许多新的数学知识点,这些知识点构成了他们数学学习的基础。
为了更好地总结和归纳这些知识点,我制作了一张高一数学知识点的总结归纳图,以便帮助同学们更好地理解和记忆这些知识。
一、代数部分1. 一次函数- 定义和性质- 斜率和截距的求法- 函数图像与线性关系2. 二次函数- 定义和性质- 抛物线的开口方向和顶点坐标- 函数图像与二次关系- 一般式、标准式和顶点式3. 复数- 定义和性质- 复数的表示和运算- 虚数单位i的运算规律 - 实部和虚部的求法4. 指数与对数- 定义和性质- 指数幂的运算规律- 对数与指数的互化- 常见对数和自然对数二、几何部分1. 平面几何- 平面几何基本概念- 平面图形的性质和判定 - 平面几何定理与推理2. 空间几何- 空间几何基本概念- 空间图形的性质和判定- 空间几何定理与推理3. 三角函数- 正弦、余弦和正切的定义- 三角函数的性质和运算- 三角函数在平面几何中的应用4. 向量- 向量的定义和性质- 向量的表示和运算- 向量的模、方向和单位向量 - 向量在平面几何中的应用三、概率与统计部分1. 概率- 随机事件与样本空间- 概率的定义和性质- 事件的运算和概率计算2. 统计- 统计基本概念- 数据的收集与整理- 统计指标的计算和分析- 数据的图表表示和解读四、解析几何部分1. 直线与轨迹- 直线方程的表示与性质- 直线的倾斜角和截距- 不同直线方程的转化和应用 - 图形的轨迹方程2. 圆与圆的位置关系- 圆的基本性质和方程- 圆与直线、圆与圆的位置关系 - 切线和切点的性质- 圆的应用问题通过这张知识点总结归纳图,同学们可以更加清晰地了解高一数学的学习内容和重点。
通过对每个知识点的梳理和归纳,可以帮助同学们更好地掌握数学知识,提高解题能力。
同时,这样的总结图还具有良好的可视化效果,方便同学们进行复习和回顾。
;;=⇔⊆=⇔⊆=⇔⊆A B B A B A B A A B A B I A Bn-个A中元素有n个,则A的子集共有2n个,真子集有21集合间的运算2n R a +∈则2n n a n a ++≥平均值不等式2nnn a a n++≥当且仅当2,,)n 时取等号1111221n j n j n n n a b a b a b a b a b a b ++≤++≤+++,n Z 是∀,,nx 是区间1122)()()()n n n n q x q f x q f x q f x ++≤+++,,,1n i q R q +∈=∑)。
上凸函数不等号转向.1}n ma+仍是等比数列,其公比为)lim n n a ++=sin sin αtan tan 1tan tan α±2(AB x =,则a ⊥b2PP 所成比112222221cos ||||a b a b a ba b a b a ++⋅⋅==⋅+212()(x x y y =-+-空间向量的直角坐标运算律若123(,,a a a a =,12(,,b b b b =则①113(a b a b +=+,11(a b a b -=-123(,)()a a a R λλλλλ=∈,11a b a b ⋅=+②13//a ba b λλ⇔=,110a b a b ⊥⇔+若111(,,)A x y z 则2(AB x =-模长公式若12(,,a a a a =21||a a a a a =⋅=+空间向量的运算,,(OB OA AB a b BA OA OB a b OP a λλ=+=+=-=-=空间向量的加减与数乘OB OA AB =+=a +b ,AB OB OA =-,,(OP λ=a a b + c ⑶数乘分配律:λ(a + ) =λa +λb .平行六面体向量的数乘积||||cos ,a b a b a b ⋅=⋅⋅<>空间向量数乘积的性质①||cos ,a e a a e ⋅=<>.②0a b a b ⊥⇔⋅=.③2||a a a =⋅.空间向量数量积运算律①()()()a b a b a b λλλ⋅=⋅=⋅②a b b a ⋅=⋅(交换律) ③()a b c a b a c ⋅+=⋅+⋅(分配律)④e a = a e =|a |cos ,a e⑤ab a b = 0⑥当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |.特别的a a = |a |2或||a a a =⋅⑦cos ,||||a ba b a b ⋅=Bα∈,则l αβ=且l,则A、B、C 。