【精品】2015年浙江省杭州市西湖区保俶塔实验学校九年级上学期期中数学试卷带解析答案
- 格式:doc
- 大小:440.00 KB
- 文档页数:24
新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6 2.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 3.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 4.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>0 11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 12.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O 重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);26.解:(1)由题意,得:w=(x﹣20)×y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6 2.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 3.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 4.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>0 11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 12.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O 重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);26.解:(1)由题意,得:w=(x﹣20)×y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.新人教版数学九年级上册期中考试试题(含答案) 一、选择题(本大题10小题,每小题3分,共30分)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.128.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.710.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2二、填空题(本大题6小题,每小题4分,共24分)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程,化成一般形式为.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;其中正确的说法有.14.抛物线y=ax2+bx+c与x轴的公共点是(﹣2,0),(6,0),则此抛物线的对称轴是.15.函数y=x2﹣2x+2的图象顶点坐标是.16.点P(﹣2,3)关于x轴对称点的坐标是,关于原点对称点的坐标是,关于y轴的对称点的坐标是;三、解答题(本大题2小题,共18分)17.解方程:x2﹣6x+5=0(配方法)18.已知抛物线y=x2+bx+c的图象经过点(﹣1,0),点(3,0);求抛物线函数解析式.19.参加足球联赛的每两队之间都要进行一场比赛,共要比赛21场,共有多少个队参加足球联赛?20.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2016年该企业投入科研经费5000万元就,2018年投入科研经费7200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2019年该企业投入科研经费多少万元.21.某同学练习推铅球,铅球推出后在空中飞行的轨迹是一条抛物线,铅球在离地面1米高的A处推出,达到最高点B时的高度是2.6米,推出的水平距离是4米,铅球在地面上点C处着地(1)根据如图所示的直角坐标系求抛物线的解析式;(2)这个同学推出的铅球有多远?22.已知:关于x的方程x2+2kx+k2﹣6=0(1)证明:方程有两个不相等的实数根;(2)如果方程有一个根为2,试求2k2+8k+2018的值.23.某店销售台灯,成本为每个30元,销售大数据分析表明:当每个台灯售价为40元时,平均每月售出600个;若售价每下降1元,其月销售量就增加200个.(1)未降价之前,该店每月台灯总盈利为元;(2)降价后,设该店每个台灯应降价x元,则每个台灯盈利元,平均每月可售出个;(用含x的代数式进行表示)(3)为迎接“双十一”,该店决定降价促销,在库存为1210个台灯的情况下,若预计月获利恰好为8400元,求每个台灯的售价.24.在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以每秒1cm的速度移动,同时,点Q从点B出发沿BC边向点C以每秒2cm的速度移动,如果P、Q两点在分别到达B、C两点后就停止移动,回答下列问题:(1)当运动开始后1秒时,求△DPQ的面积;(2)当运动开始后秒时,试判断△DPQ的形状;(3)在运动过程中,存在这样的时刻,使△DPQ以PD为底的等腰三角形,求出运动时间.25.如图,抛物线y=与x轴交于A、B两点,△ABC为等边三角形,∠COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(2)求证:点D在抛物线上;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边形为平行四边形,请直接写出点M的坐标.参考答案与试题解析一.选择题(共10小题)1.下面四个图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,不合题意.故选:B.2.关于一元二次方程x2﹣2x﹣1=0根的情况,下列说法正确的是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】根据根的判别式,可得答案.【解答】解:a=1,b=﹣2,c=﹣1,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣1)=8>0,一元二次方程x2﹣2x﹣1=0有两个不相等的实数根,故选:C.3.用配方法解方程x2﹣2x﹣7=0时,原方程应变形为()A.(x+1)2=6 B.(x+2)2=6 C.(x﹣1)2=8 D.(x﹣2)2=8 【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程变形得:x2﹣2x=7,配方得:x2﹣2x+1=8,即(x﹣1)2=8,故选:C.4.把一元二次方程(x﹣3)2=5化为一般形式,二次项系数;一次项系数;常数项分别为()A.1,6,4 B.1,﹣6,4 C.1,﹣6,﹣4 D.1,﹣6,9 【分析】根据一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项可得答案.【解答】解:化简方程,得x2﹣6x+4=0,二次项系数;一次项系数;常数项分别为1,﹣6,4,故选:B.5.已知二次函数y=2x2﹣12x+19,下列结果中正确的是()A.其图象的开口向下B.其图象的对称轴为直线x=﹣3C.其最小值为1D.当x<3时,y随x的增大而增大【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:∵二次函数y=2x2﹣12x+19=2(x﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x>3时,y随x的增大而增大,当x<3时,y随x的增大而减小;故C选项正确.故选:C.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选:C.7.若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6 C.8 D.12【分析】根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.【解答】解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选:C.8.已知二次函数y=(x﹣1)2﹣4,当y<0时,x的取值范围是()A.﹣3<x<1 B.x<﹣1或x>3 C.﹣1<x<3 D.x<﹣3或x>1 【分析】先求出方程(x﹣1)2﹣4=0的解,得出函数与x轴的交点坐标,根据函数的性质得出答案即可.【解答】解:∵二次函数y=(x﹣1)2﹣4,∴抛物线的开口向上,当y=0时,0=(x﹣1)2﹣4,解得:x=3或﹣1,∴当y<0时,x的取值范围是﹣1<x<3,故选:C.9.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.10.小敏用一根长为8cm的细铁丝围成矩形,则矩形的最大面积是()A.4cm2B.8cm2C.16cm2D.32cm2【分析】本题考查二次函数最小(大)值的求法.【解答】解:设矩形的长为x,则宽为,矩形的面积=()x=﹣x2+4x,S最大===4,故矩形的最大面积是4cm2.故选:A.二.填空题(共6小题)11.已知两个数的差为3,它们的平方和是65,设较小的数为x,则可列出方程x2+(x+3)2=65 ,化成一般形式为x2+3x﹣28=0 .【分析】首先表示出两个数字进而利用勾股定理列出方程再整理即可.【解答】解:设较小的数为x,则另一个数字为x+3,根据题意得出:x2+(x+3)2=65,整理得出:x2+3x﹣28=0.故答案为:x2+(x+3)2=65,x2+3x﹣28=0.12.已知方程x2+2x﹣3=0的两根为a和b,则ab=﹣3 .【分析】直接根据根与系数的关系求解.【解答】解:根据题意得ab=﹣3.故答案为:﹣3.13.二次函数y=3x2+1和y=3(x﹣1)2,以下说法:①它们的图象开口方向、大小相同;②它们的对称轴都是y轴,顶点坐标都是原点(0,1);③当x>0时,它们的函数值y都是随着x的增大而增大;④它们与坐标轴都有一个交点;。
一、选择题1.如图是一个圆形转盘,让转盘自由转动两次,则指针两次都落在黄色区域的概率是( ).A .14B .34C .29D .916 2.掷一枚均匀的硬币两次,两次均为反面朝上的概率是( ) A .12 B .13 C .23 D .14 3.如图,转盘的红、黄、蓝、紫四个扇形区域的圆心角分别记为α,β,γ,θ.自由转动转盘,则下面说法错误的是( )A .若90α>︒,则指针落在红色区域的概率大于0.25B .若αβγθ>++,则指针落在红色区域的概率大于0.5C .若αβγθ-=-,则指针落在红色或黄色区域的概率和为0.5D .若180γθ+=︒,则指针落在红色或黄色区域的概率和为0.54.如图A 是某公园的进口,B ,C ,D 是三个不同的出口,小明从A 处进入公园,那么从B ,C ,D 三个出口中恰好在C 出口出来的概率为( )A .14B .13C .12D .235.如图①,在矩形ABCD 中,AB >AD ,对角线AC ,BD 相交于点O ,动点P 由点A 出发,沿A→B→C 运动.设点P 的运动路程为x ,△AOP 的面积为y ,y 与x 的函数关系图象如图②所示,则AB 边的长为( )A .3B .4C .5D .6 6.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .10B .12C .14D .12或14 7.已知点(3,44)P m m -为平面直角坐标系中一点,若O 为原点,则线段PO 的最小值为( )A .2B .2.4C .2.5D .38.当3b c -=时,关于x 的一元二次方程220x bx c -+=的根的情况为( ) A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定9.如图,依据尺规作图的痕迹,则α∠是( )A .54°B .36°C .28°D .72°10.如图,在长方形ABCD 中,AE 平分∠BAD 交BC 于点E ,连接ED ,若ED =5,EC =3,则长方形的周长为( )A .20B .22C .24D .2611.在菱形ABCD 中,∠ADC =120°,点E 关于∠A 的平分线的对称点为F ,点F 关于∠B 的平分线的对称点为G ,连结EG .若AE =1,AB =4,则EG =( )A .210B .27C .33D .1912.如图,在等腰直角三角形ABC 中,90ABC ∠=︒,2AB =,点D 是边AC 的中点,连接BD ,点E 为AC 延长线上的一点,连接BE ,30E ∠=︒,则CE 的长为( )A .2622B 62C 6D 2二、填空题13.“校园手机”现象越来越受到社会的关注.小明决定从九(1)班的4位家长中随机选择2位进行深入调查,其中包含小亮的爸爸和妈妈,小亮的爸爸和妈妈被同时选中的概率是__________.14.在一个不透明的塑料袋中装有红色白色球共40个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在20%左右,则口袋中红色球可能有________个.15.在美丽乡村建设中,某村2017年新增绿化面积为20000平方米,计划到2019年新增绿化面积要达到28800平方米.如果每年新增绿化面积的增长率相同,那么这个增长率是________.16.用换元法解方程221x x -﹣21x x -=1,设y =21x x-,那么原方程可以化为关于y 的整式方程为_____.17.已知方程240x x k -+=的一个根是11x =-,则方程的另一根2x =____. 18.如图,正方形AOBC 的两边分别在x 轴、y 轴上,点()4,3D -在边AC 上,以点B 为中心,把△BCD 旋转90︒,则旋转后点D 的对应点1D 的坐标是________.19.如图,在ABC 中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .若13AG =,6CF =,则四边形BDFG 的周长为______.20.如图,正方形ABCD 的边长为8,点E 为边BC 的中点,点P 在对角线BD 上移动,则PE +PC 的最小值是_____.三、解答题21.有三张背面完全相同的、、A B C 三张卡片,其正面分别画有三种不同的图形:双曲线、抛物线、圆,现将三张卡片背面朝上后洗均匀(1)从中任意摸出一张卡片,求摸到的卡片上画有中心对称图形的概率;(2)从中任意摸出一张卡片,放回洗匀后再摸出一张,请用树状图或者列表法求两次摸到的卡片上所画图形都既是中心对称图形又是轴对称图形的概率22.按要求解下列方程:用配方法解:(1)x 2﹣4x +1=0.用公式法解:(2)21204x x -=.23.先化简,再求值:22221444x x xx x x-+⎛⎫-÷⎪-++⎝⎭,其中x满足220x x+-=.24.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A、B、C、D四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为°;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.25.如图,在ABC中,点O是AC边上的一个动点,过点O作直线//BCMN,设MN交BCA∠的角平分线于点E,交BCA∠的外角ACG∠的平分线于点F,连接AF.(1)求证:EO FO=;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)在(2)的条件下,ABC满足什么条件时,四边形AECF是正方形?并说明理由.26.有两棵树,一棵高9米,另一棵高4米,两树相距12米. 一只小鸟从一棵树的树梢(最高点)飞到另一棵树的树梢(最高点),问小鸟至少飞行多少米?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先将黄色区域平分成三部分,然后根据题意画树状图,由树状图求得所有等可能的结果与两次指针都落在黄色区域的情况,再利用概率公式即可求得答案.【详解】解:将黄色区域平分成三部分,如图:画树状图得:∵共有16种等可能的结果,两次指针都落在黄色区域的只有9种情况,∴两次指针都落在黄色区域的概率为9;16故选D.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.2.D解析:D【分析】首先根据题意用列举法,即可求得掷一枚均匀的硬币两次,所有等可能的结果,又由两次均为反面朝上的只有1种情况,然后利用概率公式求解即可求得答案.【详解】解:∵掷一枚均匀的硬币两次,等可能的结果有:正正,正反,反正,反反,又∵两次均为反面朝上的只有1种情况,∴两次均为反面朝上的概率是:1.4故选:D.【点睛】本题考查了用列举法求概率.注意不重不漏的表示出所有等可能的结果是解此题的关键,注意:概率 所求情况数与总情况数之比.3.C解析:C【分析】根据概率公式计算即可得到结论.【详解】解:A 、∵α>90°,900.25360360α∴>=,故A 正确; B 、∵α+β+γ+θ=360°,α>β+γ+θ, 1800.5360360α∴>=,故B 正确; C 、∵α-β=γ-θ,∴α+θ=β+γ,∵α+β+γ+θ=360°,∴α+θ=β+γ=180°, 1800.5360︒︒∴= ∴指针落在红色或紫色区域的概率和为0.5,故C 错误;D 、∵γ+θ=180°,∴α+β=180°,1800.5360∴= ∴指针落在红色或黄色区域的概率和为0.5,故D 正确;故选:C .【点睛】本题考查了概率公式,熟练掌握概率公式是解题的关键.4.B解析:B【分析】根据概率公式求出该事件的概率即可.【详解】解:根据题意共有3种等情况数,其中“A 口进C 口出”有一种情况,从“A 口进C 口出”的概率为13故选:B .【点睛】本题考查的是基本的概率计算,熟悉相关概率计算是解题的关键. 5.D解析:D【分析】当P 点在AB 上运动时,△AOP 面积逐渐增大,当P 点到达B 点时,结合图象可得△AOP 面积最大为6,得到AB 与BC 的积为24;当P 点在BC 上运动时,△AOP 面积逐渐减小,当P 点到达C 点时,△AOP 面积为0,此时结合图象可知P 点运动路径长为10,得到AB与BC的和为10,构造关于AB的一元二方程可求解.【详解】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为6.∴12AB·12BC=6,即AB•BC=24.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为10,∴AB+BC=10.则BC=10-AB,代入AB•BC=24,得AB2-10AB+24=0,解得AB=4或6,因为AB>BC,所以AB=6.故选:D.【点睛】本题主要考查动点问题的函数图象,解一元二次方程,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.6.B解析:B【分析】用因式分解法求得方程的根,后根据三角形三边关系判断三角形的存在性,后计算周长.【详解】∵212350x x-+=,∴(x-7)(x-5)=0,∴x=7或x=5;当x=7时,3+4=7,∴三角形不存在;当x=5时,3+4>5,∴三角形存在,∴三角形的周长为3+4+5=12;故选B.【点睛】本题考查了一元二次方程的因式分解求解法和三角形的存在性,熟练求方程的根,准确判断三角形的存在性是解题的关键.7.B解析:B【分析】利用勾股定理求出两点的距离=,当16=25m 时,OP 最小=2.4即可. 【详解】(3,44)P m m -,=,= ∴16=25m ,OP 最小12=2.45=, 故选择:B .【点睛】 本题考查勾股定理求两点距离问题,掌握勾股定理两点距离公式,会用配方法求最值是解题关键.8.A解析:A【分析】首先将已知等式转换形式,然后代入判别式,判断其正负,即可得解.【详解】解:3b c -=,3c b ∴=-, 220x bx c -+=,∴∆22()428b c b c =--⨯⨯=-28(3)b b =--2824b b =-+2(4)80b =-+>,∴方程有两个不相等的实数根,故选:A .【点睛】此题主要考查根据参数的值判定一元二次方程根的情况,熟练掌握,即可解题. 9.A解析:A【分析】先根据矩形的性质得出AD ∥BC ,故可得出∠DAC 的度数,由角平分线的定义求出∠EAF 的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【详解】解:如图,∵四边形ABCD是矩形,∴AD∥BC,∴∠DAC=∠ACB=72°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=1∠DAC=36°.2∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°-36°=54°,∴∠α=54°.故选:A.【点睛】本题考查的是作图-基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.10.B解析:B【分析】直接利用勾股定理得出DC的长,再利用角平分线的定义以及等腰三角形的性质得出BE的长,进而得出答案.【详解】解:∵四边形ABCD是长方形,∴∠B=∠C=90°,AB=DC,∵ED=5,EC=3,∴DC2222-=-=,534ED EC则AB=4,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE =∠BEA ,∴AB =BE =4,∴长方形的周长为:2×(4+4+3)=22.故选:B .【点睛】本题考查了矩形的性质、等腰三角形的判定、勾股定理等,解题关键是把握已知,整合已知得出等腰三角形,依据勾股定理求出线段长.11.B解析:B【分析】连接FG ,根据菱形的性质和轴对称的性质可得∠A=60°,AE =AF ,BF =BG ,进而可证△AEF 是等边三角形及△BFG 是等腰三角形,根据等边三角形的性质和等腰三角形的性质可求得EF 和FG 的长,且∠EFG=90°,根据勾股定理即可求得EG 的长.【详解】解:连接FG ,过点B 作BH ⊥FG 于H ,如图,∵菱形ABCD ,∠ADC =120°,∴∠A =60°,∠ABC =120°,∵点E 关于∠A 的平分线的对称点为F ,点F 关于∠B 的平分线的对称点为G , ∴AE =AF=1,BF =BG ,∴△AEF 是等边三角形,∴∠AFE =60°,EF=AF=1∵BF =BG ,∴△BFG 是等腰三角形,∴∠GFB =1801202-=30°, ∴∠EFG =180°﹣60°﹣30°=90°,∵BF =4﹣1=3,∴BH=32,22223333()22BF BH -=-=, ∴FG =3∴EG 2221(33)27EF FG =+=+故选:B .【点睛】本题考查了菱形的性质、轴对称的性质、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的三边关系、勾股定理,属于常考基本题型,难度适中,充分利用轴对称的性质是解答的关键.12.B解析:B【分析】根据等腰直角三角形和三角形内角和性质,得45A ACB ∠=∠=︒,即AB BC =,再根据勾股定理的性质计算,得AC ;根据直角三角形斜边中线的性质,得AD CD BD ==;结合30E ∠=︒,根据含30角的直角三角形的性质,得BE ,最后根据勾股定理计算,即可得到答案.【详解】∵ABC 是等腰直角三角形,2AB =∴90ABC ∠=︒,∴45A ACB ∠=∠=︒,∴2AB BC == , ∴AC ==∵ABC 是等腰直角三角形,D 是AC 的中点, ∴AD CD BD ===90BDC ∠=︒, ∵30E ∠=︒, ∴2BE BD == ,∴DE == ∴CE DE CD =-=故选:B .【点睛】本题考查了等腰三角形、三角形内角和、勾股定理、直角三角形的知识;解题的关键是熟练掌握等腰三角形、三角形内角和、勾股定理、直角三角形的性质,从而完成求解.二、填空题13.【分析】设4位家长为ABCD 小亮和小明的家长分别为AB 画出树状图即可【详解】解:设小亮小明的家长分别用AB 表示另外两个家长用CD 表示列树状图如下:∴一共有12种等可能的结果同时选中小亮和小明家长有2 解析:16. 【分析】 设4位家长为A 、B 、C 、D ,小亮和小明的家长分别为A 、B ,画出树状图即可.【详解】解:设小亮、小明的家长分别用A 、B 表示,另外两个家长用C 、D 表示,列树状图如下:∴一共有12种等可能的结果,同时选中小亮和小明家长有2种情况,∴P (小亮和小明的家长被同时选中)=2÷12=16. 故答案为:16. 【点睛】此题考查了概率,用到的知识点为:概率=所求情况数与总情况数之比. 14.8【分析】设有红球有x 个利用频率约等于概率进行计算即可【详解】设红球有x 个根据题意得:=20解得:x =8即红色球的个数为8个故答案为:8【点睛】本题考查了由频率估计概率的知识解题的关键是了解大量重复 解析:8【分析】设有红球有x 个,利用频率约等于概率进行计算即可.【详解】设红球有x 个, 根据题意得:40x =20%, 解得:x =8,即红色球的个数为8个,故答案为:8.【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率. 15.20【分析】本题需先设出这个增长率是x 再根据已知条件找出等量关系列出方程求出x 的值即可得出答案【详解】解:设这个增长率为x 由题意得20000(1+x)2=28800(1+x)2=1441+x=±12解析:20%【分析】本题需先设出这个增长率是x ,再根据已知条件找出等量关系列出方程,求出x 的值,即可得出答案.【详解】解:设这个增长率为x ,由题意得20000(1+x)2=28800,(1+x)2=1.44,1+x=±1.2,所以x 1=0.2,x 2=-2.2(舍去),故x=0.2=20%.故答案是:20%.【点睛】本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.16.y2+y ﹣2=0【分析】可根据方程特点设y =则原方程可化为﹣y =1化成整式方程即可【详解】解:方程﹣=1若设y =把设y =代入方程得:﹣y =1方程两边同乘y 整理得y2+y ﹣2=0故答案为:y2+y ﹣2解析:y 2+y ﹣2=0【分析】可根据方程特点设y =21x x-,则原方程可化为2y ﹣y =1,化成整式方程即可. 【详解】 解:方程221x x -﹣21x x-=1, 若设y =21x x-, 把设y =21x x-代入方程得:2y ﹣y =1, 方程两边同乘y ,整理得y 2+y ﹣2=0.故答案为:y 2+y ﹣2=0.【点睛】本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.17.5【分析】利用根与系数的关系解答【详解】∵方程的根是x1x2∴∵∴5故答案为:5【点睛】此题考查一元二次方程根与系数的关系熟记根与系数的两个关系式并应用是解题的关键解析:5【分析】利用根与系数的关系解答.【详解】∵方程240x x k -+=的根是x 1、x 2,∴124x x+=,∵11x=-,∴2x=5,故答案为:5.【点睛】此题考查一元二次方程根与系数的关系,熟记根与系数的两个关系式并应用是解题的关键.18.(10)或(-18)【分析】画出旋转后的图形根据旋转的性质可知OD1的长和C2D2C2O的长由此判断点D1的坐标【详解】如图所示:根据旋转的性质旋转前后两个图形全等如果△BCD绕点B逆时针旋转90°解析:(1,0)或(-1,8)【分析】画出旋转后的图形,根据旋转的性质可知OD1的长和C2D2,C2O的长,由此判断点D1的坐标.【详解】如图所示:根据旋转的性质,旋转前后两个图形全等,如果△BCD绕点B逆时针旋转90°后得△BOD1,CD= OD1,BC =BO,∵四边形AOBC是正方形,D(-4,3),∴BC=4,CD =4-3=1,∴OD1=1∴D1(1,0)如果△BCD绕点B顺时针旋转90°后得△BC2D2C2O=BO+BC2=4+4=8,C2D2=CD=1,点D 2的的坐标为D 2(-1,8).故答案为:(1,0)或(-1,8).【点睛】本题主要考查图形的旋转及旋转的性质和正方形的性质,熟练掌握旋转的性质是解题的关键.19.20【分析】首先可判断四边形BGFD 是平行四边形再由直角三角形斜边中线等于斜边一半可得BD=FD 则可判断四边形BGFD 是菱形设GF=x 则AF=13-xAC=2x 在Rt △AFC 中利用勾股定理可求出x 的解析:20【分析】首先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD ,则可判断四边形BGFD 是菱形,设GF=x ,则AF=13-x ,AC=2x ,在Rt △AFC 中利用勾股定理可求出x 的值.【详解】∵AG ∥BD ,BD=FG ,∴四边形BGFD 是平行四边形,∵CF ⊥BD ,∴CF ⊥AG ,又∵点D 是AC 中点,∴BD=DF= 12AC , ∴四边形BGFD 是菱形,设GF=x ,则AF=13-x ,AC=2x ,在Rt △AFC 中,由勾股定理可得:()()2236132x x +-=解得:5x =即GF=5∴四边形BDFG 的周长=4GF=20.故答案为:20.【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD 是菱形. 20.4【分析】要求PE+PC 的最小值PEPC 不能直接求可考虑通过作辅助线转化PEPC 的值从而找出其最小值求解【详解】解:如图连接AE ∵点C 关于BD 的对称点为点A ∴PE+PC =PE+AP 根据两点之间线段最解析:【分析】要求PE +PC 的最小值,PE ,PC 不能直接求,可考虑通过作辅助线转化PE ,PC 的值,从而找出其最小值求解.【详解】解:如图,连接AE,∵点C关于BD的对称点为点A,∴PE+PC=PE+AP,根据两点之间线段最短可得AE就是AP+PE的最小值,∵正方形ABCD的边长为8,E是BC边的中点,∴BE=4,∴AE224845=+=,故答案为:45.【点睛】此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用.根据已知得出两点之间线段最短可得AE就是AP+PE的最小值是解题关键.三、解答题21.(1)23;(2)49.【分析】(1)先确定三张卡片中画有中心对称图形的个数,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可.【详解】解:(1)双曲线、抛物线、圆中是中心对称图形的有双曲线和圆两张卡片,∴从中任意摸出一张卡片,摸到的卡片上画有中心对称图形的概率P为23;(2)三种图形中既是中心对称图形又是轴对称图形的是双曲线和圆,∴两次都摸到A或C卡片时满足题意,根据题意列树状图如下:一共9种情况,两次摸到的卡片是A或C的有4种情况,∴两次摸到的卡片上所画图形都既是中心对称图形又是轴对称图形概率P 为49. 【点睛】 本题考查了概率的意义以及通过列树状图或列表法求概率,属于基础题,熟练掌握列树状图或列表法求概率是解决本题的关键.22.(1) x 1=x 2=2;(2) x 1=2,x 2=2. 【分析】(1)利用配方法解一元二次方程,即可求出答案;(2)利用公式法解一元二次方程,即可求出答案.【详解】解:(1)2410x x -+=,∵x 2﹣4x =﹣1,∴x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,则x ﹣2=∴x1=x 2=2(2)2104x --=, ∵a =1,b,c =﹣14, ∴△2﹣4×1×(﹣14)=3>0,则x即x 1=2,x 2=2. 【点睛】本题考查了解一元二次方程,解题的关键是掌握配方法和公式法解一元二次方程.23.2x x+,3 【分析】 根据分式的加减乘除运算法则进行运算化简,再解方程把x 的值代入计算即可求出值.【详解】 解:22221444x x x x x x -+⎛⎫-÷ ⎪-++⎝⎭ 22(1)1(2)(2)(2)x x x x x x ⎡⎤-+=-÷⎢⎥+-+⎣⎦21(2)12(1)x x x x +⎛⎫=-⋅ ⎪++⎝⎭221(2)2(1)x x x x x +-+=⋅++ x 2x+=, 由220x x +-=,解得12x =-,21x =.要使分式有意义,则1x =,∴当1x =时,原式1231+==. 【点睛】本题主要考查了分式的化简求值,解一元二次方程,解题的关键是掌握分式混合运算顺序和运算法则.24.(1)2,45,20;(2)图见解析,72;(3)16【分析】(1)用A 等次的人数除以它所占的百分比得到调查的总人数,再分别求出a 和B 等次的人数,然后计算出b 、c 的值;(2)先补全条形统计图,然后用360°乘以C 等次所占的百分比得到C 等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解.【详解】解:(1)1230%40÷=,405%2a =⨯=;401282%100%45%40b ---=⨯=,即45b =; 8%100%20%40c =⨯=,即20c =; 故答案为:2,45,20;(2)B 等次人数为40128218---=,条形统计图补充为:C 等次的扇形所对的圆心角的度数20%36072=⨯︒=︒;故答案为72︒;(3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2, 所以甲、乙两名男生同时被选中的概率21126==. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图.25.(1)见解析;(2)当点O 运动到AC 的中点时,四边形AECF 是矩形,理由见解析;(3)ABC 满足ACB ∠为直角时,四边形AECF 是正方形,理由见解析.【分析】(1)由平行线的性质和角平分线的定义得出32∠=∠,13∠=∠,得出EO=CO ,FO=CO ,即可得出结论;(2)先证明四边形AECF 是平行四边形,再由对角线相等,即可得出结论;(3)由//BC MN ,得出AOE ACB ∠=∠,当90ACB ∠=︒时,AC EF ⊥即可.【详解】(1)证明:如图,∵//BC MN ,∴32∠=∠.又∵CF 平分ACG ∠,∴12∠=∠,∴13∠=∠,∴FO CO =,同理,EO CO =,∴EO FO =.(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形,证明如下:当点O 运动到AC 的中点时,AO CO =.又∵EO FO =,∴四边形AECF 是平行四边形,由(1)可知,FO CO =,∴AO CO EO FO ===,∴AO CO EO FO +=+,即AC EF =,∴四边形AECF 是矩形.(3)当点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,四边形AECF 是正方形.在(2)的条件下,ABC 满足ACB ∠为直角时,四边形AECF 是正方形.理由:由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形.∵//BC MN ,∴AOE ACB ∠=∠,当90ACB ∠=︒时,90AOE ∠=︒,即AC EF ⊥,∴四边形AECF 是正方形.【点睛】本题考查了平行线的性质、等腰三角形的判定、矩形的判定、菱形的判定、正方形的性质;熟练掌握平行线的性质和矩形、菱形的判定方法,并能进行推理论证是解决问题的关键.26.小鸟至少飞行13米.【分析】先画出图形,再根据矩形的判定与性质、勾股定理可求出AC 的长,然后根据两点之间线段最短可得最短飞行距离等于AC 的长,由此即可得.【详解】画出图形如下所示:由题意得:,,4AB BD CD BD AB ⊥⊥=米,9CD =米,12BD =米,过点A 作AE CD ⊥于点E ,则四边形ABDE 是矩形,12AE BD ∴==米,4DE AB ==米,5CE CD DE ∴=-=米,在Rt ACE △中,222212513AC AE CE +=+=(米),由两点之间线段最短得:小鸟飞行的最短距离等于AC 的长,即为13米,答:小鸟至少飞行13米.【点睛】本题考查了矩形的判定与性质、勾股定理、两点之间线段最短等知识点,依据题意,正确画出图形是解题关键.。
一、选择题1.从﹣4,﹣3,﹣2,﹣1,0,1,3,4,5这九个数中,随机抽取一个数,记为a,则数a使关于x的不等式组()1242122123x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩至少有四个整数解,且关于x的分式方程233a xx x++--=1有非负整数解的概率是()A.29B.13C.49D.592.对一批衬衣进行抽检,得到合格衬衣的频数表如下,若出售1200件衬衣,则其中次品的件数大约是()抽取件数(件)501001502005008001000合格频数4898144193489784981A.12 B.24 C.1188 D.11763.如图为某一试验结果的频率随试验次数变化趋势图,则下列试验中不符合该图的是()A.掷一枚普通正六面体骰子,出现点数不超过2B.掷一枚硬币,出现正面朝上C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于74.先后随机抛掷一枚质地均匀的正方体骰子两次,第一次掷出的点数记为a,第二次掷出的点数记为c,则使关于x的一元二次方程260ax x c++=有实数解的概率为()A.49B.1736C.12D.19365.关于x的一元二次方程x2﹣4x+2n=0无实数根,则一次函数y=(2﹣n)x+n的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限6.一元二次方程20x x +=的根的情况为( ) A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根7.用配方法解方程2420x x -+=,下列配方正确的是( ) A .()222x -=B .()222x += C .()222x -=- D .()226x -=8.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( ) A .2000(1)2420x += B .2000(12)2420x += C .22000(1)2420x -=D .22000(1)2420x +=9.如图,O 是菱形ABCD 的对角线,AC BD 的交点,E ,F 分别是,OA OC 的中点给出下列结论:①ADEEODSS=;②四边形BFDE 也是菱形;③四边形ABCD 的面积大小等于EF BD ⋅;④ADE EDO ∠=∠;⑤是轴对称图形.其中正确的结论有( )A .2个B .3个C .4个D .5个10.如图,矩形ABCD 的对角线相交于点O ,过点O 作OG AC ⊥,交AB 于点G ,连接CG ,若15BOG ∠=,则BCG ∠的度数是( )A .15B .15.5C .20D .37.5 11.四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是( ) A .AB =CDB .AD =BCC .AB =BCD .AC =BD12.□ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,可推出□ABCD 是菱形,那么这个条件可以是( ) A .AB=CDB .AC=BDC .AC ⊥BDD .AB ⊥BD二、填空题13.在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上,从A 、D 、E 、F 中任取两点,以所取这两点和点B 、C 作四边形,则所作四边形是平行四边形的概率为____.14.盒子里有10个除颜色外完全相同的球,若摸到红球的概率是35,则红球有_____个. 15.方程2640x x -+=的两个实根分别为1x ,2x ,那么1212x x x x --的值为______. 16.若3x =是方程230x bx -+=的一个根,则b 的值为______.17.一元二次方程2310x x --=与230x x --=的所有实数根的和等于____. 18.如图,AC 是菱形ABCD 的对角线,P 是AC 上的一个动点,过点P 分别作AB 和BC 的垂线,垂足分别是点F 和E ,若菱形的周长是12cm ,面积是6cm 2,则PE +PF 的值是_____cm .19.如图,在ABC 中,90ABC ∠=︒,BD 为AC 的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .若13AG =,6CF =,则四边形BDFG 的周长为______.20.请你写出一个原命题与它的逆命题都是真命题的命题____________________ .三、解答题21.今年2-4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数扇形统计图(不完整),图2是这三类患者的人均治疗费用统计图,请回答下列问题: (1)轻症患者的人数是多少?(2)所有患者的平均治疗费用是多少万元?(3)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A 、B 、C 、D 、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B 、D 两位患者的概率.22.在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是 .(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是奇数的概率.23.已知关于x 的一元二次方程x 2+2mx+m 2+m=0有两个不相等的实数根. (1)求m 的取值范围.(2)若x 1,x 2是方程的两根,且x 12+x 22=12,求m 的值. 24.解方程:(1)2213x x +=(配方法) (2)2531x x x -=+25.如图,长方形OBCD 的OB 边在x 轴上,OD 边在y 轴上,OB=15,OD=9,在BC 上取一点E ,使△CDE 沿DE 折叠后,点C 落在x 轴上,记作点F .(1)求点F 的坐标; (2)求点E 的坐标.26.如图1、图2都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.已知点O ,M ,N ,A ,B 均在格点上,请按要求完成下列问题:(1)在图①中,仅用无刻度直尺在网格中画出∠MON 的平分线OP ,并简要说明画图的依据;(2)在图②中,仅用无刻度直尺在网格中画一个Rt △ABC ,使点C 在格点上,并简要说明画图的依据.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先解出不等式组,找出满足条件的a 的值,然后解分式方程,找出满足非负整数解的a 的值,然后利用同时满足不等式和分式方程的a 的个数除以总数即可求出概率. 【详解】解不等式组得:7x ax ≤⎧⎨>-⎩, 由不等式组至少有四个整数解,得到a≥﹣3, ∴a 的值可能为:﹣3,﹣2,﹣1,0,1,3,4,5, 分式方程去分母得:﹣a ﹣x+2=x ﹣3, 解得:x =52a - , ∵分式方程有非负整数解, ∴a =5、3、1、﹣3,则这9个数中所有满足条件的a 的值有4个, ∴P =49故选:C . 【点睛】本题主要考查解一元一次不等式组,分式方程的非负整数解,随机事件的概率,掌握概率公式是解题的关键.2.B解析:B【分析】由表中数据可判断合格衬衣的频率稳定在0.98,于是利于频率估计概率可判断任意抽取一件衬衣是合格品的概率为0.98,从而得出结论.【详解】解:根据表中数据可得任抽取一件衬衣是合格品的概率为0.98,次品的概率为0.02,出售1200件衬衣,其中次品大约有1200×0.02=24(件),故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.3.B解析:B【分析】首先根据折线统计图可得出该事件的概率在30%以上,分别计算各选项概率,即可得出答案.【详解】解:A.掷一枚普通正六面体骰子,出现点数不超过2的概率为13,符合该图;B.掷一枚硬币,出现正面朝上的概率为12,不符合该图;C.从装有2个黑球、1个白球的不透明布袋中随机摸出一球为白球的概率为13,符合该图;D.从分别标有数字l,2,3,4,5,6,7,8,9的九张卡片中,随机抽取一张卡片所标记的数字不小于7概率为13,符合该图.故选:B.【点睛】本题考查的知识点是用频率估计概率,解题的关键是从折线统计图中得出事件的概率值.4.B解析:B【分析】列表展示所有36种等可能的结果数,再根据判别式的意义得到△≥0,从而得到使得一元二次方程ax2-6x+c=0有相等实数解的结果数,然后根据概率公式求解.【详解】解:列表得:∵b=6,当b2-4ac≥0时,有实根,即36-4ac≥0有实根,∴ac≤9,∴方程有实数根的有17种情况,∴方程有实数根的概率=17,36故选:B.【点睛】本题考查列表法与树状图法求概率,一元二次方程实根的情况,是一个综合题,解题的关键是对于一元二次方程的解的情况的分析,解题时有一定难度.5.C解析:C【分析】由一元二次方程根的情况可以求出n的范围,并可得到一次函数中参数的范围,从而得到问题解答.【详解】解:由已知得:△=b2﹣4ac=(﹣4)2﹣4×1×(2n)=16﹣8n<0,解得:n>2,∵一次函数y=(2﹣n)x+n中,k=2﹣n<0,b=n>0,∴该一次函数图象在第一、二、四象限,故选:C.【点睛】本题考查一次函数的综合应用,熟练掌握一元二次方程根判别式的计算和应用、一次函数的图象与性质是解题关键.6.D解析:D【分析】确定a、b、c计算根的判别式,利用根的判别式直接得出结论;【详解】 ∵20x x += , ∴ △=1-0=1>0,∴ 原方程有两个不相等的实数根; 故选:D . 【点睛】本题考查了根的判别式、一元二次方程实数根的情况取决于根的判别式△,正确掌握△的值与根的个数的关系是解题的关键.7.A解析:A 【分析】先把方程变形为x 2-4x=-2,再把两方程两边加上4,然后把方程左边用完全平方公式表示即可. 【详解】 解:x 2-4x=-2, x 2-4x+4=2, (x-2)2=2. 故选:A . 【点睛】本题考查了解一元二次方程-配方法:将一元二次方程配成(x+m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8.D解析:D 【分析】根据开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天收入约为2420元列方程即可得到结论. 【详解】设每天的增长率为x ,依题意,得:22000(1)2420x +=.故选:D . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.C解析:C 【分析】①正确,根据三角形的面积公式可得到结论. ②根据已知条件利用菱形的判定定理可证得其正确.③正确,根据菱形的面积等于对角线乘积的一半即可求得.④不正确,根据已知可求得∠FDO =∠EDO ,而无法求得∠ADE =∠EDO . ⑤正确,由已知可证得△DEO ≌△DFO ,从而可推出结论正确. 【详解】 解:①正确∵E 、F 分别是OA 、OC 的中点. ∴AE =OE .∵S △ADE 12=⨯AE ×OD 12=⨯OE ×OD =S △EOD ∴S △ADE =S △EOD . ②正确∵四边形ABCD 是菱形,E ,F 分别是OA ,OC 的中点. ∴EF ⊥OD ,OE =OF . ∵OD =OB .∴四边形BFDE 是菱形. ③正确∵菱形ABCD 的面积12=AC ×BD . ∵E 、F 分别是OA 、OC 的中点.∴EF 12=AC . ∴菱形ABCD 的面积=EF ×BD . ④不正确由已知可求得∠FDO =∠EDO ,而无法求得∠ADE =∠EDO . ⑤正确∵EF ⊥OD ,OE =OF ,OD =OD . ∴△DEO ≌△DFO . ∴△DEF 是轴对称图形.∴正确的结论有四个,分别是①②③⑤, 故选:C . 【点睛】此题主要考查学生对菱形的性质等知识的理解及运用能力.10.A解析:A 【分析】根据矩形的性质求出OCB ∠的度数,从而得到GAC ∠的度数,再根据垂直平分线的性质得到GCA GAC ∠=∠,最后求出BCG ∠的度数. 【详解】解:∵OG AC ⊥,∴90COG ∠=︒, ∵15BOG ∠=︒,∴901575COB COG BOG ∠=∠-∠=︒-︒=︒, ∵四边形ABCD 是矩形, ∴AC BD =,12OC OA AC ==,12OB OD BD ==,//AB DC ,90BCD ∠=︒, ∴OC OB =,∴1801807552.522COB OCB OBC ︒-∠︒-︒∠=∠===︒,∴37.5ACD BCD OCB ∠=∠-∠=︒,∵//AB CD ,∴37.5GAC ACD ∠=∠=︒, ∵OG AC ⊥,OA OC =, ∴GO 是AC 的垂直平分线, ∴AG CG =,∴37.5GCA GAC ∠=∠=︒,∴52.537.515BCG OCB GCA ∠=∠-∠=︒-︒=︒. 故选:A . 【点睛】本题考查矩形的性质,垂直平分线的性质,解题的关键是熟练掌握这些性质定理,并结合题目条件进行证明.11.D解析:D 【分析】由四边形ABCD 的对角线互相平分,可得四边形ABCD 是平行四边形,再添加AC=BD ,可根据对角线相等的平行四边形是矩形证明四边形ABCD 是矩形. 【详解】∵四边形ABCD 的对角线互相平分, ∴四边形ABCD 是平行四边形,A 、AB=CD 是平行四边形的性质,并不能得出四边形ABCD 是矩形;B 、AD=BC 是平行四边形的性质,不能推出四边形ABCD 是矩形; C 、AB=BC 时,四边形ABCD 是菱形,而不是矩形; D 、AC=BD 时,由对角线相等的平行四边形是矩形. 故选:D . 【点睛】本题主要考查了矩形的判定,解题的关键是掌握矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.12.C【分析】根据菱形的定义和判定定理逐项作出判断即可.【详解】解:A. AB=CD,无法判断四边形ABCD是菱形,不合题意;B. AC=BD,根据对角线相等的平行四边形是矩形可以判断□ABCD是矩形,不合题意;C. AC⊥BD,根据对角线互相垂直的平行四边形是菱形可以判断□ABCD是菱形,符合题意;D. AB⊥BD,可以得到∠B=90°,根据有一个角是直角的平行四边形叫矩形可以判断□ABCD 是矩形,不合题意.故选:C【点睛】本题考查了菱形的判定,熟知菱形的定义和判定定理是解题的关键.二、填空题13.【分析】利用树状图得出从ADEF四个点中先后任意取两个不同的点一共有12种可能进而得出以点AEBC为顶点及以DFBC为顶点所画的四边形是平行四边形即可求出概率【详解】解:用树状图或利用表格列出所有可解析:1 3【分析】利用树状图得出从A、D、E、F四个点中先后任意取两个不同的点,一共有12种可能,进而得出以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,即可求出概率.【详解】解:用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P=41123.故答案为:13.【点睛】此题结合平行四边形的判定来考查利用树状图求概率,根据已知正确列举出所有结果,进而得出概率是解题关键.14.6【解析】【分析】用概率表示该色求所占比例可求红球个数【详解】由已知可得:红球个数10×=6故答案为6【点睛】本题考核知识点:概率解题关键点:理解概率意义【解析】【分析】用概率表示该色求所占比例,可求红球个数. 【详解】由已知可得:红球个数10×35=6 故答案为6【点睛】本题考核知识点:概率. 解题关键点:理解概率意义.15.【分析】根据根与系数的关系求出x1+x2和的值然后代入计算即可【详解】∵方程的两个实根分别为∴x1+x2==∴=-(x1+x2)=-2故答案为:-2【点睛】本题考查了一元二次方程ax2+bx+c=0 解析:2-【分析】根据根与系数的关系求出x 1+x 2和12x x ⋅的值,然后代入计算即可. 【详解】∵方程2640x x -+=的两个实根分别为1x ,2x , ∴x 1+x 2=661--=,12x x ⋅=441=,∴1212x x x x --=12x x ⋅-(x 1+x 2)=-2. 故答案为:-2 【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1+x 2=b a -,12x x ⋅=ca. 16.4【分析】将x=3代入解方程即可【详解】将代入方程得9-3b+3=0解得b=4故答案为:4【点睛】此题考查一元二次方程的解解方程正确计算是解题的关键解析:4 【分析】将x=3代入解方程即可. 【详解】将3x =代入方程230x bx -+=, 得9-3b+3=0, 解得b=4, 故答案为:4. 【点睛】此题考查一元二次方程的解,解方程,正确计算是解题的关键.17.4【分析】利用一元二次方程根于系数的关系式求出根的和即可【详解】解:∵∴∵∴∴所有实数根的和等于4故答案是:4【点睛】本题考查一元二次方程根于系数的关系解题的关键是掌握一元二次方程根与系数的关系式解析:4 【分析】利用一元二次方程根于系数的关系式求出根的和即可. 【详解】解:∵2310x x --=, ∴123bx x a +=-=, ∵230x x --=, ∴121bx x a+=-=, ∴所有实数根的和等于4. 故答案是:4. 【点睛】本题考查一元二次方程根于系数的关系,解题的关键是掌握一元二次方程根与系数的关系式.18.2【分析】连接BP 根据菱形的面积公式和三角形的面积公式得S △ABC =S △ABP +S △BPC =S △ABP +S △BPC =AB•PE +BC•PE 把相应的值代入即可【详解】解:连接BP ∵四边形ABCD 是菱形解析:2 【分析】连接BP ,根据菱形的面积公式和三角形的面积公式得S △ABC =S △ABP +S △BPC =12ABCDS 菱形,S △ABP +S △BPC =12AB•PE +12BC•PE 把相应的值代入即可. 【详解】 解:连接BP ,∵ 四边形ABCD 是菱形,且周长是12cm ,面积是6cm 2∴AB =BC =14×12=3(cm ), ∵AC 是菱形ABCD 的对角线,∴ S △ABC =S △ABP +S △BPC =12ABCD S 菱形=3(cm 2), ∴S △ABP +S △BPC =12AB•PE +12BC•PE =3(cm 2), ∴12×3×PE +12×3×PF =3, ∴PE +PF =3×23=2(cm ), 故答案为:2. 【点睛】此题考查菱形的性质,S △ABP +S △BPC =S △ABC =12ABCD S 菱形是解题的关键.注意掌握辅助线的作法和数形结合思想的应用.19.20【分析】首先可判断四边形BGFD 是平行四边形再由直角三角形斜边中线等于斜边一半可得BD=FD 则可判断四边形BGFD 是菱形设GF=x 则AF=13-xAC=2x 在Rt △AFC 中利用勾股定理可求出x 的解析:20 【分析】首先可判断四边形BGFD 是平行四边形,再由直角三角形斜边中线等于斜边一半,可得BD=FD ,则可判断四边形BGFD 是菱形,设GF=x ,则AF=13-x ,AC=2x ,在Rt △AFC 中利用勾股定理可求出x 的值. 【详解】∵AG ∥BD ,BD=FG ,∴四边形BGFD 是平行四边形, ∵CF ⊥BD , ∴CF ⊥AG , 又∵点D 是AC 中点, ∴BD=DF=12AC , ∴四边形BGFD 是菱形, 设GF=x ,则AF=13-x ,AC=2x , 在Rt △AFC 中,由勾股定理可得:()()2236132x x +-=解得:5x = 即GF=5∴四边形BDFG 的周长=4GF=20. 故答案为:20. 【点睛】本题考查了菱形的判定与性质、勾股定理及直角三角形的斜边中线的性质,解答本题的关键是判断出四边形BGFD是菱形.20.对角线互相平分且相等的四边形是矩形(答案不唯一)【分析】命题由题设和结论两部分组成题设是已知事项结论是由已知事项推出的事项;题设成立结论也成立的叫真命题而题设成立结论不成立的为假命题把一个命题的题设解析:对角线互相平分且相等的四边形是矩形(答案不唯一)【分析】命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项;题设成立,结论也成立的叫真命题,而题设成立,结论不成立的为假命题,把一个命题的题设和结论互换即可得到其逆命题.【详解】解:如命题:对角线互相平分且相等的四边形是矩形,真命题,逆命题是矩形的对角线互相平分且相等,真命题,故答案为:对角线互相平分且相等的四边形是矩形(答案不唯一).【点睛】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题.三、解答题21.(1)160人;(2)人均治疗费用2.15万元;(3)1 10.【分析】(1)由总人数乘以轻症患者所占的百分比即可;(2)利用扇形统计图的百分比与条形统计图的信息,列出求平均数的算式,即可求出各种患者的平均费用;(3)根据题意列出表格,由表格求得所有等可能的结果与恰好选中B、D患者概率的情况,再利用概率公式即可求得答案.【详解】解:(1)20080%160⨯=(人);(2)20080% 1.520015%32005%102.15200⨯⨯+⨯⨯+⨯⨯=(万元),即人均治疗费用2.15万元;(3)根据题意,列表如下:∴P(恰好选中B、D)211010==.【点睛】此题考查了用列表法或树状图法求概率以及条形统计图、扇形统计图的应用,掌握列表法或树状图求概率及条形统计图与扇形统计图的综合应用是解题的关键.22.(1)34;(2)23【分析】(1)根据口袋中数字不大于3的小球有3个,即可确定概率;(2)通过列表或画树状图写出所有的等可能结果,然后数出两次摸出小球上的数字和恰好是奇数的结果,即可得到概率.【详解】解:(1)34;(2)列表得:两次摸出小球上的数字和恰好是奇数的情况有8种:即:(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3).∴P (两次摸出小球上的数字和恰好是奇数)=82123=. 【点睛】本题考查了概率的计算,熟练掌握画树状图或列表法求概率是解题的关键. 23.(1)0m <;(2)-2 【分析】(1)根据根的判别式大于零求解即可;(2)先求出x 1+x 2=-2m ,x 1·x 2=m 2+m ,然后把x 12+x 22=12变形为(x 1+x 2)2-2x 1x 2=12,再把x 1+x 2=-2m ,x 1·x 2=m 2+m 代入求解即可; 【详解】解:(1)∵此方程有两个不相等的实数根, ∴b 2-4ac>0 ,即4m 2-4(m 2+m)>0, ∴m<0;(2)x 1+x 2=-2m ,x 1·x 2=m 2+m , ∵x 12+x 22=12, ∴(x 1+x 2)2-2x 1x 2=12, ∴m=3或m=-2,由(1)可知m<0,故m=3舍去, ∴m=-2. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,以及根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅=. 24.(1) 11x =,212x =;(2) 11x =,21-5x =.【分析】(1) 按照配方法的基本步骤求解即可; (2) 用因式分解法求解即可. 【详解】(1) ∵2213x x +=, ∴210-23x x +=, ∴22-3102x x +=, ∴2223331()()04-242x x +---+=, ∴231()416x -=, ∴3144x -=±,∴131144x =+=,2311442x =-=, 故方程的两个根为11x =,212x =; (2) ∵2531x x x -=+, ∴25310x x x ---=, ∴25410x x --=, ∴(51)(1)0x x +-=, ∴510x +=或10x -=, ∴11x =,21-5x =. 【点睛】本题考查了一元二次方程的解法,突出了配方法,熟练掌握配方法的基本要领,灵活选择求解方法是解题的关键.25.(1)点F(12,0);(2)点E(15,4) . 【分析】(1)由四边形OBCD 是长方形可得CD=OB=15、BC=OD=9、∠DOB=∠OBC=900,由折叠的性质可得DF=CD=15,然后运用勾股定理求得OF ,即可确定F 点的坐标;(2)运用线段的和差可得BF=OB-OF=3,再由折叠的性质可得CE=EF, 设BE=x ,则CE= =9-x ,然后运用勾股定理求得x 即可解答. 【详解】解:(1)∵四边形OBCD 是长方形 ∴CD=OB=15,BC=OD=9,∠DOB=∠OBC=900 由折叠△CDE 得△FDE 可知:DF=CD=15 ∴12OF ===∴点F (12,0); (2)由(1)得OF=12 ∴BF=OB-OF=15-12=3 由折叠可知:CE=EF 设BE=x ,则CE=EF=BC-BE=9-x ∴()22293x x -=+,解得x=4∴点E (15,4). 【点睛】本题主要考查了折叠的性质、长方形的性质以及勾股定理的应用,灵活应用相关知识成为解答本题的关键.26.(1)见解析;(2)见解析 【分析】(1)构造全等三角形,利用全等三角形的性质即可解决问题;(2)利用菱形以及平行线的性质即可解决问题.【详解】解:(1)如图1,射线OP即为所求的∠MON的平分线.作图依据是:可判定△MOP≌△NOP,于是有∠MOP=∠NOP.(2)如图2,△ABC即为所求作的直角三角形,其中∠ACB=90°.作图依据是:①菱形的对角线互相垂直,即BC⊥EF;②可判定AC∥EF,则AC⊥BC,所以∠ACB=90°.【点睛】本题考查作图−应用与设计、菱形的性质等知识,解题的关键是掌握菱形的性质并灵活运用所学知识解决问题.。
九年级(上)期中数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.已知,则下列比例式成立的是3x =7y(y ≠0)( )A. B. C. D. x 3=y7x 7=y3x y =37x 3=7y2.掷一枚质地均匀的标有1,2,3,4,5,6六个数字的立方体骰子,骰子停止后,出现可能性最大的是( )A. 大于4的点数B. 小于4的点数C. 大于5的点数D. 小于5的点数3.把二次函数化为的形式,正确的是y =13x 2−2x y =a(x +b )2+c ( )A. B. y =13(x +3)2−3y =13(x−3)2−3C. D. y =(x +3)2−9y =(x +3)2−94.下列有关圆的一些结论,其中正确的是( )A. 圆内接四边形对角互补B. 相等的圆心角所对的弧相等C. 平分弦的直径垂直于弦,并且平分弦所对的弧D. 任意三点可以确定一个圆5.抛物线可以由抛物线先向___平移2个单位再向___平移个单y =x 2y =(x−2)2+1212位得到( )A. 右,下B. 右,上C. 左,下D. ,左,上...6.若的半径为5,圆心A 的坐标为,点P 的坐标是,则点P 与QA 的⊙A (3,4)(5,8)位置关系是( )A. P 在上B. P 在内C. P 在外D. 不确定⊙A ⊙A ⊙A 7.跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度单位:与水平距离单位:近似满足y(m)x(m)函数关系如图记录了某运动员起跳后的x 与y 的三组数据,y =ax 2+bx +c(a ≠0).根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为( )A. 10mB. 15mC. 20mD. 22.5m8.如图,的顶点A 、B 、C 均在上,若△ABC ⊙O ,则的大小是∠ABC +∠AOC =75°∠OAC ( )A. 25°B. 50°C. 65°D. 75°9.设的图象与x 轴有m 个交点,的图象与x y =(x +a)(x +b)y =(ax +1)(bx +1)轴n 个交点,则所有可能的数对有对.(m,n)( )A. 2 B. 3 C. 4 D. 610.如图坐标系中,,,,将沿直线CD 折叠,使点AO(0,0)A(6,63)B(12,0)△OAB 恰好落在线段OB 上的点E 处,若,则AC :AD 的值是OE =125( )A. 1:2B. 2:3C. 6:7D. 7:8二、填空题(本大题共6小题,共24.0分)11.已知圆心角为的扇形面积为,那么扇形的弧长为______.120°12π12.一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的概率小于,则密码的位数至少需要______位.199913.如图,某下水道的横截面是圆形的,水面CD 的宽度为2米,F是线段CD 的中点,EF 经过圆心O 交与点E ,米,⊙O EF =3则直径的长是______米.⊙O 14.已知抛物线过点,且抛物线上任意不同两点,y =ax 2+bx +c A(0,3)M(x 1,y 1)N(x 2都满足:当时,;当时,,y 2)x 1<x 2<0(x 1−x 2)(y 1−y 2)>00<x 1<x 2(x 1−x 2)(y 1−以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B ,C ,且B 在y 2)<0.C 的左侧,有一个内角为,则抛物线的解析式为______.△ABC 60°15.如图,已知矩形ABCD ,AB ::2,P 为线段AB 上的一点,以BP 为边作矩BC =1形EFBP ,使点F 在线段CB 的延长线上,矩形ABCD ∽矩形EFBP ,设,EF =a ,当EP 平分时,则______.AB =b ∠AEC ab =16.在平面直角坐标系中,A ,B ,C 三点分别为,,,点P 在x 轴上,(−4,0)(−4,4)(0,4)点D 在直线AB 上,若,,垂足为P ,则点P 的坐标为______.DA =1CP ⊥DP 三、解答题(本大题共7小题,共66.0分)17.如图,一圆弧过方格的格点A 、B 、C ,在方格中建立平面直角坐标系,使点A 的坐标为,(−3,2)画出平面直角坐标系.(1)仅用一把无刻度的直尺,利用网格,找出该圆弧(2)的圆心,并直接写出圆心的坐标.18.为响应垃圾分类处理,改善生态环境,某小区将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C(1)小明将垃圾分装在三个袋中,任意投放,用画树状图或列表的方法求把三个袋子都放错位置的概率是多少?(2)某学习小组为了了解居民生活垃圾分类投放的情况,现随机抽取了某天三类垃()圾箱中总共100吨的生活垃圾,数据统计如表单位:吨:A B Ca401010b3243c22610%调查发现,在“可回收垃圾”中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料,某城市每天大约产生200吨生活垃圾假设该城市每天处理投放正确的垃圾,每天大概可回收多少吨塑料类垃圾的二级原料?△ABC⊙O19.已知:如图,D是外接圆上一点,且满足DB=DC△ABC∠EAC,连接AD,求证:AD是的外角的平分线.20.汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”刹车距离y(m)x(km/ℎ)与刹车时的车速的部分关系如表:刹车时的车速050100200刹车距离0 5.546.582(1)求出y与x之间的函数关系式.(2)120km/ℎ一辆车在限速的高速公路上行驶时出了事故,事后测得它的刹车距离40.6m为,问:该车在发生事故时是否超速行驶?⊙O△ABC⊙O21.如图,是的外接圆,BC是的直径,D是劣弧的中点BD交AC于点E.AC(1)AD2=DE⋅DB求证:.(2)BC=5CD=5若,,求DE的长.22.如图,平面直角坐标系中,抛物线y=−x2+4x+m−4(m)M(3,0)为常数与y轴的交点为C,N(0,−2)与分别是x轴、y轴上的点(1)m=1当时,求抛物线顶点坐标.(2)3≤x≤3+m y=−x2+4x+m−4若时,函数有最小值,求m 的值.−7若抛物线与线段MN 有公共点,直接写出m 的取值范围是______.(3)23.若一个三角形一条边的平方等于另两条边的乘积,我们称这个三角形是比例三角形.已知是比例三角形,,,求AC 的长.(1)△ABC AB =1BC =2如图1,在四边形ABCD 中,,对角线BD 平分,(2)AB =AD ∠ABC ∠BAC =∠ADC 求证:是比例三角形①△ABC 若,如图2,求的值.②AB//DC BDAC答案和解析1.【答案】B【解析】解:A 、,可以化成:,故此选项不合题意;x3=y73y =7x B 、,可以化成:,故此选项符合题意;x7=y33x =7y C 、,可以化成:,故此选项不合题意;xy =377x =3y D 、,可以化成:,故此选项不合题意.x3=7y xy =21故选:B .直接利用比例的性质得出x ,y 之间关系,进而得出答案.此题主要考查了比例的性质,正确掌握比例的基本性质:内项之积等于外项之积是解题关键.2.【答案】D【解析】解:A 、;P 1=26=13B 、;P 2=36=12C 、;P 3=16D 、.P 4=46=23骰子停止运动后出现点数可能性大的是出现小于5的点.故选:D .求出各个选项概率即可判断本题考查可能性的大小,解题的关键是理解题意,掌握概率公式.3.【答案】B【解析】解:y =13x 2−2x=13(x 2−6x)=13[(x−3)2−9].=13(x−3)2−3故选:B .直接利用配方法将原式变形得出答案.此题主要考查了二次函数的三种形式,正确将原式变形是解题关键.4.【答案】A【解析】解:A 、圆内接四边形对角互补,故本选项符合题意;B 、在同圆或等圆中,相等的圆心角所对的弧相等,故本选项不符合题意;C 、平分弦不是直径的直径垂直于弦,故本选项不符合题意;()D 、不共线的三点确定一个圆,故本选项不符合题意;故选:A .根据确定圆的条件、圆心角、弧、弦的关系定理、垂径定理、圆内接四边形的性质进行判断即可得到正确结论.本题考查了圆心角、弧、弦的关系定理,垂径定理的推论,半圆与弧的定义,圆内接四边形的性质,熟练掌握定义与性质是解题的关键.5.【答案】C【解析】解:抛物的顶点坐标为,y =(x−2)2+12(2,12)抛物线的顶点坐标为,y =x 2(0,0)所以,抛物线可以由抛物线先向左平移2个单位,再向下平移个y =x 2y =(x−2)2+1212单位得到.故选:C .分别确定出两个抛物线的顶点坐标,再根据左减右加,上加下减确定平移方向即可得解.本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.6.【答案】B【解析】解:的坐标为,点P 的坐标是,∵A (3,4)(5,8),∴AP =(5−3)2+(8−4)2=25的半径为5,∵⊙A 点P 在的内部∴⊙A 故选:B .首先根据两点的坐标求得两点之间的距离,然后利用两点之间的距离和圆A 的半径求得点与圆的位置关系.本题考查了点与圆的位置关系,解题得到关键是根据两点的坐标求得两点之间的距离.7.【答案】B【解析】解:根据题意知,抛物线经过点、、y =ax 2+bx +c(a ≠0)(0,54.0)(40,46.2),(20,57.9)则{c =54.01600a +40b +c =46.2400a +20b +c =57.9解得,{a =−0.0195b =0.585c =54.0所以.x =−b 2a =0.5852×(−0.0195)=15(m)故选:B .将点、、分别代入函数解析式,求得系数的值;然后由抛物(0,54.0)(40,46.2)(20,57.9)线的对称轴公式可以得到答案.考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.【答案】C【解析】解:根据圆周角定理得:,∵∠AOC =2∠ABC ,∵∠ABC +∠AOC =75°,∴∠AOC =23×75°=50°,∵OA =OC ,∴∠OAC =∠OCA =12(180°−∠AOC)=65°故选:C .根据圆周角定理得出,求出,再根据等腰三角形的性质和∠AOC =2∠ABC ∠AOC =50°进行内角和定理求出即可.本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出是解此题的关键.∠AOC =2∠ABC 9.【答案】A【解析】解:的图象与x 轴有2个交点或1个交点,y =(x +a)(x +b),,或当时,有1个交点;(−a,0)(−b,0)a =b 的图象与x 轴2个交点或1个交点,y =(ax +1)(bx +1),或当时,有1个交点.(−1a ,0)(−1b ,0)−1a =−1b 所以所有可能的数对有2对.只有.(1,1)(2,2)故选:A .根据二次函数的交点式:b ,c 是常数,,可直接得到抛物y =a(x−x 1)(x−x 2)(a,a ≠0)线与x 轴的交点坐标,即可求解.(x 1,0)(x 2,0)本题考查了二次函数与x 轴的交点,解决本题的关键是熟练运用二次函数的交点式.10.【答案】B【解析】解:过A 作于F ,如图所示:AF ⊥OB ,,∵A(6,63)B(12,0),,,∴AF =63OF =6OB =12,∴BF =6,∴OF =BF ,∴AO =AB,∵tan ∠AOB =AFOF =3,∴∠AOB =60°是等边三角形,∴△AOB ,∴∠AOB =∠ABO =60°将沿直线线CD 折叠,使点A 恰好落在线段OB 上的点E 处,∵△OAB ,∴∠CED =∠OAB =60°,∴∠OCE =∠DEB ∽,∴△CEO △DBE ,∴OEBD =CEED =COBE ,∵OE =125,∴BE =OB−OE =12−125=485设,则,,,则,,CE =a CA =a CO =12−a ED =b AD =b DB =12−b 则,,12512−b=a b 12−a 485=ab ,,∴12b =60a−5ab ①48a =60b−5ab ②得:,②−①48a−12b =60b−60a ,∴ab =23即AC ::3.AD =2故选:B .过A 作于F ,根据已知条件得到是等边三角形,推出∽,AF ⊥OB △AOB △CEO △DBE 根据相似三角形的性质得到,求出,设,OEBD =CEED =COBE BE =OB−OE =12−125=485CE =a 则,,,则,,于是得到CA =a CO =12−a ED =b AD =b OB =12−b ,,两式相减得到,即可得到结12b =60a−5ab 48a =60b−5ab 48a−12b =60b−60a 论.本题考查了翻折变换折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,−证得是等边三角形是解题的关键.△AOB 11.【答案】4π【解析】解:设扇形的半径为R ,根据题意得,12π=120⋅π⋅R 2360解得,R =6所以扇形的弧长.=120⋅π⋅6180=4π故答案为.4π设扇形的半径为R ,先根据扇形的面积公式得到,解得,然后根据12π=120⋅π⋅R 2360R =6扇形的弧长公式求解.本题考查了弧长公式:弧长为l ,圆心角度数为n ,圆的半径为也考查了扇形l =nπR 180(R).的面积公式.12.【答案】3【解析】解:因为取一位数时一次就拨对密码的概率为,110取两位数时一次就拨对密码的概率为,1100取三位数时一次就拨对密码的概率为,11000故密码的位数至少需要3位.故答案为:3.分别求出取一位数、两位数、三位数、四位数时一次就拨对密码的概率,再根据小于1999所在的范围解答即可.本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率.P(A)=m n 13.【答案】103【解析】解:如图,连接OC ,是弦CD 的中点,EF 过圆心O ,∵F .∴EF ⊥CD .∴CF =FD ,∵CD =2,∴CF =1设,则,OC =x OF =3−x 在中,根据勾股定理,得Rt △COF .12+(3−x )2=x 2解得 ,x =53的直径为.∴⊙O 103故答案为:.103根据垂径定理得出,则,在中,有,EF ⊥CD CF =DF =1Rt △COF OC 2=CF 2+OF 2进而可求得半径OC .此题主要考查了垂径定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形.14.【答案】y =−23x 2+3【解析】解:抛物线过点,∵A(0,3),∴c =3当时,,由,得到,x 1<x 2<0x 1−x 2<0(x 1−x 2)(y 1−y 2)>0y 1−y 2<0当时,y 随x 的增大而增大,∴x <0同理当时,y 随x 的增大而减小,x >0抛物线的对称轴为y 轴,且开口向下,即,∴b =0以O 为圆心,OA 为半径的圆与抛物线交于另两点B ,C ,∵如图所示,为等腰三角形,∴△ABC 中有一个角为,∵△ABC 60°为等边三角形,且,∴△ABC OC =OA =3设线段BC 与y 轴的交点为点D ,则有,且BD =CD ,∠OBD =30°,,∴BD =OB ⋅cos30°=332OD =OB ⋅sin30°=32在C 的左侧,∵B 的坐标为,∴B (−332,−32)点在抛物线上,且,,∵B c =3b =0,∴3a +2=−32解得:,a =−23则抛物线解析式为,y =−23x 2+3故答案为.由A 的坐标确定出c 的值,根据已知不等式判断出,可得出抛物线的增减性,y 1−y 2<0确定出抛物线对称轴为y 轴,且开口向下,求出b 的值,如图1所示,可得三角形ABC 为等边三角形,确定出B 的坐标,代入抛物线解析式即可.此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,二次函数的图象与性质,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.15.【答案】22【解析】解:平分,,∵EP ∠AEC EP ⊥AG ,∴AP =PG =a−b BG =a−(2a−2b)=2b−a,∵PE//CF ,即,∴PE BC =PG GB a b =b−a 2a−b 解得,;a =22b 作于H ,GH ⊥AC ,∵∠CAB =45°,又,∴HG =2AG =2×(2a−2a)=(2−2)a BG =2a−b =(2−2)a ,,,∴GH =GB GH ⊥AC GB ⊥BC ,∴∠HCG =∠BCG ,∵PE//CF ,∴∠PEG =∠BCG .∴∠AEC =∠ACB =45°::2.∴a b =2故答案是:.22根据,得到,代入a 、b 的值计算求出a :b 的值.PE//CF PE BC =PG GB 考查了矩形的性质,角平分线的性质以及相似多边形的性质.16.【答案】或或(2,0)(2−22,0)(2+22,0)【解析】解:,B 两点的坐标分别为,∵A (4,0)(4,4)轴∴AB//y 点D 在直线AB 上,∵DA =1,∴D 1(4,1)D 2(4,−1)如图:当点D 在处时,要使,即使D 1CP ⊥DP △CO P 1~△P 1A D 1即解得:∴CO P 1A =OP 1AD 144−OP =OP 1O P 1=2∴P 1(2,0)当点D 在处时,D 2,∵C(0,4)D 2(4,−1)的中点∴C D 2E(2,32)∵CP ⊥DP点P 为以E 为圆心,CE 长为半径的圆与x 轴的交点∴设,则P(x,0)PE =CE 即,(2−x )2+(32−0)2=22+(32−4)2解得:,x =2±22,∴P 2(2−22,0)P 3(2+22,0)综上所述:点P 的坐标为或或,(2,0)(2−22,0)(2+22,0)个答案为或或.(2,0)(2−22,0)(2+22,0)先由已知得出,,然后分类讨论D 点的位置从而依次求出每种情况下D 1(4,1)D 2(4,−1)点P 的坐标.本题考查了动点型问题,主要涉及相似三角形的判定与性质,勾股定理的应用,圆的相关知识,本题比较复杂,难度较大.17.【答案】解:直角坐标系如图;(1)画法如图:(2)结论:点P 就是所求圆心.圆心坐标为.(−2,−1)【解析】根据点A 的坐标为即可确定平面直角坐标系;(1)(−3,2)利用网格即可画出线段的垂直平分线,两条垂直平分线的交点就是圆心,进而即可(2)写出圆心坐标.本题考查了应用与设计作图,解决本题的关键是利用网格画线段的垂直平分线.18.【答案】解:画树状图如下:(1)由树状图知,共有6种等可能结果,其中把三个袋子都放错位置的有2种结果,所以把三个袋子都放错位置的概率是;26=13吨,(2)2000×310×0.1×0.7×2430=33.6()答:每天大概可回收吨塑料类垃圾的二级原料.33.6【解析】画树状图得出所有等可能结果,从中找到把三个袋子都放错位置的结果数,(1)再根据概率公式计算可得;首先求得可回收垃圾量,然后求得按样本与按规范回收二级原料的吨数,从而得出(2)答案.此题考查了列表法与树状图法,用到的知识点为:概率所求情况数与总情况数之比.=19.【答案】证明:,∵DB =DC ,∴∠DBC =∠DCB 是圆内接四边形ABCD 的外角,∵∠DAE ,∴∠DAE =∠DCB ,∴∠DAE =∠DBC ,∵∠DBC =∠DAC ,∴∠DAE =∠DAC 是的外角的平分线∴AD △ABC ∠EAC 【解析】根据圆的内接四边形的性质得,再根据弦相等得圆周角相等、∠EAD =∠DCB 等弧所对圆周角相等即可得证.本题考查了圆内接四边形、圆周角,解决本题的关键是找相等的角,等量代换后得证.20.【答案】解:根据表中数据设函数解析式为:,代入后得(1)y =ax 2+bx +c 解得{c =0502a +50b +c =5.51002a +100b +c =46.5{a =0.002b =0.01c =0∴y =0.002x 2+0.01x将及代入,经检验等式成立,{x =150y =46.5{x =200y =82说明此函数为二次函数.答:y 与x 之间的函数关系式为.y =0.002x 2+0.01x 当时,,(2)x =120y =0.002×1202+0.01×120=30即在该速度下的最大刹车距离为30m ..∵30<40.6该车超速.∴答:该车在发生事故时是超速行驶【解析】根据表格中的数据先设解析式为二次函数一般式,然后代入其它点的坐标(1)进行验证即可,也可以根据表格数据画函数图象后再设函数解析式也可以;根据中所得函数关系式代入值即可求解.(2)(1)本题考查了二次函数的应用,解决本题的关键是通过题意,确定出二次函数的解析式.21.【答案】证明:由D 是劣弧的中点,得,(1)AC AD =DC ,∴∠ABD =∠DAC 又,∵∠ADB =∠EDA ∽,∴△ABD △EAD,∴AD DE =DB AD ;∴AD 2=DE ⋅DB 解:由D 是劣弧的中点,得,则(2)AC AD =DC DC 2=DE ⋅DB是直径,∵CB 是直角三角形.∴△BCD ,由得,,∴BD =BC 2−CD 2=25−5=25DC 2=DE ⋅DB (5)2=25DE 解得.DE =52【解析】欲证,D 是劣弧的中点,有,又公共,(1)AD 2=DE ⋅DB AC ∠DAC =∠ABD ∠ADB 证明∽得出相似比;△ABD △AED 欲求DE 的长,由知,需求出AD 、DB 的长,是直径,则(2)AD 2=DE ⋅DB (CB △BCD 是直角三角形,勾股定理求出BD 的长,.AD =CD)乘积的形式通常可以转化为比例的形式,通过相似三角形的性质得出;(1)考查了直径所对的圆周角为直角及解直角三角形的知识.(2)22.【答案】−79≤m ≤2【解析】解:当时,,(1)m =1y =−x 2+4x−3=−(x−2)2+1顶点坐标为;∴(2,1)由抛物线为常数可知:开口向上,函数的对称轴为直线(2)y =−x 2+4x +m−4(m ),x =2当时,y 随x 的增大而减小,∴3≤x ≤3+m 当时,y 有最小值,∴x =m +3−7,∴−(m +3)2+4(m +3)+m−4=−7解得,舍去,m 1=2m 2=−3();∴m =2,,(3)∵M(3,0)N(0,−2)直线MN 的解析式为,∴y =23x−2抛物线与线段MN 有公共点,则方程,即∵−x 2+4x +m−4=23x−2x 2−103x−m +2=0中,且,△≥0m−4≤−2,∴(−103)2−4(−m +2)≥0解得,−79≤m ≤2故答案为.−79≤m ≤2利用配方法求顶点的坐标;(1)根据二次函数的性质得到当时,y 有最小值,即可得到(2)x =m +3−7−(m +3)2,解得即可;+4(m +3)+m−4=−7求得直线MN 的解析式,然后根据题意得到且,解(3)(−103)2−4(−m +2)≥0m−4≤−2得即可.本题考查了二次函数的图象和系数的互相、二次函数的最值、解一元二次方程,解题的关键是:配方法;求得对称轴;得到关于m 的一元一次不等式组.(1)(2)(3)23.【答案】解:设.(1)AC =m 由题意或或,m 2=1×212=2m 22=m ,不合题意舍去不合题意舍去,∴m =2m =12()m =4()故AC ;=2,(2)①∵AB =AD ,∴∠ABD =∠ADB 平分,∵BD ∠ABC ,∴∠ABD =∠CBD ,∴∠ADB =∠DBC ,∴AD//BC ,∴∠ACB =∠DAC ,∵∠BAC =∠ADC ∽,∴△ADC △CAB ,∴AD AC =AC BC ,∴AD ⋅BC =AC 2,∵AD//BC ,∴∠CBD =∠ADB 平分,∵BD ∠ABC ,∴∠ABD =∠ADB ,∴AB =AD ,∴AB ⋅BC =AC 2是比例三角形.∴△ABC ,,②∵AD//BC AB//CD 四边形ABCD 是平行四边形,∴,∵AB =AD 四边形ABCD 是菱形,∴,且,∵∠BAC =∠ADC ∠BAC =∠BCA ,∴∠ADC =∠BCA ,∴∠ABC =∠BCA =∠BAC 是等边三角形,∴△ABC ,,∴BO =3AO DO =3OC ,∴BO +DO =3(OA +OC),∴BD =3AC .∴BDAC =3【解析】根据比例三角形的定义分、、三(1)AB 2=BC ⋅AC BC 2=AB ⋅AC AC 2=AB ⋅BC 种情况分别代入计算可得;先证∽得,再由知即可(2)△ABC △DCA CA 2=BC ⋅AD ∠ADB =∠CBD =∠ABD AB =AD 得;作,由知,再证∽得,(3)AH ⊥BD AB =AD BH =12BD △ABH △DBC AB ⋅BC =BH ⋅DB 即,结合知,据此可得答案.AB ⋅BC =12BD 2AB ⋅BC =AC 212BD 2=AC 2本题属于相似三角形的综合问题,考查了平行线的性质,相似三角形的判定和性质等知识,解题的关键是理解比例三角形的定义,正确寻找相似三角形解决问题,。
2024届浙江杭州西湖区保俶塔实验学校九年级数学第一学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,正方形ABCD 中,点E 、F 分别在边CD ,AD 上,BE 与CF 交于点G .若4BC =,1DE AF ==,则GF 的长为( )A .135B .125C .195D .1652.如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是( )A .19.4B .19.5C .19.6D .19.73.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,954.如果△ABC ∽△DEF ,相似比为2:1,且△DEF 的面积为4,那么△ABC 的面积为( ) A .1B .4C .8D .165.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()A.◎代表B.@代表同位角C.▲代表D.※代表6.下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:1.A.1个B.2个C.3个D.4个7.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.98.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是()A.y=2(x﹣1)2﹣3 B.y=2(x﹣2)2﹣3C.y=2(x﹣1)2+3 D.y=2(x﹣2)2+39.下列美丽的图案中,既是轴对称图形又是中心对称图形的是()A.B.C .D .10.某楼盘准备以每平方米16000元的均价对外销售,由于受有关房地产的新政策影响,购房者持币观望.开发商为促进销售,对价格进行了连续两次下调,结果以每平方米14440元的均价开盘销售,则平均每次下调的百分率为( ) A .5%B .8%C .10%D .11%二、填空题(每小题3分,共24分) 11.如图,A 是反比例函数10y x =的图象上一点,过点A 作//AB y 轴交反比例函数k y x=的图象于点B ,已知OAB ∆的面积为3,则k 的值为___________.12.如图所示:点A 是反比例函数(0)2ky k x=≠,图像上的点,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,7ABOC S =矩形,则k =______.13.一张等腰三角形纸片,底边长BC 为15cm ,底边上的高为22.5cm ,现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图,已知剪得的纸条中有一张是正方形(正方形DEFG ),则这张正方形纸条是第________张.14.比较大小:10_____1.(填“>”、“=”或“<”)15.九年级8班第一小组x 名同学在庆祝2020年新年之际,互送新年贺卡,表达同学间的真诚祝福,全组共送出贺卡30张,则x 的值是___.16.如图,量角器外沿上有A 、B 两点,它们的读数分别是75°、45°,则∠1的度数为_____.17.反比例函数y=kx的图象经过点(﹣2,3),则k的值为_____.18.某中学为了了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.三、解答题(共66分)19.(10分)解方程(2x+1)2=3(2x+1)20.(6分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形;(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.21.(6分)装潢公司要给边长为6米的正方形墙面ABCD进行装潢,设计图案如图所示(四周是四个全等的矩形,用材料甲进行装潢;中心区是正方形MNPQ,用材料乙进行装潢).两种装潢材料的成本如下表:材料甲乙价格(元/米2)50 40设矩形的较短边AH的长为x米,装潢材料的总费用为y元.(1)MQ 的长为 米(用含x 的代数式表示); (2)求y 关于x 的函数解析式;(3)当中心区的边长不小于2米时,预备资金1760元购买材料一定够用吗?请说明理由. 22.(8分)如图,已知点A (a ,3)是一次函数y 1=x +1与反比例函数y 2=kx的图象的交点.(1)求反比例函数的解析式;(2)在y 轴的右侧,当y 1>y 2时,直接写出x 的取值范围;(3)求点A 与两坐标轴围成的矩形OBAC 的面积.23.(8分)如图,海南省三沙市一艘海监船某天在黄岩岛P 附近海域由南向北巡航,某一时刻航行到A 处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B 处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P 的距离BP 的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,2≈1.414,3≈1.732)24.(8分)如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上一点,且BD =BA ,求tan ∠ADC 的值.25.(10分)已知:AB 、AC 是圆O 中的两条弦,连接OC 交AB 于点D ,点E 在AC 上,连接OE ,AEO BDO ∠=∠. (1)如图1,若CAD COE ∠=∠,求证:弧AC =弧BC ; (2)如图2,连接OA ,若OAB COE ∠=∠,求证:AE CD =;(3)如图3,在第(2)问的条件下,延长AO 交圆O 于点F ,点G 在AB 上,连接GF ,若2ADC BGF ∠=∠,5AE =,1DG =,求线段BG 的长.26.(10分)为全面贯彻党的教育方针,坚持“健康第一的教育理念,促进学生健康成长,提高体质健康水平,成都市调整体育中考实施方案:分值增加至60,男1000(女80米)必考,足球、篮球、排球“三选一”……从2019年秋季新入学的七年级起开始实施,某1学为了解七年级学生对三大球类运动的喜爱情况,从七年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图。
2015学年第一学期九年级期中学业水平检测数学参考答案和评分标准一、选择题(本题有10小题,每小题4分,共40分) 题号 1 2 3 4 5 6 7 8 9 10 答案AADACDCBDD二、填空题(本题有6小题,每小题5分,共30分) 11.(2)a a - 12.直线5x = 13.1314.50 15.9 16.43 三、解答题(本题有8小题,共80分)17.(本题10分)(1)08(21)2015+-+22211=+-+ (3分)32=. (2分)(2)2(3)2(13)a a +-+26926a a a =++-- (3分) 27a =+. (2分)18.(本题8分) (1)340158⨯=(个).(3分) (2)设白球有x 个,则黄球有(2x +1)个,根据题意得:x +2x +1=40-15.解得x =8. (3分)∴81==405P (白).(2分) 答:(1)袋中红球有15个.(2)从袋中摸出一个球是白球的概率是15. 19.(本题8分)(1)略. (4分)(2)提示:先求出∠AOB =120°, (1分)再求出半径为43. (3分)20.(本题8分)(1)∵点C 的坐标为(0,2),∴2c =. (2分)∵点B 的坐标为(2,2),∴542228b -⨯++=,解得54b =. (2分)∴该二次函数的表达式是255284y x x =-++. (2)∵22555212(1)8488y x x x =-++=--+,∴该抛物线的顶点纵坐标是218.(1分)又∵215288-=,(1分)∴m 的取值范围是52188m <<. (2分)21.(本题10分)(1)证明:如图,过点O 作OE ⊥AB 于点E ,OF ⊥AC 于点F .(1分)∵OA 平分∠BAC , ∴OE =OF , (2分)∴AB AC =.(2分)(2)连结OD .∵点D 与点O 关于直线AB 对称, ∴AB 是OD 的中垂线, ∴AD =AO ,BD =BO .(2分) ∵OA =OB ,∴OA =OB =BD =AD ,(1分) ∴四边形ADBO 是菱形.(2分) (本题方法多样,请按步骤相应给分)22.(本题10分)解:(1)∵AB =x m ,则BC =(32﹣2x )m . (2分)∴S =x (32﹣2x )=﹣2x 2+32x . (3分) (2)由(1)得S =﹣2(x ﹣8)2+128.∵在P 处有一棵树与墙CD ,AD 的距离分别是10m 和6m , ∴6≤x ≤11. (2分)∴当x =11时,22118128110S =--+=最小值(). (3分)答:矩形饲养室ABEF ,CDFE 的面积和S 的最小值为110平方米.23.(本题12分)(1)∵224(2)4y x x x =-+=--+,∴点M 的坐标是(2,4) .(2分)∵该抛物线经过原点,且对称轴为直线2x =,∴点A 的坐标是(4,0) .(2分) (2)∵点A 的坐标是(4,0) ,AB=1.∴点P 的横坐标为3.∵该抛物线对称轴为直线2x =, ∵点D 的横坐标为1.EFBC OADBCOA(第21题)图2 图1把1x =代入24y x x =-+得143y =-+=. ∴点D 的坐标是(1,3) .(3分)设直线AD 的表达式为y kx b =+,由题意得403k b k b +=⎧⎨+=⎩,解得14k b =-⎧⎨=⎩,∴直线AD 的表达式为4y x =-+.(2分)(3)2:5:5.(3分)24.(本题14分)(1)提示:易得CE=OD ,则42m m -=,解得43m =.(3分) (2)①2()(442)13(83)42222OC CE AD m m m s m m m m +-+-===-=-+.(4分) ②当2s >时,解得223m <<. ∵抛物线2y x ax =-+经过动点D , ∴2a m =,∴443a <<.(3分) (3)①当点D 在点A 的左侧时, Ⅰ.如图1,当A ′落在边CE 上时, 易证AD =AE ,则422m m -=,解得422m =-;(1分)Ⅱ.如图2,当A ′落在边CD 上时, 易证CE =CD ,则45m m -=,解得51m =-;(1分)②当点D 与点A 重合时,显然满足条件,此时2m =;(1分)③当点D 在点A 的右侧时,如图3,点A ′落在边EC 的延长线上时,易证A ′D = A ′E ,则242m m -=,解得422m =+.(1分) 综上所述,422512422m =--+或或或.(第24题图1)xy A'E D ABOC (第24题图2)xyA'E DABOC xy A'EDAB OC (第24题图3)。
浙江杭州西湖区保俶塔实验学校2024-2025学年九年级数学第一学期开学学业水平测试模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)实数a b 、在数轴上对应点如图所示,a -的结果是()A .2a B .2b C .2b -D .2a -2、(4分)菱形ABCD 中,如果E 、F 、G 、H 分别是各边中点,那么四边形EFGH 的形状是()A .梯形B .菱形C .矩形D .正方形3、(4分)若代数式有意义,则实数x 的取值范围是()A .x≠-3B .x>-3C .x≥-3D .任意实数4、(4分)Rt △ABC 中,斜边BC =2,则AB 2+AC 2+BC 2的值为()A .8B .4C .6D .无法计算5、(4分)如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为()A .65B .52C .53D .546、(4分)甲、乙两班分别由10名选手参加健美比赛,两班参赛选手身高的方差分别是S 甲2=1.5,S 乙2=2.5,则下列说法正确的是()A .甲班选手比乙班选手的身高整齐B .乙班选手比甲班选手的身高整齐C .甲、乙两班选手的身高一样整齐D .无法确定哪班选手的身高整齐7、(4分)下列运算正确的是()A .236m m m ⋅=B .352()a a =C .44(2)16x x =D .2m 3÷m 3=2m 8、(4分)小明同学发现自己一本书的宽与长之比是黄金比约为0.1.已知这本书的长为20cm ,则它的宽约为()A .12.36cmB .13.6cmC .32.386cmD .7.64cm 二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.10、(4分)如图,在矩形ABCD 中,对角线AC 与BD相交于点O ,60AOB ∠=,1AB =,则AD 的长为________.11、(4分)化简:21x x ++11x x -+=___.12、(4分)矩形的长和宽是关于x 的方程27120x x -+=的两个实数根,则此矩形的对角线之和是________.13、(4分)若关于的一元二次方程有实数根,则的取值范围为______.三、解答题(本大题共5个小题,共48分)14、(12分)已知关于x 的一元二次方程x 2﹣(k+1)x+2k ﹣2=1.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于1且小于1,求k 的取值范围.15、(8分)解不等式组12(1)5{32122x x x --≤-<+,并把解集在数轴上表示出来.16、(8分)射阳县实验初中为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表活动次数x 频数频率0<x≤3100.203<x≤6a0.246<x≤9160.329<x≤1260.1212<x≤15m b 15<x≤182n 根据以上图表信息,解答下列问题:(1)表中a=,b=;(2)请把频数分布直方图补充完整(画图后请标注相应的数据);(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人?17、(10分)先化简、再求值.(6⎛-⎝,其中32x =,27y =.18、(10分)已知:等腰三角形ABC 的一个角B α∠=,求其余两角A ∠与C ∠的度数.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,正方形ABCD 中,AB =6,E 是CD 的中点,将△ADE 沿AE 翻折至△AFE ,连接CF ,则CF 的长度是_____.20、(4分)关于x 的方程x 2+5x+m =0的一个根为﹣2,则另一个根是________.21、(4分)如图,某港口P 位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P ,各自沿固定方向航行,“远洋”号每小时航行12n mile ,“长峰”号每小时航行16n mile ,它们离开港东口1小时后,分别到达A ,B 两个位置,且AB=20n mile ,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是________.22、(4分)“m 2是非负数”,用不等式表示为___________.23、(4分)如果的平方根是3±,则a =_________二、解答题(本大题共3个小题,共30分)24、(8分)如图,在ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.25、(10分)作图题:在图(1)(2)所示抛物线中,抛物线与x轴交于A、B,与y轴交于C,点D是抛物线的顶点,过D平行于y轴的直线是它的对称轴,点P在对称轴上运动.仅用无刻度的直尺画线的方法,按要求完成下列作图:图①图②(1)在图①中作出点P,使线段PA PC+最小;(2)在图②中作出点P,使线段PB PC-最大.26、(12分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.详解:由数轴可得:a<0<b,a-b<0,a-=|b|+|a-b|-|a|,=b-(a-b)+a,=b-a+b+a,=2b.故选B.点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.2、C【解析】分析:利用中位线的性质证明四边形EFGH为平行四边形;再根据菱形的对角线互相垂直,可证∠EHG=90°,从而根据矩形的判定:有一角为90°的平行四边形是矩形,得出菱形中点四边形的形状.详解:∵菱形ABCD中,如果E、F、G、H分别是各边的中点,∴HE∥GF∥AC,HE=GF=12AC,∴四边形EFGH为平行四边形;又∵菱形的对角线互相垂直,∴∠EHG=90°,∴四边形EFGH的形状是矩形.故选:C.点睛:此题主要考查了菱形的性质,三角形中位线定理,矩形的判定.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.3、C 【解析】根据二次根式有意义的条件即可求出答案.【详解】∵代数式有意义∴x+3≥0∴x≥-3.故选C.本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.4、A 【解析】利用勾股定理,由Rt△ABC 中,BC 为斜边,可得AB 2+AC 2=BC 2,代入数据可得AB 2+AC 2+BC 2=2BC 2=2×22=1.故选A.5、A 【解析】先根据矩形的判定得出四边形AEPF 是矩形,再根据矩形的性质得出EF ,AP 互相平分且相等,再根据垂线段最短可以得出当⊥AP BC 时,AP 的值最小,即AM 的值最小,根据面积关系建立等式求解即可.【详解】解:∵3AB =,4AC =,5BC =,∴90EAF ∠=︒,∵PE AB ⊥,PF AC ⊥,∴四边形AEPF 是矩形,∴EF ,AP 互相平分,且EF AP =,又∵M 为EF 与AP 的交点,∴当AP 的值时,AM 的值就最小,而当⊥AP BC 时,AP 有最小值,即此时AM 有最小值,∵1122AP BC AB AC =,∴AP BC AB AC =,∵3AB =,4AC =,5BC =,∴534AP =⨯,∴125AP =,∴1625AM AP ==.故选:A .本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,找出AP 取最小值时图形的特点是解题关键.6、A 【解析】∵2S 甲=1.5,2S 乙=2.5,∴2S 甲<2S 乙,则甲班选手比乙班选手身高更整齐,故选A .本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7、C【解析】A.2356m m m m ⋅=≠,错误;B.2365()a a a =≠,错误;C.()44216x x =,正确;D.33222m m m ÷=≠,错误.故选C.8、A【解析】根据黄金分割的比值约为0.1列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm ,∴书的宽约为20×0.1=12.36cm .故选:A .本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】画出图形,设菱形的边长为x ,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm ,在Rt △ABC 中,由勾股定理:x 2=(8-x )2+22,解得:x=174,∴4x=1,即菱形的最大周长为1cm .故答案是:1.解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.【解析】根据矩形的性质得出OA =OB =OC =OD ,∠BAD =90°,求出△AOB 是等边三角形,求出OB =AB =1,根据矩形的性质求出BD ,根据勾股定理求出AD 即可.【详解】∵四边形ABCD 是矩形,∴OA =OB =OC =OD ,∠BAD =90°,∵60AOB ∠=,∴△AOB 是等边三角形,∴OB =AB =1,∴BD =2BO =2,在Rt △BAD 中,AD ==考查矩形的性质,勾股定理等,掌握矩形的对角线相等是解题的关键.11、1【解析】分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可.解答:解:原式=2x 1x x 1+-+=1.点评:本题考查了分式的加减运算.最后要注意将结果化为最简分式.12、1【解析】设矩形的长和宽分别为a 、b ,根据根与系数的关系得到a+b=7,ab=12,利用勾股定理得到矩形的对角线长,再利用完全平方公式和整体代入的方法可计算出矩形的对角线长为5,则根据矩形的性质得到矩形的对角线之和为1.【详解】设矩形的长和宽分别为a 、b ,则a+b=7,ab=12,所以矩形的对角线长==5,所以矩形的对角线之和为1.故答案为:1.本题考查了根与系数的关系,矩形的性质,解题关键在于掌握运算公式.13、【解析】根据一元二次方程的定义和根的判别式得到△=b 2-4ac ≥0,然后求出不等式的解即可.【详解】解:有实数根∴△=b 2-4ac ≥0即,解得:即的取值范围为:本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.三、解答题(本大题共5个小题,共48分)14、(3)证明见解析;(2)3<k<2.【解析】(3)根据方程的系数结合根的判别式,求得判别式0∆≥恒成立,因此得证;(2)利用求根公式求根,根据有一个跟大于3且小于3,列出关于k 的不等式组,解之即可.【详解】(3)证明:△=b 2-4ac=[-(k+3)]2-4×(2k-2)=k 2-6k+9=(k-3)2,∵(k-3)2≥3,即△≥3,∴此方程总有两个实数根,(2)解:x =解得x 3=k-3,x 2=2,∵此方程有一个根大于3且小于3,而x 2>3,∴3<x 3<3,即3<k-3<3.∴3<k<2,即k 的取值范围为:3<k<2.本题考查了根的判别式,解题的关键是:(3)牢记“当0∆≥时,方程总有两个实数根”,(2)正确找出不等量关系列不等式组.15、13x -≤<【解析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】由①得,x≥-1,由②得,x <3,所以,不等式组的解集为:-1≤x <3,在数轴上表示如下:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.16、(1)12;0.08(2)12(3)672【解析】试题分析:(1)直接利用已知表格中3<x ≤6范围的频率求出频数a 即可,再求出m 的值,即可得出b 的值;(2)利用(1)中所求补全条形统计图即可;(3)直接利用参加社区活动超过6次的学生所占频率乘以总人数进而求出答案.解:(1)a=50×0.24=12(人);∵m =50−10−12−16−6−2=4,∴b =4÷50=0.08;(2)如图所示:;(3)由题意可得,该校在上学期参加社区活动超过6次的学生有:1200×(1−0.20−0.24)=672(人),17、;【解析】根据二次根式混合运算的法则化简,再将x ,y 的值代入计算即可.【详解】解:(6⎛+- ⎝((=-==当32x =,27y =时==本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.18、见解析.【解析】根据∠α的情况进行分类讨论求解即可.【详解】当90α︒≥时,由三角形内角和180︒,B Ð是顶角,所以1802A C α︒-∠=∠=当90α︒≤时,①B Ð是顶角,所以1802A C α︒-∠=∠=②B Ð是底角,A α∠=、1802C α︒∠=-或C α∠=、1802A α︒∠=-本题考查了等腰三角形的性质;等腰三角形中,已知没有明确具体名称时要分类讨论,这是解答本题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】连接DF 交AE 于G ,依据轴对称的性质以及三角形内角和定理,即可得到∠AGD =∠DFC =90°,再根据面积法即可得出DG =,最后判定△ADG ≌△DCF ,即可得到CF =DG =.【详解】解:如图,连接DF 交AE 于G ,由折叠可得,DE =EF ,又∵E 是CD 的中点,∴DE =CE =EF ,∴∠EDF =∠EFD ,∠ECF =∠EFC ,又∵∠EDF+∠EFD+∠EFC+∠ECF =180°,∴∠EFD+∠EFC =90°,即∠DFC =90°,由折叠可得AE ⊥DF ,∴∠AGD =∠DFC =90°,又∵ED =3,AD =6,∴Rt △ADE 中,又∵∴DG =∵∠DAG+∠ADG =∠CDF+∠ADG =90°,∴∠DAG =∠CDF ,又∵AD =CD ,∠AGD =∠DFC =90°,∴△ADG ≌△DCF (AAS ),∴CF =DG =,故答案为:.本题主要考查了正方形的性质,折叠的性质以及全等三角形的判定与性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20、3-【解析】解:设方程的另一个根为n ,则有−2+n =−5,解得:n =−3.故答案为 3.-本题考查一元二次方程()200++=≠ax bx c a 的两根是12,x x ,则1212,.bc x x x x a a +=-⋅=21、南偏东30°【解析】直接得出AP=12n mile ,PB=16n mile ,AB=20n mile ,利用勾股定理逆定理以及方向角得【详解】如图,由题意可得:AP=12n mile ,PB=16n mile ,AB=20n mile ,∵122+162=202,∴△APB 是直角三角形,∴∠APB=90°,∵“远洋”号沿着北偏东60°方向航行,∴∠BPQ=30°,∴“长峰”号沿南偏东30°方向航行;故答案为南偏东30°.此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.22、2m ≥1【解析】根据非负数即“≥1”可得答案.【详解】解:“m 2是非负数”,用不等式表示为m 2≥1,故答案为:m 2≥1.本题主要主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系.【解析】根据平方根的定义即可求解.【详解】∵9的平方根为3 ,,所以a=81此题主要考查平方根的性质,解题的关键是熟知平方根的定义.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)OF =.【解析】(1)根据菱形的性质得到AD ∥BC 且AD=BC ,等量代换得到BC=EF ,推出四边形AEFD 是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC ,利用勾股定理计算AC 的长,可得结论.【详解】(1)证明:∵四边形ABCD 是平行四边形∴AB=CD ,AB ∥CD.∵DF=CE ,∴DF+DE=CE+ED ,即:FE=CD.∵点F 、E 在直线CD 上∴AB=FE ,AB ∥FE.∴四边形ABEF 是平行四边形又∵BE ⊥CD ,垂足是E ,∴∠BEF=90°.∴四边形ABEF 是矩形.(2)解:∵四边形ABEF 是矩形O ,∴∠AFC=90°,AB=FE.∵AB=6,DE=2,∴FD=4.∵FD=CE ,∴CE=4.∴FC=10.在Rt △AFD 中,∠AFD=90°.∵∠ADF=45°,∴AF=FD=4.在Rt △AFC 中,∠AFC=90°.∴.∵点O 是平行四边形ABCD 对角线的交点,∴O 为AC 中点在Rt △AFC 中,∠AFC=90°.O 为AC 中点.∴OF=AC=.本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.25、(1)见解析;(2)见解析【解析】(1)作A 关于对称轴的对称点B,连接BC ,与对称轴的交点即为P 点;(2)由于点A 和点B 关于对称轴对称,则PA=PB,那么只要P、A、C 三点共线即可,即连接AC 并延长与对称轴的交点,就是所求的P 点.【详解】解:如图:(1)作A 关于对称轴的对称点B,连接BC ,与对称轴的交点即为P 点;点P 即为所求作(2)如图:延长AC 与对称轴的交点即为P 点.点P 即为所求作本题在函数图像中考查了两点之间直线最短和轴对称方面的知识,考查方式新颖,灵活运用所学知识成为解答本题的关键.26、(1)证明见解析;.【解析】(1)根据平行四边形的判定和菱形的判定证明即可;(1)根据菱形的性质和勾股定理解答即可.【详解】(1)∵AB ∥DC ,∴∠CAB =∠ACD .∵AC 平分∠BAD ,∴∠CAB =∠CAD .∴∠CAD =∠ACD ,第21页,共21页∴DA =DC .∵AB =AD ,∴AB =DC .∴四边形ABCD 是平行四边形.∵AB =AD ,∴四边形ABCD 是菱形;(1)∵四边形ABCD是菱形,∠DAB =60°,∴∠OAB =30,∠AOB =90°.∵AB =4,∴OB =1,AO =OC =1.∵CE ∥DB ,∴四边形DBEC 是平行四边形.∴CE =DB =4,∠ACE =90°.∴OE ===本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.。
2014-2015学年浙江省杭州市西湖区保俶塔实验学校九年级(上)期中数学试卷一、仔细选一选1.(3分)已知,则的值是()A.B.C.D.2.(3分)下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根3.(3分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是()A.30°B.35°C.45°D.70°4.(3分)二次函数y=ax2+bx+c图象上部分点的坐标满足如表:则该函数图象过点()A.(﹣4,﹣6)B.(﹣4,﹣3)C.(﹣5,﹣2)D.(﹣5,﹣3)5.(3分)⊙O的半径为10cm,两平行弦AC,BD的长分别为12cm,16cm,则两弦间的距离是()A.2cm B.14cm C.6cm或8cm D.2cm或14cm6.(3分)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB 绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2) C.(,2)D.(2,)7.(3分)如图,抛物线y=x2+m与双曲线y=的交点A的横坐标是1,则关于x 的不等式+x2+m<0的解集是()A.x>1 B.x<﹣1 C.0<x<1 D.﹣1<x<08.(3分)已知k===,则y=kx﹣k一定经过第()象限.A.一、二B.一、三C.一、四D.三、四9.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,D是AC的中点,过D作DE⊥AB于点E,连结BD.若AD=5,AE=4,则BD的长为()A.2B. C.D.10.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、认真填一填11.(3分)已知实数a=4,b=16,则a,b的比例中项c=.12.(3分)已知二次函数y=﹣x2+n,则此二次函数图象的对称轴为.13.(3分)在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数.14.(3分)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.15.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.16.(3分)在△ABC中,AB=4cm,AC=6cm,Q是直线AB上一点且AQ=1cm,P 从点C出发,以2cm/s的速度沿着射线CA方向运动,则当P点运动的时间t为时,△AQP与△ABC中正好有两个内角相等.三、全面答一答17.如图,四边形BDEF是直角三角形ABC的内接正方形,如果AB=6,BC=4,求此内接正方形的边长DE.18.甲口袋中装有3个相同的小球,它们分别写有数值﹣1,2,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A 的坐标为(x,y).(1)请用树状图或列表法表示点A的坐标的各种可能情况;(2)求点A落在y=x2+x﹣4的概率.19.如图,在△ABC中,AB=AC=5cm,BC+8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;(1)求证:△ABP∽△PCM;(2)设BP=x,CM=y,求y与x的函数解析式;(3)当△APM为等腰三角形时,求PB的长.20.如图,⊙O是△ABC的外接圆,且AB是⊙O的直径,BC=8,AB=10,动点M 在线段BC上从点C向点B运动.MN∥AB交AC于点N,四边形CMEN关于MN 对称,△ABC与△ABD及四边形CMEN与四边形DPFQ都关于直线AB对称.(1)求四边形ACBD的面积;(2)若E在PQ上方(包括在PQ上),且设MN=x,△EMN和△FPQ与六边形ANMBPQ不重叠部分的面积为S,求S与x函数关系式;(3)在(2)的条件下,当x为何值时,S有最小值,并求出S的最小值.2014-2015学年浙江省杭州市西湖区保俶塔实验学校九年级(上)期中数学试卷参考答案与试题解析一、仔细选一选1.(3分)(2012•凉山州)已知,则的值是()A.B.C.D.【解答】解:令a,b分别等于13和5,∵,∴a=13,b=5∴==;故选D.2.(3分)(2014•黔南州)下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根【解答】解:A、抛掷一枚硬币四次,有两次正面朝上,随机事件,故本选项错误;B、打开电视频道,正在播放《十二在线》,随机事件,故本选项错误;C、射击运动员射击一次,命中十环,随机事件,故本选项错误;D、因为在方程x2﹣2x﹣1=0中△=4﹣4×1×(﹣1)=8>0,故本选项正确.故选:D.3.(3分)(2014秋•西湖区校级期中)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是()A.30°B.35°C.45°D.70°【解答】解:连接BC,∵AB是半圆的直径,∴∠C=90°,∵∠BAC=20°,∴∠B=90°﹣∠BAC=70°,∵D是的中点,∴∠DAC=∠ABC=35°.故选:B.4.(3分)(2014秋•西湖区校级期中)二次函数y=ax2+bx+c图象上部分点的坐标满足如表:则该函数图象过点()A.(﹣4,﹣6)B.(﹣4,﹣3)C.(﹣5,﹣2)D.(﹣5,﹣3)【解答】解:∵x=﹣3、x=﹣1时的函数值都是﹣3,相等,∴函数图象的对称轴为直线x=﹣2,顶点坐标为(﹣2,﹣2),∴当x=﹣4时的函数值与x=0时的函数值相等,∴该函数图象过点(﹣4,﹣6),故选A.5.(3分)(2014秋•西湖区校级期中)⊙O的半径为10cm,两平行弦AC,BD 的长分别为12cm,16cm,则两弦间的距离是()A.2cm B.14cm C.6cm或8cm D.2cm或14cm【解答】解:如图①作OE⊥AC垂足为E,交BD于点F,∵OE⊥AC AC∥BD,∴OF⊥BD,∴AE=AC=6cm BF=BD=8cm,在Rt△AOE中OE===8cm同理可得:OF=6cm∴EF=OE﹣OF=8﹣6=2cm;如图②同理可得:EF=OE+OF=8+6=14cm综上所述两弦之间的距离为2cm或14cm.故选D.6.(3分)(2013•淄博)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2) C.(,2)D.(2,)【解答】解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=a×(﹣2)2,解得:a=1∴解析式为y=x2,∵Rt△OAB的顶点A(﹣2,4),∴OB=OD=2,∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD∥x轴,∴点D和点P的纵坐标均为2,∴令y=2,得2=x2,解得:x=±,∵点P在第一象限,∴点P的坐标为:(,2)故选:C.7.(3分)(2014秋•西湖区校级期中)如图,抛物线y=x2+m与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+m<0的解集是()A.x>1 B.x<﹣1 C.0<x<1 D.﹣1<x<0【解答】解:如图作抛物线y=x2+m关于x轴对称的抛物线y=﹣x2﹣m,设抛物线y=﹣x2﹣m与y=的交点为A′,由对称性可知,A与A′关于原点对称(两个抛物线、一个反比例函数的图象关于原点成中心对称),∴A′点的横坐标为﹣1,由图象可知<﹣x2﹣m时,x的取值范围为﹣1<x<0,∴+x2+m<0的解集为﹣1<x<0;8.(3分)(2014秋•西湖区校级期中)已知k===,则y=kx﹣k一定经过第()象限.A.一、二B.一、三C.一、四D.三、四【解答】解:1)当a+b+c=0时,b+c=﹣a,∴k==﹣1,则直线是:y=﹣x+1,则经过一、二,四象限;2)当a+b+c≠0时,k==,则直线是:y=x﹣,一定经过第一、三、四象限∴直线y=kx+2k一定经过第一、四象限.故选C.9.(3分)(2014秋•西湖区校级期中)如图,AB是⊙O的直径,AC是⊙O的弦,D是AC的中点,过D作DE⊥AB于点E,连结BD.若AD=5,AE=4,则BD的长为()A.2B. C.D.【解答】解:连接BC,∵DE⊥AB,∴∠AED=90°,∵AD=5,AE=4,∴DE=3,∵D是AC的中点,AD=5,∴AC=2AD=10,∵AB是⊙O的直径,∴∠C=90°,∵∠A=∠A,∴△ADE∽△ACB,∴,即,∴BC=,∴BD===,故选C.10.(3分)(2013•义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.二、认真填一填11.(3分)(2014秋•西湖区校级期中)已知实数a=4,b=16,则a,b的比例中项c=±8.【解答】解:∵c是a、b的比例中项,∴c2=ab=64,∴c=±8,故答案为:±8.12.(3分)(2014秋•西湖区校级期中)已知二次函数y=﹣x2+n,则此二次函数图象的对称轴为x=0.【解答】解:二次函数y=﹣x2+n中a=﹣1,b=0,所以对称轴为x=﹣=0,故答案为:x=0.13.(3分)(2015•枣庄)在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数6.【解答】解:设黄球的个数为x个,根据题意得=,解得x=6,所以黄球的个数为6个.故答案为6.14.(3分)(2013•兰州)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k 与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【解答】解:由图可知,∠AOB=45°,∴直线OA的解析式为y=x,联立消掉y得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为(,),∴交点在线段AO上;当抛物线经过点B(2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是﹣2<k<.故答案为:﹣2<k<.15.(3分)(2013•南昌)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.16.(3分)(2014秋•西湖区校级期中)在△ABC中,AB=4cm,AC=6cm,Q是直线AB上一点且AQ=1cm,P从点C出发,以2cm/s的速度沿着射线CA方向运动,则当P点运动的时间t为,,,时,△AQP与△ABC中正好有两个内角相等.【解答】解:由题意可知:CP=2t,当Q在△ABC的外部时,如图所示,∴AP=2t﹣6,由于△AQP∽△ABC,∴或解得:t=或当Q在△ABC的内部时,如图所示,∴AP=2t,由于△AQP∽△ABC,∴或∴t=或故答案为:,,,三、全面答一答17.(2014秋•西湖区校级期中)如图,四边形BDEF是直角三角形ABC的内接正方形,如果AB=6,BC=4,求此内接正方形的边长DE.【解答】解:如图,∵四边形BDEF是正方形,∴∠B=∠BDE=∠BFE=90°,BD=DE=BF=EF,BD∥EF,BF∥DE,∴△ADE∽△ABC,△CEF∽△CAB,∴,,∴=1,∴=1,∴DE=.18.(2016秋•龙游县期末)甲口袋中装有3个相同的小球,它们分别写有数值﹣1,2,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A的坐标为(x,y).(1)请用树状图或列表法表示点A的坐标的各种可能情况;(2)求点A落在y=x2+x﹣4的概率.【解答】解:(1)列表如下:总共有9种等可能的结果;(2)∵(﹣1,﹣4),(2,2)在函数y=x2+x﹣4上,∴点A落在y=x2+x﹣4的概率P=.19.(2014秋•西湖区校级期中)如图,在△ABC中,AB=AC=5cm,BC+8,点P 为BC边上一动点(不与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;(1)求证:△ABP∽△PCM;(2)设BP=x,CM=y,求y与x的函数解析式;(3)当△APM为等腰三角形时,求PB的长.【解答】(1)证明:∵∠APC=∠B+∠BAP,即∠APM+∠CPM=∠B+∠BAP,而∠APM=∠B,∴∠BAP=∠CPM,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCM;(2)解:BP=x,则PC=8﹣x,∵△ABP∽△PCM,∴PB:CM=AB:PC,即x:y=5:(8﹣x),∴y=﹣x2+x;(3)解:当AP=AM时,则∠APM=∠AMC=∠B,而∠AMC>∠C,不合题意舍去;当PA=PM时,∴△ABP≌△PCM,∴BP=CM,即x=y,∴﹣x2+x=x,解得x1=0,x2=3,此时PB的长为3;当MA=MP时,∴∠APM=∠PAM,∵∠APM=∠B=∠C,∴△MAP∽△ABC,PA=PC=8﹣x∴MA:AB=PA:BC,即(6﹣y):6=(8﹣x):8,∴4y=3x,即4(﹣x2+x)=3x,整理得4x2﹣17x=0,解得x1=0,x2=,此时PB的长为,综上所述,PB的长为3或.20.(2014秋•西湖区校级期中)如图,⊙O是△ABC的外接圆,且AB是⊙O的直径,BC=8,AB=10,动点M在线段BC上从点C向点B运动.MN∥AB交AC 于点N,四边形CMEN关于MN对称,△ABC与△ABD及四边形CMEN与四边形DPFQ都关于直线AB对称.(1)求四边形ACBD的面积;(2)若E在PQ上方(包括在PQ上),且设MN=x,△EMN和△FPQ与六边形ANMBPQ不重叠部分的面积为S,求S与x函数关系式;(3)在(2)的条件下,当x为何值时,S有最小值,并求出S的最小值.【解答】解:(1)∵AB是直径,∴∠ACB=90°,∵AB=10,BC=8,∴AC===6,=•BC•AC=×8×6=24.∴S△ABC由题意可知S=2•S△ABC=48.四边形ACBD(2)①如图1中,连接CD交MN于G,交PQ于H,交AB于L.∵•AB•CL=•AC•BC,∴CL=,由△CMN∽△CAB,可得=,∴=,∴CG=EG=FH=DH=x,如果4×x=,解得x=5∴当0<x≤5时,S=48﹣4××x×x=48﹣x2.②如图2中,当5<x≤时,S=四边形AMRP的面积+四边形BNFQ的面积=2××(8﹣x)×(﹣x)+2××(6﹣x)(﹣x)=x2﹣x+96.综上所述,S=.(3)由(2)可知,当0<x≤5时,S=48﹣x2.当x=5时,S有最小值,最小值为24.当5<x≤时,S=x2﹣x+96=(x﹣10)2,∴x=时,S有最小值,最小值为.综上所述,S的最小值为.参与本试卷答题和审题的老师有:lantin;qingli;家有儿女;张其铎;73zzx;sjzx;弯弯的小河;王学峰;dbz1018;gsls;星期八;神龙杉;zcx(排名不分先后)菁优网2017年5月12日。
一、选择题1.甲、乙两位同学在一次用频率估计概率的实验中统计了某一结果出现的频率,并绘出了如下统计图,则符合这一结果的实验可能是( )A .掷一枚正六面体的骰子,出现5点的概率B .掷一枚硬币,出现正面朝上的概事C .一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率D .任意写出一个两位数,能被2整除的概率2.有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为( ) A .13B .49C .59D .233.一个不透明的袋子中装有20个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于0.4,则小英估计袋子中白球的个数约为( ) A .50B .30C .12D .84.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同.从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有( ) A .6个B .10个C .15个D .30个5.某产品成本价为100万元,由于改进技术,成本连续降低,每次降低x %,连续两次降低后成本为64万元,则x 的值为( ) A .10B .15C .18D .206.用配方法解方程28110x x -+=的过程中,配方正确的是( ) A .228(4)5x x -+-= B .228(4)31x x -+-= C .2(4)5x +=D .2(4)11x -=-7.在某种病毒的传播过程中,每轮传染平均1人会传染x 个人,若最初2个人感染该病毒,经过两轮传染,共有y 人感染.则y 与x 的函数关系式为( ) A .()221y x =+B .()22y x =+C .222y x =+D .()212y x =+8.某养殖户的养殖成本逐年增长,已知第1年的养殖成本为10万元,第3年的养殖成本为16万元,设每年平均增长的百分率为x ,则下面所列方程中正确的是( ) A .10(1﹣x )2=16 B .16(1﹣x )2=10 C .16(1+x )2=10D .10(1+x )2=169.如图,在四边形ABCD 中,BD 平分ABC ∠,//AD BC ,90C ∠=︒,5AB =,4CD =,则四边形ABCD 的周长是( ).A .18B .20C .22D .2410.下列命题正确的是( ) A .有一个角是直角的四边形是矩形; B .有三个角是直角的四边形是矩形; C .对角线相等的四边形是矩形; D .对角线互相平分的四边形是矩形;11.给出下列命题,其中错误命题的个数是( ) ①四条边相等的四边形是正方形; ②四边形具有不稳定性;③有两个锐角对应相等的两个直角三角形全等; ④一组对边平行的四边形是平行四边形. A .1B .2C .3D .412.如图,四边形ABCD 中,∠BAD =∠C =90°,AB =AD ,AE ⊥BC ,垂足是E ,若线段AE =4,则四边形ABCD 的面积为( )A .12B .16C .20D .24二、填空题13.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.14.为了解早高峰期间A ,B 两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A 、B 两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表: 等待时的频数间5≤t≤1010<t≤1515<t≤2020<t≤2525<t≤30合计乘车等待时间 地铁站 A 50 50 152 148 100 500 B452151674330500据此估计,早高峰期间,在A 地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A ,B 两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)15.若关于x 的一元二次方程()22367120m x x m m -++-+=有一个根是0,那么m 的值为______.16.如果关于x 的方程22(1)210x a x a -+++=有一个小于1的正数根,那么实数a 的取值范围是_______________.17.已知m ,n 是一元二次方程2410x x -=+的两实数根,则11m n+=_________. 18.如图,长方形ABCD 中,AD =8,AB =4,BQ =5,点P 在AD 边上运动,当BPQ 为等腰三角形时,AP 的长为_____.19.如图,正方形ABCD 的边长为6,点E ,F 分别是边AB ,CD 上的点,且60CFE ∠=︒.将四边形BCFE 沿EF 翻折,得到B C FE '',点C '恰好落在AD 边上,B C ''交AB 于点G ,则GE 的长是_______.20.已知四边形ABCD 中,AC BD ⊥,且8AC =,10BD =,E 、F 、M 、N 分别为AB 、BC 、CD 、DA 的中点,那么四边形EFMN 的面积等于______.三、解答题21.如图所示的转盘,分成三个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形).(1)求事件“转动一次,得到的数恰好是1-”发生的概率; (2)写出此情境下一个不可能发生的事件;(3)用树状图或列表法,求事件“转动两次,第一次得到的数与第二次得到的数绝对值相等”发生的概率.22.在一个不透明的盒子里装有三个分别标有数字1,2,3的三个乒乓球,除所标数字外,乒乓球的形状、大小、质地、颜色等其它方面完全相同.从中先随机抽取一个乒乓球,记该乒乓球上的数字为x ;再从剩下的两个乒乓球中随机抽取一个乒乓球,记该乒乓球上的数为y .(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(,)x y 所有可能出现的结果;(2)求取出的两个乒乓球上的数字之和为偶数的概率P . 23.已知关于x 的一元二次方程为210mx nx -+=. (1)当2n m =+时,不解方程,判断方程根的情况; (2)在(1)的条件下,若2m =,求解这个方程.24.2019年年底以来,“新冠疫情在全球肆虐,由于我国政府措施得当,疫情得到控制.而某些国家不够重视,导致疫情持续蔓延.若某国一社区开始有2人感染发病,未加控制,结果两天后发现共有50人感染发病. (1)求每位发病者平均每天传染多少人?(2)若疫情得不到有效控制,按照这样的传染速度,再过一天发病人数会超过200人吗?25.如图,矩形EFGH 的顶点,E G 分别在菱形ABCD 的边,AD BC 上,顶点,F H 在菱形ABCD 的对角线BD 上.(1)求证:BG DE =;(2)若E 为AD 中点,5,12FG GH ==,求菱形ABCD 的周长;26.如图,在ABC 中,,,,AC BC D E F =分别是,,AB AC BC 的中点,连接,DE DF .求证:四边形DFCE 是菱形.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、掷一枚正六面体的骰子,出现5点的概率为16,故此选项错误;B、掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C、一个不透明的袋子中装着除颜色外都相同的两个红球和一个黄球,从中任意取出一个是黄球的概率为10.333,故此选项正确;D、任意写出一个两位数,能被2整除的概率为12,故此选项错误.故选:C.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.2.C解析:C【分析】根据题意画出树状图得出所有等可能的结果与两次抽到的数字之积是正数的情况数,然后利用概率公式求解即可.【详解】解:两个正数分别用a,b表示,一个负数用c表示,画树状图如下:共有9种等情况数,其中两次抽到的数字之积是正数的有5种, 则两次抽到的数字之积是正数的概率是59; 故选:C . 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.3.B解析:B 【分析】设白球个数为x 个,白球数量÷袋中球的总数=1-04=0.6,求得x 【详解】解:设白球个数为x 个,根据题意得,白球数量÷袋中球的总数=1-04=0.6,所以0.620xx =+, 解得30x = 故选B 【点睛】本题主要考查了用评率估计概率.4.C解析:C 【分析】根据题目试验可求出白球所占的频率,设盒子中的白球大约有x 个,列出等式求解即可. 【详解】∵共试验400次,其中有240次摸到白球,∴白球所占的频率为240400=0.6, 设盒子中的白球大约有x 个,则0.610xx =+, 解得:x=15,∴盒子中的白球大约有15个,故选:C . 【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据白球的频率得到相应的等量关系.5.D解析:D 【分析】设平均每次降低成本的百分率为x%的话,经过第一次下降,成本变为100(1-x%)元,再经过一次下降后成本变为100(1-x%)(1-x%)元,根据两次降低后的成本是64元列方程求解即可. 【详解】解:设平均每次降低成本的百分率为x%,根据题意得100(1-x%)(1-x%)=64, 解得x=20或180(不合题意,舍去) 故选:D . 【点睛】考查了一元二次方程的应用的知识,是一道典型的数量调整问题,数量上调或下调x%后就变为原来的(1±x%)倍,调整2次就是(1±x%)2倍.6.A解析:A 【分析】用配方法解方程即可. 【详解】解:28110x x -+=, 移项得,2811-=-x x ,配方得,228(4)1116x x -+-=-+, 即228(4)5x x -+-=, 故选:A . 【点睛】本题考查了配方法解一元二次方程,能够熟练按照配方法的步骤进行解题是关键.7.A解析:A 【分析】用含有x 的代数式分别表示出每轮传染的人数和总人数即可得解. 【详解】∵每轮传染平均1人会传染x 个人, ∴2人感染时,一轮可传染2x 人, ∴一轮感染的总人数为2x+2=2(1+x)人; ∵每轮传染平均1人会传染x 个人,∴2(1+x)人感染时,二轮可传染2(1+x)x 人,∴二轮感染的总人数为[2(1+x)+ 2(1+x)x]= ()221x +人;∴()221y x =+,故选A. 【点睛】本题考查了平均增长问题,准确表示每一轮传染的人数是解题的关键.8.D解析:D 【分析】根据第一年的养殖成本×(1+平均年增长率)2=第三年的养殖成本,列出方程即可. 【详解】设增长率为x ,根据题意得210(1)16x +=.故选:D . 【点睛】本题考查了从实际问题中抽象出一元二次方程,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”).9.C解析:C 【分析】过点A 做AE BC ⊥交BC 于点E ,根据角平分线和平行线性质,推导得5AD AB ==;通过判定四边形AECD 为矩形,得5EC AD ==,4AE CD ==;再根据勾股定理计算,得BE ,从而得到四边形ABCD 的周长. 【详解】如图,过点A 做AE BC ⊥交BC 于点E∵BD 平分ABC ∠ ∴ABD CBD ∠=∠ ∵//AD BC ∴ADB CBD ∠=∠ ∴ABD ADB ∠=∠ ∴5AD AB == ∵AE BC ⊥,90C ∠=︒∴//AE DC∴四边形AECD 为矩形 ∴5EC AD ==,4AE CD == 又∵AE BC ⊥,即90AEB =︒∠ ∴3BE ==∴四边形ABCD 的周长22AB BE EC CD AD =++++= 故选:C . 【点睛】本题考查了平行线、角平分线、等腰三角形、矩形、勾股定理的知识;解题的关键是熟练掌握平行线、角平分线、矩形、勾股定理、等腰三角形的性质,从而完成求解.10.B解析:B 【分析】根据矩形的判定定理逐一进行判定即可. 【详解】A 、有一个角是直角的平行四边形是矩形,故此选项不能判定是矩形;B 、有三个角是直角的四边形是矩形,能判定是矩形;C 、对角线相等的平行四边形是矩形,故此选项不能判定是矩形;D 、两条对角线互相平分四边形是平行四边形,故此选项不能判定是矩形. 故选B . 【点睛】此题考查矩形的判定与性质,解题关键在于掌握矩形的判定定理:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.11.C解析:C 【分析】利用正方形的判定、直角三角形全等的判定、平行四边形的判定定理对每个选项依次判定解答. 【详解】①四条边相等的四边形是菱形,故①错误; ②四边形具有不稳定性,故②正确;③两直角三角形隐含一个条件是两直角相等,两个锐角对应相等,因此构成了AAA ,不能判定全等,故③错误;④一组对边平行且相等的四边形是平行四边形,故④错误; 综上,错误的命题有①③④共3个. 故选:C . 【点睛】本题考查了命题与定理的知识,解题的关键是了解正方形的判定、平行四边形的判定及直角三角形全等的判定.12.B解析:B 【分析】延长CD ,作AF CD ⊥的延长线于点F ,构造出全等三角形,()ABE ADF AAS ≅,即可得到四边形ABCD 的面积就等于正方形AECF 的面积. 【详解】解:如图,延长CD ,作AF CD ⊥的延长线于点F ,∵AE BC ⊥,∴90AEC AEB ∠=∠=︒, ∵AF CD ⊥, ∴90AFC ∠=︒, ∵90C ∠=︒, ∴四边形AECF 是矩形, ∴90EAF ∠=︒, ∵BAD EAF ∠=∠,∴BAD EAD EAF EAD ∠-∠=∠-∠,即BAE DAF ∠=∠, 在ABE △和ADF 中,BAE DAF AEB AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABE ADF AAS ≅,∴AE AF =,∴四边形AECF 是正方形, ∵ABEADFSS,∴216ABCD AECF S S AE ===.故选:B . 【点睛】本题考查全等三角形的性质和判定,正方形的性质和判定,解题的关键是作辅助线构造全等三角形.二、填空题13.【分析】根据题意得出摸出红球的频率继而根据频数=总数×频率计算即可【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40∴口袋中红色球的个数可能是30×40=12个故答案为:12【点睛】本解析:【分析】根据题意得出摸出红球的频率,继而根据频数=总数×频率计算即可.【详解】∵小明通过多次摸球试验后发现其中摸到红球的频率稳定在40%,∴口袋中红色球的个数可能是30×40%=12个.故答案为:12.【点睛】本题比较容易,考查利用频率估计概率.大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.14.B【分析】用用时不超过15分钟的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数再进行比较即可得出答案【详解】∵在A地铁站乘车等待时间不超过15分钟有50解析:15B【分析】用“用时不超过15分钟”的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数,再进行比较即可得出答案.【详解】∵在A地铁站“乘车等待时间不超过15分钟有50+50=100人,∴在A地铁站“乘车等待时间不超过15分钟”的概率为100500=15,∵A线路不超过20分钟的有50+50+152=252人,B线路不超过20分钟的有45+215+167=427人,∴选择B线路,故答案为:15,B.【点睛】此题考查了用频率估计概率的知识,能够读懂图是解答本题的关键,难度不大;用到的知识点为:概率=所求情况数与总情况数之比.15.4【分析】先把x=0代入(m-3)x2+6x+m2-7m+12=0得m2-7m+12=0再解关于m的方程然后根据一元二次方程的定义确定满足条件的m的值【详解】解:把x=0代入(m-3)x2+6x+m解析:4【分析】先把x=0代入(m-3)x 2+6x+m 2-7m+12=0得m 2-7m+12=0,再解关于m 的方程,然后根据一元二次方程的定义确定满足条件的m 的值.【详解】解:把x=0代入(m-3)x 2+6x+m 2-7m+12=0得m 2-7m+12=0,解得m 1=4,m 2=3,∵m-3≠0,即:m≠3∴m 的值为4.故答案为:4.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了一元二次方程的定义.16.<a<0【分析】先利用方程的求根公式表示出方程的两个根再利用有一个小于1的正数根这一条件确定a 的取值范围【详解】解:根据方程的求根公式可得:x==解得x1=1x2=2a+1∵x1=1∴小于1的正数根 解析:12-< a<0 【分析】 先利用方程的求根公式表示出方程的两个根,再利用“有一个小于1的正数根”这一条件确定a 的取值范围.【详解】解:根据方程的求根公式可得:()2+22+12a a a a ±=±, 解得x 1=1,x 2=2a+1∵x 1=1,∴小于1的正数根只能为2a+1,即0<2a+1<1, 解得12-< a<0. 故答案为:12-< a<0. 【点睛】本题考查一元二次方程的根的分布与系数的关系,求解问题的关键是正确理解有且仅有一个小于1的正数根,将能将其转化为函数在(0,1)内仅有一个0点.17.4【分析】先由根与系数的关系求出m•n 及m +n 的值再把化为的形式代入进行计算即可【详解】是一元二次方程的两实数根故答案为:4【点睛】本题考查的是根与系数的关系将根与系数的关系与代数式变形相结合解题是 解析:4【分析】先由根与系数的关系求出m•n 及m +n 的值,再把化为11m n m n mn++=的形式代入进行计算即可.【详解】 m ,n 是一元二次方程2410x x -=+的两实数根,4,1m nm n , 11441m nm n mn. 故答案为:4【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系为:x 1+x 2=−b a ,x 1•x 2=c a. 18.3或或2或8【分析】根据矩形的性质可得∠A =90°BC =AD =8然后根据等腰三角形腰的情况分类讨论根据勾股定理和垂直平分线等知识即可求解【详解】解:∵四边形ABCD 是矩形∴∠A =90°BC =AD =8解析:3或52或2或8 【分析】根据矩形的性质可得∠A =90°,BC =AD =8,然后根据等腰三角形腰的情况分类讨论,根据勾股定理和垂直平分线等知识即可求解.【详解】解:∵四边形ABCD 是矩形,∴∠A =90°,BC =AD =8,分三种情况:①BP =BQ =5时,AP 3;②当PB =PQ 时,作PM ⊥BC 于M ,则点P 在BQ 的垂直平分线时,如图所示:∴AP =12BQ =52; ③当QP =QB =5时,作QE ⊥AD 于E ,如图所示:则四边形ABQE 是矩形,∴AE =BQ =5,QE =AB =4,∴PE 22QP QE -2254-3,∴AP =AE ﹣PE =5﹣3=2;④当点P 和点D 重合时,∵CQ=3,CD=4,∴根据勾股定理,PQ=5=BQ ,此时AP=AD=8,综上所述,当BPQ 为等腰三角形时,AP 的长为3或52或2或8; 故答案为:3或52或2或8. 【点睛】此题考查的是矩形的性质、等腰三角形的性质和勾股定理,掌握矩形的性质、等腰三角形的性质、分类讨论的数学思想和勾股定理是解题关键. 19.【分析】由正方形的性质得出∠A =∠B =∠C =∠D =90°AB =AD =3由折叠的性质得出FC′=FC ∠C′FE =∠CFE =60°∠FC′B′=∠C =90°B′E =BE ∠B′=∠B =90°求出∠DC′F解析:843-【分析】由正方形的性质得出∠A =∠B =∠C =∠D =90°,AB =AD =3,由折叠的性质得出F C′=FC ,∠C′FE =∠CFE =60°,∠FC′B′=∠C =90°,B′E =BE ,∠B′=∠B =90°,求出∠DC′F =30°,得出FC′=FC =2DF ,求出DF =2,33,则C′A =3,AG =36,设EB =x ,则GE =2x ,得出方程,解方程即可.【详解】∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=AD=3,由折叠的性质得:FC′=FC,∠C′FE=∠CFE=60°,∠FC′B′=∠C=90°,B′E=BE,∠B′=∠B =90°,∴∠DFC′=180°-60°-60°=60°,∴∠DC′F=30°,∴FC′=FC=2DF,∵DF+CF=CD=6,∴DF+2DF=6,解得:DF=2,∴∴C′A=∵∠AC′G=180°-30°-90°=60°,∠AGC′=90°-60°=30°,∴-6,设EB=E′B=x,∵∠B′GE=∠AGC′=30°,∴GE=2x,则+3x=6,解得:x=∴GE=故答案是:【点睛】本题考查了翻折变换的性质、正方形的性质、勾股定理、含30°角的直角三角形的性质等知识;熟练掌握翻折变换和正方形的性质,根据题意得出方程是解决问题的关键.20.20【分析】根据三角形的中位线定理证明四边形EFGH是平行四边形再证明EF⊥EH证得四边形EFGH是矩形即可根据矩形的面积公式计算得出答案【详解】∵点EF分别是边ABBC的中点∴EF∥ACEF=AC解析:20【分析】根据三角形的中位线定理,证明四边形EFGH是平行四边形,再证明EF⊥EH,证得四边形EFGH是矩形,即可根据矩形的面积公式计算得出答案.【详解】∵点E、F分别是边AB、BC的中点,∴EF∥AC,EF=12AC=4,同理,HG∥AC,HG=12AC=4,EH∥BD,EH=12BD=5,∴EF=HG ,EF ∥HG ,∴四边形EFGH 是平行四边形,∵AC ⊥BD ,EF ∥AC ,∴EF ⊥BD ,∵EH ∥BD ,∴EF ⊥EH ,∴∠HEF=90°,∴四边形EFGH 是矩形,∴四边形EFGH 的面积=4520EF EH ⋅=⨯=,故答案为:20.【点睛】此题考查三角形的中位线性质定理,矩形的判定定理,能证得四边形是矩形是解题的关键 .三、解答题21.(1)13;(2)事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”;(3)见解析,59 【分析】(1)转动一次,得到的数共有三种可能,即可得到答案;(2)根据题意,找概率为0的事件,即可得到答案;(3)根据题意画树状图即可得到答案;【详解】解:(1)转动一次,得到的数共有三种可能,其中为1-的有一种,(-1)13P =所指的数为; (2)答案不唯一,如:事件“转动一次,得到的数恰好是2”或事件“转动两次,第一次与第二次得到的两数之和为3”;(3)画树状图如下:共有9种可能,其中两次绝对值相等的有5种,()59P ∴=所指两数的绝对值相等; 【点睛】本题主要考查了列表法与树状图法,准确计算是解题的关键.22.(1)树状图见解析;(1,2),(1,3),(2,1),(2,3),(3,1),(3,2).(2)13【分析】(1)画出树状图即可列出所有可能;(2)根据两个乒乓球上的数字之和为偶数出现的次数求概率即可.【详解】解:(1)树状图如图所示.(,)x y 所有可能出现的结果共有6种,分别为(1,2),(1,3),(2,1),(2,3),(3,1),(3,2).(2)由树状图知,在6种可能出现的结果中,取出的两个乒乓球上的数字之和为偶数的有两种,即(1,3),(3,1),所以所求概率2163P ==. 【点睛】本题考查了列举法求概率,正确画出树状图是解题关键.23.(1)有两个不相等的实数根;(2)1222x +=,2222x -= 【分析】(1)根据关于x 的一元二次方程210mx nx -+=的根的判别式△=b 2-4ac 的符号来判定该方程的根的情况;(2)由已知条件列出关于m 的方程,通过解该方程即可求得m 的值.【详解】解:(1)把2n m =+代入方程,得2(2)10mx m x -++=.∵根的判别式为[]222(2)444440m m m m m m -+-=++-=+>, ∴方程有两个不相等的实数根.(2)当2m =时,方程为22410x x -+=.∴224248m +=+=.x =22=.∴122x +=,222x =. 【点睛】本题考查了根与系数的关系、根的判别式.一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.(1)4人;(2)会【分析】(1)设每位发病者平均每天传染x 人,然后根据一开始有两人,经过两天后变为50人列出方程,即可求解;(2)利用(1)结果,结合第二天总人数计算即可求解.【详解】(1)设每位发病者平均每天传染x 人,由题意得,22(1)50x +=.解得:14x =,26x =-(不合题意,舍去)答:每位发病者平均每天传染4个人;(2)50(1)505250x ⨯+=⨯=.答:若疫情得不到有效控制,再过一天发病人数会超过200人.【点睛】本题考查了一元二次方程的应用,属于传播类问题,关键是根据等量关系列出方程. 25.(1)见解析;(2)菱形ABCD 的周长52=【分析】(1)根据菱形和矩形的性质可证得BGF DEH △≌△,即可得证;(2)连接EG ,根据菱形的性质与平行四边形的判定与性质可得AB EG FH ==,利用勾股定理求出FH 的长,即可求解.【详解】(1)证明:四边形EFGH 是矩形,,//EH FG EH FG ∴=,GFH EHF ∴∠=∠180,180BFG GFH DHE EHF ∠=-∠∠=-∠,,BFG DHE ∴∠=∠四边形ABCD 是菱形,//,AD BC ∴,GBF EDH ∴∠=∠)BGF DEH AAS ∴≌(,;BG DE ∴=(2)解:连接EG ,四边形ABCD 是菱形,,//AD BC AD BC ∴=, E 为AD 中点,AE ED ∴=,BG DE =,,//AE BG AE BG ∴=,∴四边形ABGE 是平行四边形,,AB EG ∴=四边形EFGH 是矩形,,EG FH ∴=,AB FH ∴=5,12,90FG GH FGH ==∠=︒,2312513FH ∴=+=13,AB ∴=∴菱形ABCD 的周长52=.【点睛】本题考查特殊四边形的判定与性质,掌握菱形、矩形和平行四边形的判定与性质是解题的关键.26.证明见解析【分析】根据三角形的中位线的性质和菱形的判定定理即可得到结论;【详解】证明:,,D E F 分别是,,AB AC BC 的中点,11//,,//,22DE CF DE BC DF CE DF AC ∴==, ∴四边形DECF 是平行四边形.AC BC =,DE DF ∴=,∴四边形DFCE 是菱形.【点睛】本题考查了菱形的判定和性质,三角形的中位线的性质,熟练掌握菱形的判定定理是解题的关键.。
2014-2015学年浙江省杭州市西湖区保俶塔实验学校九年级(上)期中数学试卷一、仔细选一选1.(3分)已知,则的值是()A.B.C.D.2.(3分)下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根3.(3分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是()A.30°B.35°C.45°D.70°4.(3分)二次函数y=ax2+bx+c图象上部分点的坐标满足如表:则该函数图象过点()A.(﹣4,﹣6)B.(﹣4,﹣3)C.(﹣5,﹣2)D.(﹣5,﹣3)5.(3分)⊙O的半径为10cm,两平行弦AC,BD的长分别为12cm,16cm,则两弦间的距离是()A.2cm B.14cm C.6cm或8cm D.2cm或14cm6.(3分)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2) C.(,2)D.(2,)7.(3分)如图,抛物线y=x2+m与双曲线y=的交点A的横坐标是1,则关于x 的不等式+x2+m<0的解集是()A.x>1 B.x<﹣1 C.0<x<1 D.﹣1<x<08.(3分)已知k===,则y=kx﹣k一定经过第()象限.A.一、二B.一、三C.一、四D.三、四9.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,D是AC的中点,过D作DE⊥AB于点E,连结BD.若AD=5,AE=4,则BD的长为()A.2B. C.D.10.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、认真填一填11.(3分)已知实数a=4,b=16,则a,b的比例中项c=.12.(3分)已知二次函数y=﹣x2+n,则此二次函数图象的对称轴为.13.(3分)在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数.14.(3分)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.15.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.16.(3分)在△ABC中,AB=4cm,AC=6cm,Q是直线AB上一点且AQ=1cm,P 从点C出发,以2cm/s的速度沿着射线CA方向运动,则当P点运动的时间t为时,△AQP与△ABC中正好有两个内角相等.三、全面答一答17.如图,四边形BDEF是直角三角形ABC的内接正方形,如果AB=6,BC=4,求此内接正方形的边长DE.18.甲口袋中装有3个相同的小球,它们分别写有数值﹣1,2,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A 的坐标为(x,y).(1)请用树状图或列表法表示点A的坐标的各种可能情况;(2)求点A落在y=x2+x﹣4的概率.19.如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;(1)求证:△ABP∽△PCM;(2)设BP=x,CM=y,求y与x的函数解析式;(3)当△APM为等腰三角形时,求PB的长.20.如图,⊙O是△ABC的外接圆,且AB是⊙O的直径,BC=8,AB=10,动点M 在线段BC上从点C向点B运动.MN∥AB交AC于点N,四边形CMEN关于MN 对称,△ABC与△ABD及四边形CMEN与四边形DPFQ都关于直线AB对称.(1)求四边形ACBD的面积;(2)若E在PQ上方(包括在PQ上),且设MN=x,△EMN和△FPQ与六边形ANMBPQ不重叠部分的面积为S,求S与x函数关系式;(3)在(2)的条件下,当x为何值时,S有最小值,并求出S的最小值.2014-2015学年浙江省杭州市西湖区保俶塔实验学校九年级(上)期中数学试卷参考答案与试题解析一、仔细选一选1.(3分)已知,则的值是()A.B.C.D.【解答】解:令a,b分别等于13和5,∵,∴a=13,b=5∴==;故选:D.2.(3分)下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根【解答】解:A、抛掷一枚硬币四次,有两次正面朝上,随机事件,故本选项错误;B、打开电视频道,正在播放《十二在线》,随机事件,故本选项错误;C、射击运动员射击一次,命中十环,随机事件,故本选项错误;D、因为在方程x2﹣2x﹣1=0中△=4﹣4×1×(﹣1)=8>0,故本选项正确.故选:D.3.(3分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是()A.30°B.35°C.45°D.70°【解答】解:连接BC,∵AB是半圆的直径,∴∠C=90°,∵∠BAC=20°,∴∠B=90°﹣∠BAC=70°,∵D是的中点,∴∠DAC=∠ABC=35°.故选:B.4.(3分)二次函数y=ax2+bx+c图象上部分点的坐标满足如表:则该函数图象过点()A.(﹣4,﹣6)B.(﹣4,﹣3)C.(﹣5,﹣2)D.(﹣5,﹣3)【解答】解:∵x=﹣3、x=﹣1时的函数值都是﹣3,相等,∴函数图象的对称轴为直线x=﹣2,顶点坐标为(﹣2,﹣2),∴当x=﹣4时的函数值与x=0时的函数值相等,∴该函数图象过点(﹣4,﹣6),故选:A.5.(3分)⊙O的半径为10cm,两平行弦AC,BD的长分别为12cm,16cm,则两弦间的距离是()A.2cm B.14cm C.6cm或8cm D.2cm或14cm【解答】解:如图①作OE⊥AC垂足为E,交BD于点F,∵OE⊥AC AC∥BD,∴OF⊥BD,∴AE=AC=6cm BF=BD=8cm,在Rt△AOE中OE===8cm同理可得:OF=6cm∴EF=OE﹣OF=8﹣6=2cm;如图②同理可得:EF=OE+OF=8+6=14cm综上所述两弦之间的距离为2cm或14cm.故选:D.6.(3分)如图,Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,将Rt△OAB 绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为()A.(,)B.(2,2) C.(,2)D.(2,)【解答】解:∵Rt△OAB的顶点A(﹣2,4)在抛物线y=ax2上,∴4=a×(﹣2)2,解得:a=1∴解析式为y=x2,∵Rt△OAB的顶点A(﹣2,4),∴OB=OD=2,∵Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴CD∥x轴,∴点D和点P的纵坐标均为2,∴令y=2,得2=x2,解得:x=±,∵点P在第一象限,∴点P的坐标为:(,2)故选:C.7.(3分)如图,抛物线y=x2+m与双曲线y=的交点A的横坐标是1,则关于x 的不等式+x2+m<0的解集是()A.x>1 B.x<﹣1 C.0<x<1 D.﹣1<x<0【解答】解:如图作抛物线y=x2+m关于x轴对称的抛物线y=﹣x2﹣m,设抛物线y=﹣x2﹣m与y=的交点为A′,由对称性可知,A与A′关于原点对称(两个抛物线、一个反比例函数的图象关于原点成中心对称),∴A′点的横坐标为﹣1,由图象可知<﹣x2﹣m时,x的取值范围为﹣1<x<0,∴+x2+m<0的解集为﹣1<x<0;8.(3分)已知k===,则y=kx﹣k一定经过第()象限.A.一、二B.一、三C.一、四D.三、四【解答】解:1)当a+b+c=0时,b+c=﹣a,∴k==﹣1,则直线是:y=﹣x+1,则经过一、二,四象限;2)当a+b+c≠0时,k==,则直线是:y=x﹣,一定经过第一、三、四象限∴直线y=kx+2k一定经过第一、四象限.故选:C.9.(3分)如图,AB是⊙O的直径,AC是⊙O的弦,D是AC的中点,过D作DE⊥AB于点E,连结BD.若AD=5,AE=4,则BD的长为()A.2B. C.D.【解答】解:连接BC,∵DE⊥AB,∴∠AED=90°,∵AD=5,AE=4,∴DE=3,∵D是AC的中点,AD=5,∴AC=2AD=10,∵AB是⊙O的直径,∴∠C=90°,∵∠A=∠A,∴△ADE∽△ACB,∴,即,∴BC=,∴BD===,故选:C.10.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选:D.二、认真填一填11.(3分)已知实数a=4,b=16,则a,b的比例中项c=±8.【解答】解:∵c是a、b的比例中项,∴c2=ab=64,∴c=±8,故答案为:±8.12.(3分)已知二次函数y=﹣x2+n,则此二次函数图象的对称轴为x=0.【解答】解:二次函数y=﹣x2+n中a=﹣1,b=0,所以对称轴为x=﹣=0,故答案为:x=0.13.(3分)在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数6.【解答】解:设黄球的个数为x个,根据题意得=,解得x=6,所以黄球的个数为6个.故答案为6.14.(3分)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【解答】解:由图可知,∠AOB=45°,∴直线OA的解析式为y=x,联立消掉y得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为(,),∴交点在线段AO上;当抛物线经过点B(2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是﹣2<k<.故答案为:﹣2<k<.15.(3分)平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是2,3,4.【解答】解:如图1,∵∠AOB=120°,∠ACB=60°,∴∠ACB=∠AOB=60°,∴点C在以点O为圆心的圆上,且在优弧AB上.∴OC=AO=BO=2;如图2,∵∠AOB=120°,∠ACB=60°,∴∠AOB+∠ACB=180°,∴四个点A、O、B、C共圆.设这四点都在⊙M上.点C在优弧AB上运动.连接OM、AM、AB、MB.∵∠ACB=60°,∴∠AMB=2∠ACB=120°.∵AO=BO=2,∴∠AMO=∠BMO=60°.又∵MA=MO,∴△AMO是等边三角形,∴MA=AO=2,∴MA<OC≤2MA,即2<OC≤4,∴OC可以取整数3和4.综上所述,OC可以取整数2,3,4.故答案是:2,3,4.16.(3分)在△ABC中,AB=4cm,AC=6cm,Q是直线AB上一点且AQ=1cm,P 从点C出发,以2cm/s的速度沿着射线CA方向运动,则当P点运动的时间t为,,,时,△AQP与△ABC中正好有两个内角相等.【解答】解:由题意可知:CP=2t,当Q在△ABC的外部时,如图所示,∴AP=2t﹣6,由于△AQP∽△ABC,∴或解得:t=或当Q在△ABC的内部时,如图所示,∴AP=6﹣2t,由于△AQP∽△ABC,∴或∴t=或故答案为:,,,三、全面答一答17.如图,四边形BDEF是直角三角形ABC的内接正方形,如果AB=6,BC=4,求此内接正方形的边长DE.【解答】解:如图,∵四边形BDEF是正方形,∴∠B=∠BDE=∠BFE=90°,BD=DE=BF=EF,BD∥EF,BF∥DE,∴△ADE∽△ABC,△CEF∽△CAB,∴,,∴=1,∴=1,∴DE=.18.甲口袋中装有3个相同的小球,它们分别写有数值﹣1,2,5;乙口袋中装有3个相同的小球,它们分别写有数值﹣4,2,3.现从甲口袋中随机取一球,记它上面的数值为x,再从乙口袋中随机取一球,记它上面的数值为y.设点A 的坐标为(x,y).(1)请用树状图或列表法表示点A的坐标的各种可能情况;(2)求点A落在y=x2+x﹣4的概率.【解答】解:(1)列表如下:总共有9种等可能的结果;(2)∵(﹣1,﹣4),(2,2)在函数y=x2+x﹣4上,∴点A落在y=x2+x﹣4的概率P=.19.如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;(1)求证:△ABP∽△PCM;(2)设BP=x,CM=y,求y与x的函数解析式;(3)当△APM为等腰三角形时,求PB的长.【解答】(1)证明:∵∠APC=∠B+∠BAP,即∠APM+∠CPM=∠B+∠BAP,而∠APM=∠B,∴∠BAP=∠CPM,∵AB=AC,∴∠B=∠C,∴△ABP∽△PCM;(2)解:BP=x,则PC=8﹣x,∵△ABP∽△PCM,∴PB:CM=AB:PC,即x:y=5:(8﹣x),∴y=﹣x2+x;(3)解:当AP=AM时,则∠APM=∠AMP=∠B,而∠AMC>∠C,不合题意舍去;当PA=PM时,∴△ABP≌△PCM,∴BP=CM,即x=y,∴﹣x2+x=x,解得x1=0,x2=3,此时PB的长为3;当MA=MP时,∴∠APM=∠PAM,∵∠APM=∠B=∠C,∴△MAP∽△ABC,PA=PC=8﹣x∴MA:AB=PA:BC,即(5﹣y):5=(8﹣x):8,∴8y=5x,即8(﹣x2+x)=5x,整理得8x2﹣39x=0,解得x1=0,x2=,此时PB的长为,综上所述,PB的长为3或.20.如图,⊙O是△ABC的外接圆,且AB是⊙O的直径,BC=8,AB=10,动点M 在线段BC上从点C向点B运动.MN∥AB交AC于点N,四边形CMEN关于MN 对称,△ABC与△ABD及四边形CMEN与四边形DPFQ都关于直线AB对称.(1)求四边形ACBD的面积;(2)若E在PQ上方(包括在PQ上),且设MN=x,△EMN和△FPQ与六边形ANMBPQ不重叠部分的面积为S,求S与x函数关系式;(3)在(2)的条件下,当x为何值时,S有最小值,并求出S的最小值.【解答】解:(1)∵AB是直径,∴∠ACB=90°,∵AB=10,BC=8,∴AC===6,∴S=•BC•AC=×8×6=24.△ABC=2•S△ABC=48.由题意可知S四边形ACBD(2)①如图1中,连接CD交MN于G,交PQ于H,交AB于L.∵•AB•CL=•AC•BC,∴CL=,由△CMN∽△CAB,可得=,∴=,∴CG=EG=FH=DH=x,如果4×x=,解得x=5∴当0<x≤5时,S=48﹣4××x×x=48﹣x2.②如图2中,当5<x≤时,S=四边形AMRP的面积+四边形BNFQ的面积=2××(8﹣x)×(﹣x)+2××(6﹣x)(﹣x)=x2﹣x+96.综上所述,S=.(3)由(2)可知,当0<x≤5时,S=48﹣x2.当x=5时,S有最小值,最小值为24.当5<x ≤时,S=x2﹣x+96=(x﹣10)2,∴x=时,S 有最小值,最小值为.综上所述,S 的最小值为.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。