11实际问题与二次函数利润问题
- 格式:ppt
- 大小:842.50 KB
- 文档页数:10
人教版数学九年级上22.3.2实际问题与二次函数第二课时教学设计课题22.3.2实际问题与二次函数单元第二十二章学科数学年级九年级上学习目标情感态度和价值观目标通过对生活中实际问题的探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情.能力目标1.通过对商品涨价与降价的分析,感受函数知识在生活中的应用;2.在探究活动中,学会与他人合作并能与他人交流思维过程和探究结果.知识目标 1.将实际问题抽象成数学问题,经历函数建模的过程;2.会用二次函数知识求实际问题的最大值或最小值.重点用二次函数知识解决商品利润问题。
难点能够正确分析和表示实际问题中变量之间的二次函数关系,并求出最大(小)值。
学法自主探究、分组探究、合作交流教法引导发现法启发探究法教学过程教学环节教师活动学生活动设计意图导入新课一、情境导入设疑:观看商场的促销广告、电商广告页面,商家做广告的目的是什么?如果你是商场经理,你该如何定价才能获得最大利润?揭示课题:商品利润问题教师出示各种促销图片,设疑,激发学生探究的欲望,进而揭示课题。
从身边常见的生活实际情境入手,创设问题情境,激发学生的求知欲。
讲授新课二、探究新知问题1:某商品现在的售价为每件60元,每星期可卖出300件,已知商品的进价为每件40元,则每星期销售额是_____元,销售利润______元.涉及到的数量关系:(1)销售额=售价×销售量;(2)利润=销售额-总成本=单件利润×销售量;(3)单件利润=售价-进价.问题2:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?(1)降价:①设每件降价x元,则每星期售出商品的利润y元随之变化:建立函数关系式:②自变量x的取值范围如何确定?③降价多少元时,利润y最大,是多少?(2)涨价:①设每件涨价n元,则每星期售出商品的利润m元随之变化:建立函数关系式:②自变量n的取值范围如何确定?③涨价多少元时,利润m最大,是多少?学生分小组合作探究,教师提供题干中涉及到的“数量关系”引导学生分步探究。
第11课时实际问题与二次函数——面积、利润问题1.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2C.64m2D.66m22.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=﹣x2+16x﹣48,则该景点一年中处于关闭状态有()月.A.5B.6C.7D.83.已知一个直角三角形两直角边之和为20cm,则这个直角三角形的最大面积为()A.25cm2B.50cm2C.100cm2D.不确定6.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,则将每件的销售价定为元时,可获得最大利润.5.(2019•天门)矩形的周长等于40,则此矩形面积的最大值是_____.6.如图,用总长度为12米的不锈钢材料设计成如图所示的外观为矩形的框架,所有横档和竖档分别与AD、AB平行,则矩形框架ABCD的最大面积为_____m2.7.(2019•丹东)某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件.同时,在销售过程中,每月还要支付其他费用450元.设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?8.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;(3)当这个苗圃园的面积不小于100平方米时,直接写出x 的取值范围.9.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y (单位:万元)与销售量x (单位:辆)之间分别满足:y 1=﹣x 2+10x ,y 2=2x ,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为( ) A .30万元B .40万元C .45万元D .46万元10.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A .√3cm 2B .32√3cm 2C .92√3cm 2D .272√3cm 211.(2018•武汉)飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y =60t −32t 2.在飞机着陆滑行中,最后4s 滑行的距离是 _____ m . 12.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的饲养室面积最大为 75 m 2.13.(2016•扬州)某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 _____ .14.(2017•常德)如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE =x ,正方形EFGH 的面积为y ,则y 与x 的函数关系为 __________ .15.(2019•盘锦)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.月份x…3456…售价y1/元…12141618…(1)求y1与x之间的函数关系式.(2)求y2与x之间的函数关系式.(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?16.某公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m(件)与时间t(天)的关系如下表:时间t/天1361036…日销售量m/件9490847624…未来40天内,前20天每天的价格y1(元/件)与时间t(天)的函数关系式为y1=0.25t+25(1≤t≤20且t为整数),后20天每天的价格y2(元/件)与时间t(天)的函数关系式y2=﹣0.5+40(21≤t≤40且t为整数).下面我们就来研究销售这种商品的有关问题:(1)认真分析上表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据的m(件)与t(天)之间的关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中,该公司决定每销售一件商品,就捐赠a元利润(a<4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t(天)的增大而增大,请直接写出a 的取值范围.17.已知抛物线y =12x 2+mx ﹣2m ﹣2(m ≥0)与x 轴交于A 、B 两点,点A 在点B 的左边,与y 轴交于点C(1)当m =1时,求点A 和点B 的坐标(2)抛物线上有一点D (﹣1,n ),若△ACD 的面积为5,求m 的值 (3)P 为抛物线上A 、B 之间一点(不包括A 、B ),PM ⊥x 轴于点M ,求AM⋅BM PM的值.【参考答案】1.C . 2.A . 3.B . 4.65. 5.100. 6.4.7.(1)由题意得:y =80+20×60−x10∴函数的关系式为:y =﹣2x +200 (30≤x ≤60) (2)由题意得:(x ﹣30)(﹣2x +200)﹣450=1800 解得x 1=55,x 2=75(不符合题意,舍去)答:当销售单价为55元时,销售这种童装每月可获利1800元. (3)设每月获得的利润为w 元,由题意得: w =(x ﹣30)(﹣2x +200)﹣450 =﹣2(x ﹣65)2+2000 ∵﹣2<0∴当x ≤65时,w 随x 的增大而增大 ∵30≤x ≤60∴当x =60时,w 最大=﹣2(60﹣65)2+2000=1950答:当销售单价为60元时,销售这种童装每月获得利润最大,最大利润是1950元. 8.(1)根据题意得:(30﹣2x )x =72, 解得:x =3,x =12, ∵30﹣2x ≤18, ∴x =12;(2)设苗圃园的面积为y,∴y=x(30﹣2x)=﹣2x2+30x,∵a=﹣2<0,∴苗圃园的面积y有最大值,∴当x=152时,即平行于墙的一边长15>8米,y最大=112.5平方米;∵6≤x≤11,∴当x=11时,y最小=88平方米;(3)由题意得:﹣2x2+30x≥100,∵30﹣2x≤18,解得:6≤x≤10.9.D.10.C.提示:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,{AO=AOOD=OK,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=√3x,∴DE=6﹣2√3x,∴纸盒侧面积=3x(6﹣2√3x)=﹣6√3x2+18x,=﹣6√3(x−√32)2+9√32,∴当x=√32时,纸盒侧面积最大为9√32.11.24. 12.75.13.0<a <6.提示:设未来30天每天获得的利润为y , y =(110﹣40﹣t )(20+4t )﹣(20+4t )a 化简,得y =﹣4t 2+(260﹣4a )t +1400﹣20a每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴−260−4a2×(−4)>29.5解得,a <6, 又∵a >0,14.y =2x 2﹣4x +4.提示:如图所示:∵四边形ABCD 是边长为2的正方形, ∴∠A =∠B =90°,AB =2. ∴∠1+∠2=90°, ∵四边形EFGH 为正方形, ∴∠HEF =90°,EH =EF . ∴∠1+∠3=90°, ∴∠2=∠3,在△AHE 与△BEF 中, ∵{∠A =∠B∠2=∠3EH =FE,∴△AHE ≌△BEF (AAS ), ∴AE =BF =x ,AH =BE =2﹣x , 在Rt △AHE 中,由勾股定理得:EH 2=AE 2+AH 2=x 2+(2﹣x )2=2x 2﹣4x +4; 即y =2x 2﹣4x +4(0<x <2)。
22.3 实际问题与二次函数——利润问题教学目标:1、通过探究商品销售中的变量关系,列出函数关系式;2、学会用二次函数求实际问题中的极值.教学重点:会列出二次函数关系式,并解决利润问题中的最大(小)值.教学难点:会列出二次函数关系式,并解决利润问题中的最大(小)值.教学方法:以问题为载体,引导学生探究新知教学过程:一、导入简单的复习。
将学生分成两大组,分别完成第一题的|(1)、(2)小题。
1、求下列二次函数的最值⑴ y=2x2+8x +13 ; ⑵ y= -x2+4x在第一题的基础上,给出函数图像,完成第二题。
2、图中所示的二次函数图像的解析式为:y=2x2+8x +13⑴若-3≤x ≤3,该函数的最小值为( ).⑵又若0≤x ≤3,该函数的最小值为( ).通过上两题提出第三个问题:3、求函数的最值问题,应注意什么? 【归纳】一般地,因为抛物线y=ax2+bx+c 的顶点是最低(高)点,所以当________时,二次函数y=ax2+bx+c 有最小(大)值________.二、新授例题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?请同学们带着以下几个问题读题(1)题目中有几种调整价格的方法?(2)题目涉及哪些变量?哪一个量是自变量?哪些量随之发生了变化?分析:调整价格包括涨价和降价两种情况.先来看涨价的情况:现售价为每件60元,成本40元,每星期可卖300件,如调整价格,每涨价1元,每星期要少卖出10件.⑴设每件涨价x 元,则每星期售出商品的利润y 也随之变化,涨价x 元,则每星期少卖 件,实际卖出_______件,每件利润为_______因此,所得总利润为___________元.带领同学们以表格形式探讨其中的价格和数量的关系,表格如下:根据表格分析再填空,此时y与x的函数关系式就显而易见了.同学们设好未知数并列好函数关系式y=(60+x-40)(300-10x),同时提问:对于自变量x 的范围有没有要求呢?六人一组分小组讨论,然后全班交流答案.得出0≤x≥30.在自变量范围内求最值:发现函数的图象是一条抛物线的一部分,这条抛物线的顶点(5,6250)是函数图象的最高点,而x=5恰好在0≤x≥30范围内,也就是说当x取顶点坐标的横坐标时,这个函数有最大值.展示解题过程:解:设每件涨价x元,每星期售出商品的利润为y元.依题意可得:y=(60+x-40)(300-10x) (0≤x≤30)即y= -10(x-5)2 +6 250∴当x=5时,y最大值=6 250.涨价的情况下,当售价为65元时,每周利润最大,且最大为6250元.此为间接设元,若是直接设元,你会列函数解析式吗?请同学们课后试一试.【归纳】1、切记自变量的取值范围(可从自变量的实际意义考虑,也可从用含自变量来表示的量的实际意义考虑)2、最值可优先考虑抛物线顶点,但要检查顶点的横坐标是否在自变量取值范围内.接下来看看降价的情况:某商品现售价为每件60元,成本40元,每星期卖300件,如调整价格,每降价1元,每星期可多卖出20件.在降价的情况下,最大利润是多少?在涨价的基础上,同学们自行求解降价的最值,并请一名同学在黑板上展示结果,再由全班同学一起批改.【归纳】解决这类题目的一般步骤(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最大值或最小值.(3)检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内。
《实际问题与二次函数——如何获得最大利润》的教学反思
《实际问题与二次函数——如何获得最大利润》是九年制义务教育新课程标准九年级第二十二章第三节第二课时的内容。
首先以求二次函数的最值为背景引入课题,圈定取值范围再寻找区域最值,然后赋予学生商场经理的身份去制作营销计划。
在我的引领下学生逐步经历读题、审题、设未知数、列方程的步骤,自主探究的过程完全体现以学生为主体的原则。
小组合作交流环节,组长发挥领导能力逐一发言展示各自的成果,筛选出有价值的问题并重点讨论。
作为教师,我负责巡视解决小组内不能完成的项目,收集组内不同问题,并引导组间进行大讨论,将自主探究引向更高的层次。
最后,转变学生的身份,让其从超市经理变成客房经理,从宾馆的角度出发去管理客房,深入学习如何实现利润最大化。
22.3.2实际问题与二次函数----利润问题学习目标:1. 能够分析和表示实际问题中变量之间的二次函数关系(重点).2.掌握利用二次函数解决商品销售利润问题中的最大(小)值问题的方法(难点). 一、知识回顾1.求下列二次函数的最大值或最小值: (1)322-+-=x x y (2)x x y 42+=2.商品销售问题中的数量关系: ①单价商品利润=商品售价-商品进价②总利润(W )=单价商品利润×总销售量-(其他成本)3.某商场以每件42元的价钱购进一种服装,根据试销售得知这种服装每天的销售量t (件)与每件的销售价x (元/件)可看成是一次函数关系:2043+-=x t。
(1)写出商场卖这种服装每天销售利润y (元)与每件的销售价x (元)间的函数关系式.(2)商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大利润为多少?二、探究新知问题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映;如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。
已知商品的进价为每件40元,如何定价才能使利润最大? 分析:(调整价格包括涨价和降价两种情况) 1.先来看涨价的情况: 设:每件涨价x 元时,每星期少卖 件,实际卖出 件;销售额为 ,买进商品需付: 所获利润可表示为:y= 即y= ( )∴当销售单价为元时,可以获得最大利润,最大利润是 元.2.在降价的情况下,最大利润是多少?请参考涨价的过程得出答案.三、随堂检测1、某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件) 之间的关系如下表,若日销售量 y 是销售价 x 的一次函数. (1)求出日销售量y (件)与销售价 x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?1.鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x 元,每星期的销售量为y 件. (1)y 与x 之间的函数关系式为 ;(2)①设每星期的销售利润为w 元,则w 与x 之间的函数关系式为②当每件售价定为 元时,每星期的销售利润最大,最大利润是 元. ③要想获得最大利润每天必须卖出 件.(3)若35≤x ≤45,则每星期的销售最大利润是 元.(4)①当每件童装售价定为 元时,该店一星期可获得3910元的利润.②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装 件.四、拓展延伸1.某服装经销商发现某款新型运动服市场需求量较大,经过市场调查发现月销售量y (件)与销售单价x (元)之间存在如图所示的函数关系,而该服装的进价z (元)与销售量y (件)之间的关系如下表所示的一次函数关系.已知每月还需支付员工工资和场地租金等费用总计2万元.(2)求该经销商经销这种服装,月获利w (元)与销售单价x (元)的函数表达式,当销售单价x 为何值时,月获利最大?并求出最大获利是多少?。