函数解析式的练习题兼答案
- 格式:doc
- 大小:141.96 KB
- 文档页数:8
高三复习题型专题训练《函数的解析式》(含答案)考查内容:主要涉及求函数的解析式(换元法,待定系数法,配凑法,方程组法等)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知()2145f x x x -=+-,则()f x 的表达式是( )A .223x x +-B .2610x x +-C .26x x +D .287x x ++2.已知函数)12fx =+,则A .()221f x x x =++ B .()()2231f x x x x =-+≥C .()221f x x x =-+D .()()2231f x x x x =++≥3.已知1)3f x =+,则(1)f x +的解析式为( ) A .4(0)x x +≥ B .23(0)x x +≥C .224(1)x x x -+≥D .23(1)x x +≥4.已知()1f x +=()21f x -的定义域为( ) A .1,12⎛⎤⎥⎝⎦B .13,22⎡⎫⎪⎢⎣⎭C .1,12⎡⎤⎢⎥⎣⎦D .13,22⎡⎤⎢⎥⎣⎦5.设函数()(0)f x kx b k =+>,满足(())165f f x x =+,则()f x =( )A .543x --B .543x -C .41xD .41x +6.已知()f x 满足()12()3f x f x x+=,则()f x 等于( )A .12x x --B .12x x -+C .12x x +D .12x x-7.设()()2log 20xf x x =>,则()3f 的值是( )A .128B .256C .512D .10248.若(cos )cos2f x x =,则(sin 60)f ︒等于( )A .BC .12D .12-9.已知定义在R 上函数()f x 为单调函数,且对任意的实数x ,都有()21213x f f x ⎛⎫+= ⎪+⎝⎭,则()2log 3f = ( )A .0B .12C .23D .110.若函数()()3af x m x =-是幂函数,且图象过点()2,4,则函数()()2log a g x m x =-的单调增区间为( )A .()2,0-B .(),0-∞C .()0,∞+D .()0,211.已知函数()y f x =对任意x ∈R ,都有2()3()5sin 2cos2f x f x x x --=+,将曲线()y f x =向左平移4π个单位长度后得到曲线()y g x =,则曲线()y g x =的一条对称轴方程为( ) A .8x π=-B .4πx =-C .8x π=D .4x π=12.设函数:f R R →满足(0)1,f =且对任意,x y R ∈都有(1)()()()2,f xy f x f y f y x +=--+则(2019)f =( )A .0B .1C .2019D .2020二.填空题13.已知二次函数()()20f x ax bx c a =++≠,其图象过点()1,1-,且满足()()244f x f x x +=++,则()f x 的解析式为______.14.已知函数()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21x f x g x e x +=++,则()g x =______.15.已知2()(1)()2f x f x f x +=+,(1)1f =,(x N +∈),()f x =__________.16.()f x 是R 上的函数,且满足(0)1f =,并且对任意的实数x y ,都有()()(21)f x y f x y x y -=--+,则()f x 的解析式_______三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.(1)已知3311f x x x x⎛⎫+=+ ⎪⎝⎭,求()f x ; (2)如果11x f x x ⎛⎫=⎪-⎝⎭,则当0x ≠且1x ≠时,求()f x ; (3)已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x ;(4)已知函数()f x 的定义域为(0,)+∞,且1()21f x f x ⎛= ⎝,求()f x .18.已知二次函数()2f x ax bx c =++,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式;(2)求()f x 在区间[]1,2-上的最大值;(3)若函数()f x 在区间[],1a a +上单调,求实数a 的取值范围.19.一次函数()f x 是R 上的增函数,[()]43f f x x =+,41()()() (0)2m g x f x x m -=+>. (1)求()f x ;(2)对任意12[1,3]x x ∈,,恒有12()()24g x g x -≤,求实数m 的取值范围.20.已知函数()f x 对一切实数x ,y 都有()()()21f x y f y x x y +-=++成立,且()10f =.(1)求()0f 的值; (2)求()f x 的解析式;(3)已知a R ∈,设P :当01x <<时,不等式()42f x x a +<+恒成立;Q :当[]2,2x ∈-时,()()g x f x ax =-是单调函数.如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求R A C B ⋂(R 为全集).21.已知函数()21ax bf x x +=+定义在()1,1-上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)判断函数()f x 的单调性,并证明; (3)解关于x 的不等式()()210f x f x -+<.22.已知f(x)为奇函数,g(x)为偶函数,且f(x)+g(x)=2log 2(1−x). (1)求f(x)及g(x)的解析式及定义域;(2)如函数F(x)=2g(x)+(k +2)x 在区间(−1,1)上为单调函数,求实数k 的范围. (3)若关于x 的方程f(2x )−m =0有解,求实数m 的取值范围.《函数的解析式》解析1.【解析】由于()()()22145161f x x x x x -=+-=-+-,所以()26f x x x =+.故选:C 2.【解析】设1t =,则1t ≥且()21x t =-()()221223f t t t t ∴=-+=-+ ()()2231f x x x x ∴=-+≥,本题正确选项:B3.【解析】()11t t =≥,反解得:()21x t =-回代得:()()213f t t =-+,即:()()()2131f x x x =-+≥, 故:()()2130f x x x +=+≥.故选:B.4.【解析】由题意可知,令1x t ,则1x t =-,()f t ∴==220t t -+≥,解得02t ≤≤,令0212x ≤-≤,解得1322x ≤≤∴函数()21f x -的定义域为13,22⎡⎤⎢⎥⎣⎦,故选:D5.【解析】由题意可知()()2165f f x k kx b b k x kb b x =++=++=+⎡⎤⎣⎦所以21650k kb b k ⎧=⎪+=⎨⎪>⎩,解得:4,1k b ==,所以()41f x x =+.故选:D6.【解析】把()12()3f x f x x+=①中的x 换成1x,得()132()f f x x x +=②由①2⨯-②得()()31362f x x f x x x x=-⇒=-.故选:D7.【解析】设log 2x =t ,则x =2t ,所以f (t )=22t ,即f (x )=22x, 则f (3)=32822256==.故选:B 8.【解析】(cos )cos2f x x =,化简变形可得2(cos )2cos 1f x x =-,令[]cos ,1,1t x t =∈-,所以2()21f t t =-,[]1,1t ∈-,所以()21sin 6021222f f ⎛⎛︒==⨯-= ⎝⎭⎝⎭,故选:C.9.【解析】根据题意,()f x 是定义域为R 的单调函数,且对任意实数x 都有()21213x f f x ⎛⎫+= ⎪+⎝⎭,则()221xf x ++为常数, 设2()21x f x t +=+,则2()21xf x t =-++, 又由()21213x f f x ⎛⎫+= ⎪+⎝⎭,即21()321t f t t =-+=+, 解可得1t =,则2()121xf x =-++,则()22lo 3g 13122log 12f +=-+=,故选:B . 10.【解析】因为函数()()3af x m x =-是幂函数,且图象过点()2,4所以3124a m -=⎧⎨=⎩解得42m a =⎧⎨=⎩,所以()()()222log log 4a g x m x x =-=-则240x ->解得22x -<<,令()24t x x =-,()2log g t t =因为()t x 在()2,0-上单调递增,()0,2上单调递减,且()2log g t t =在定义域上单调递增,故()()()222log log 4a g x m x x =-=-在()2,0-上单调递增,()0,2上单调递减,故选:A 11.【解析】由2()3()5sin 2cos 22()3()5sin 2cos 2f x f x x x f x f x x x --=+⎧⎨--=-+⎩①②,①×2+②×3,得5()5sin 25cos2f x x x -=-+,即()sin 2cos 224f x x x x π⎛⎫=-=- ⎪⎝⎭,则()22444g x x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令242x k πππ+=+,k Z ∈,则对称轴方程为82k x ππ=+,k Z ∈,故选:C 12.【解析】(1)()()()2f xy f x f y f y x +=--+,(0)1,f = 取0x = 得到(1)(0)()()22f f f y f y =-+=取0y = 得到(1)()(0)(0)22f f x f f x =--+=得到()1f x x =+(2019)2020f =,故答案选D13.【解析】根据题意可知1a b c ++=-,又()()222244a x b x c ax bx c x ++++=++++恒相等,化简得到()()44244a b x a b c b x c ++++=+++恒相等,所以444241a b b a b c c a b c +=+⎧⎪++=+⎨⎪++=-⎩,故1a =,0b =,2c =-,所以()f x 的解析式为22f xx .故答案为:22f x x .14.【解析】∵()f x ,()g x 分别是定义在R 上的偶函数和奇函数,且()()21x f x g x e x +=++,∴()()()21x f x g x e x --+-=+-+,即()()21xf xg x ex --=++,两式相减可得()2xxg x e e -=-,即()()12x x g x e e -=-.故答案为:()12x x e e --. 15.【解析】()()()212f x f x f x +=+11111111(1)1(1)(1)()2()(1)222x x x f x f x f x f +⇒=+⇒=+-⨯=+-⨯=⇒+()2 1f x x =+16.【解析】令0x =,代入()()(21)f x y f x y x y -=--+得()(0)(1)f y f y y -=--+,又(0)1f =,则22()1(1)1()()1f y y y y y y y -=--+=-+=-+-+,∴2()1f x x x =++,故答案为:2()1f x x x =++.17.【解析】(1) 33311113f x x x x x x x x ⎛⎫⎛⎫⎛⎫+=+=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当0x >时,12x x +≥=, 当0x <时,12x x +≤-=-, ∴3()3f x x x =-(2x -或2x ≥).(2)∵11111x f x x x⎛⎫==⎪-⎝⎭-,∴1()(10)1且f x x x x =≠≠-. (3)设()(0)f x ax b a =+≠则3(1)2(1)3[(1)]2[(1)]217f x f x a x b a x b x +--=++--+=+,5217ax a b x ++=+,故2517a ab =⎧⎨+=⎩,∴2a =,7b =,∴()27f x x =+.(4)∵1()21f x f x ⎛=⎝ ①用1x替换①式中的x 得12(1f f x x ⎛⎫= ⎪⎝⎭②把②代入①式可得()2(2(1)1f x f x =,即1()(0)3f x x =>. 18.【解析】(1)由()02f =,得2c =,由()()121f x f x x +-=-,得221ax a b x ++=-,故221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()222f x x x =-+.(2)由(1)得:()()222211f x x x x =-+=-+, 则()f x 的图象的对称轴方程为1x =, 又()15f -=,()22f =,所以当1x =-时()f x 在区间[]1,2-上取最大值为5. (3)由于函数()f x 在区间[],1a a +上单调, 因为()f x 的图象的对称轴方程为1x =, 所以1a ≥或11a +≤,解得:0a ≤或1a ≥, 因此a 的取值范围为:(][),01,-∞⋃+∞.19.【解析】(1)∵一次函数()f x 是R 上的增函数,∴设() (0)f x ax b a =+>,2([()]43)a ax b b a x ab b f f x x =++=+++=,∴243a ab b ⎧=⎨+=⎩,解得21a b =⎧⎨=⎩, ∴()21f x x =+.(2)对任意12[1,3]x x ∈,,恒有12()()24g x g x -≤等价于()g x 在[1,3]上的最大值与最小值之差24M ≤,由(1)知24141()()()2422m m g x f x x x mx --=+=++, ()g x 的对称轴为0x m =-<且开口向上,()g x ∴在[1,3]上单调递增,max 41()(3)12182m g x g m -∴==++,min 41()(1)422m g x g m -∴==++, (3)(1)81624M g g m =-=+≤,解得1m ≤,综上可知,(0,1]m ∈.20.【解析】(1)令1x =-,1y =,则由已知得,()()()011121f f -=-⨯-++,()10f =,()02f ∴=-(2)令0y =,则()()()01f x f x x -=+,又()02f =-,()22f x x x ∴=+-;(3)不等式()42f x x a +<+,即2242x x x a +-+<+,即22x x a -+<,当01x <<时,222x x -+<.又22a x x >-+恒成立,{}|2A a a =≥.()()22212g x x x ax x a x =+--=+--,又()g x 在[]22-,上是单调函数,故有122a -≤-,或122a -≥, {}|35B a a a ∴=≤-≥或,{}|25R A C B a a ∴=≤<.21.【解析】(1)函数()21ax bf x x +=+是定义在()1,1-上的奇函数,()00f ∴=, 又1225f ⎛⎫= ⎪⎝⎭.0b ∴=,1a =,()21x f x x ∴=+. (2)()f x 在()1,1-上为增函数,理由如下.设1211x x -<<<,则1210x x -⋅>,120x x ->,2110x +>,2210x +>,()()()()()()1212121222221212101111x x x x x x f x f x x x x x --∴-=-=<++++()()12f x f x ∴<()f x ∴在在()1,1-上为增函数,(3)()()210f x f x -+<,()()()21f x f x f x ∴-<-=-,又()f x 在在()1,1-上为递增的奇函数,1211x x ∴-<-<-<,103x ∴<<,∴不等式()()210f x f x -+<的解集为10,3⎛⎫⎪⎝⎭.22.【解析】(1)因为f(x)是奇函数,g(x)是是是是是 所以f(−x)=−f(x),g(−x)=g(x)是 ∵f(x)+g(x)=2log 2(1−x)是①∴令x 取−x 代入上式得f(−x)+g(−x)=2log 2(1+x)是 即−f(x)+g(x)=2log 2(1+x)是②联立①②可得,f(x)=log(1−x)−log 2(1+x)=log 21−x1+x (−1<x <1)是 g(x)=log(1−x)+log 2(1+x)=log 2(1−x 2)(−1<x <1). (2)因为g(x)=log 2(1−x 2),所以F(x)=−x 2+(k −2)x +1, 因为函数F(x)是是是(−1,1)是是是是是是,是是k−22≤−1是k−22≥1,所以所求实数k 的取值范围为:k ≤0或k ≥4.(3)因为f(x)=log 21−x1+x ,所以f(2x )=log 21−2x1+2x ,设t =1−2x1+2x 是 则t =1−2x 1+2x=−1+21+2x,因为f(x)是是是是是(−1,1)是2x >0 ,是是0<2x <1是1<1+2x <2,12<11+2x <1,0<−1+21+2x <1,即0<t <1是是log 2t <0 ,因为关于x 的方程f(2x )−m =0有解,则m <0, 故m 是是是是是是 (−∞,0) .。
函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;1.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=()A.x+1 B.2x﹣1 C.﹣x+1 D.x+1或﹣x﹣1【解答】解:f(x)是一次函数,设f(x)=kx+b,f[f(x)]=x+2,可得:k(kx+b)+b=x+2.即k2x+kb+b=x+2,k2=1,kb+b=2.解得k=1,b=1.则f(x)=x+1.故选:A.(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;9.若函数f(x)满足f(3x+2)=9x+8,则f(x)是()A.f(x)=9x+8 B.f(x)=3x+2C.f(x)=﹣3﹣4 D.f(x)=3x+2或f(x)=﹣3x﹣4【解答】解:令t=3x+2,则x=,所以f(t)=9×+8=3t+2.所以f(x)=3x+2.故选B.(3)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式;18.已知f()=,则()A.f(x)=x2+1(x≠0)B.f(x)=x2+1(x≠1)C.f(x)=x2﹣1(x≠1)D.f(x)=x2﹣1(x≠0)【解答】解:由,得f(x)=x2﹣1,又∵≠1,∴f(x)=x2﹣1的x≠1.故选:C.19.已知f(2x+1)=x2﹣2x﹣5,则f(x)的解析式为()A.f(x)=4x2﹣6 B.f(x)=C.f(x)=D.f(x)=x2﹣2x﹣5【解答】解:方法一:用“凑配法”求解析式,过程如下:;∴.方法二:用“换元法”求解析式,过程如下:令t=2x+1,所以,x=(t﹣1),∴f(t)=(t﹣1)2﹣2×(t﹣1)﹣5=t2﹣t﹣,∴f(x)=x2﹣x﹣,故选:B.(4)消去法:已知f(x)与f 或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).21.若f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,则f(2)=()A.﹣ B.2 C.D.3【解答】解:∵f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,∴用﹣x代替式中的x可得f(﹣x)﹣2f(x)=﹣2x+1,联立可解得f(x)=x﹣1,∴f(2)=×2﹣1=故选:C函数解析式的求解及常用方法练习题一.选择题(共25小题)2.若幂函数f(x)的图象过点(2,8),则f(3)的值为()A.6 B.9 C.16 D.273.已知指数函数图象过点,则f(﹣2)的值为()A.B.4 C.D.24.已知f(x)是一次函数,且一次项系数为正数,若f[f(x)]=4x+8,则f(x)=()A. B.﹣2x﹣8 C.2x﹣8 D.或﹣2x﹣85.已知函数f(x)=a x(a>0且a≠1),若f(1)=2,则函数f(x)的解析式为()A.f(x)=4x B.f(x)=2x C. D.6.已知函数,则f(0)等于()A.﹣3 B.C.D.37.设函数f(x)=,若存在唯一的x,满足f(f(x))=8a2+2a,则正实数a的最小值是()A.B.C.D.28.已知f(x﹣1)=x2,则f(x)的表达式为()A.f(x)=x2+2x+1 B.f(x)=x2﹣2x+1C.f(x)=x2+2x﹣1 D.f(x)=x2﹣2x﹣110.已知f(x)是奇函数,当x>0时,当x<0时f(x)=()A.B.C.D.11.已知f(x)=lg(x﹣1),则f(x+3)=()A.lg(x+1)B.lg(x+2)C.lg(x+3)D.lg(x+4)12.已知函数f(x)满足f(2x)=x,则f(3)=()A.0 B.1 C.log23 D.313.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x﹣1 B.3x+1 C.3x+2 D.3x+414.如果,则当x≠0且x≠1时,f(x)=()A.B.C.D.15.已知,则函数f(x)=()A.x2﹣2(x≠0)B.x2﹣2(x≥2)C.x2﹣2(|x|≥2)D.x2﹣216.已知f(x﹣1)=x2+6x,则f(x)的表达式是()A.x2+4x﹣5 B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣1017.若函数f(x)满足+1,则函数f(x)的表达式是()A.x2B.x2+1 C.x2﹣2 D.x2﹣120.若f(x)=2x+3,g(x+2)=f(x﹣1),则g(x)的表达式为()A.g(x)=2x+1 B.g(x)=2x﹣1 C.g(x)=2x﹣3 D.g(x)=2x+7 22.已知f(x)+3f(﹣x)=2x+1,则f(x)的解析式是()A.f(x)=x+ B.f(x)=﹣2x+C.f(x)=﹣x+D.f(x)=﹣x+ 23.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3+x2+1,则f(1)+g(1)=()A.﹣3 B.﹣1 C.1 D.324.若函数f(x)满足:f(x)﹣4f()=x,则|f(x)|的最小值为()A.B.C.D.25.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1 B.﹣1 C.﹣D.二.解答题(共5小题)26.函数f(x)=m+log a x(a>0且a≠1)的图象过点(8,2)和(1,﹣1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)令g(x)=2f(x)﹣f(x﹣1),求g(x)的最小值及取得最小值时x的值.27.已知f(x)=2x,g(x)是一次函数,并且点(2,2)在函数f[g(x)]的图象上,点(2,5)在函数g[f(x)]的图象上,求g(x)的解析式.28.已知f(x)=,f[g(x)]=4﹣x,(1)求g(x)的解析式;(2)求g(5)的值.29.已知函数f(x)=x2+mx+n(m,n∈R),f(0)=f(1),且方程x=f(x)有两个相等的实数根.(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[0,3]时,求函数f(x)的值域.30.已知定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数(1)判断函数f(x)的奇偶性;(2)若x>0时,f(x)=2x,求当x<0时,函数g(x)的解析式.函数解析式的求解及常用方法练习题参考答案与试题解析一.选择题(共25小题)2.【解答】解:幂函数f(x)的图象过点(2,8),可得8=2a,解得a=3,幂函数的解析式为:f(x)=x3,可得f(3)=27.故选:D.3.【解答】解:指数函数设为y=a x,图象过点,可得:=a,函数的解析式为:y=2﹣x,则f(﹣2)=22=4.故选:B.4.【解答】解:设f(x)=ax+b,a>0∴f(f(x))=a(ax+b)+b=a2x+ab+b=4x+8,∴,∴,∴f(x)=2x+.故选:A.5.【解答】解:∵f(x)=a x(a>0,a≠1),f(1)=2,∴f(1)=a1=2,即a=2,∴函数f(x)的解析式是f(x)=2x,故选:B.6.【解答】解:令g(x)=1﹣2x=0则x=则f(0)===3 故选D7.【解答】解:由f(f(x))=8a2+2a可化为2x=8a2+2a或log2x=8a2+2a;则由0<2x<1;log2x∈R知,8a2+2a≤0或8a2+2a≥1;又∵a>0;故解8a2+2a≥1得,a≥;故正实数a的最小值是;故选B.8.【解答】解:∵函数f(x﹣1)=x2∴f(x)=f[(x+1)﹣1]=(x+1)2=x2+2x+1 故选A.10.【解答】解:当x<0时,﹣x>0,则f(﹣x)=﹣(1﹣x),又f(x)是奇函数,所以f(x)=﹣f(﹣x)=(1﹣x).故选D.11.【解答】解:f(x)=lg(x﹣1),则f(x+3)=lg(x+2),故选:B.12.【解答】解:函数f(x)满足f(2x)=x,则f(3)=f()=log23.故选:C.13.【解答】∵f(x+1)=3x+2=3(x+1)﹣1 ∴f(x)=3x﹣1故答案是:A 14.【解答】解:令,则x=∵∴f(t)=,化简得:f(t)=即f(x)=故选B15.【解答】解:=,∴f(x)=x2﹣2(|x|≥2).故选:C.16.【解答】解:∵f(x﹣1)=x2+6x,设x﹣1=t,则x=t+1,∴f(t)=(t+1)2+6(t+1)=t2+8t+7,把t与x互换可得:f(x)=x2+8x+7.故选:B.17.【解答】解:函数f(x)满足+1=.函数f(x)的表达式是:f(x)=x2﹣1.(x≥2).故选:D.20.【解答】解:用x﹣1代换函数f(x)=2x+3中的x,则有f(x﹣1)=2x+1,∴g(x+2)=2x+1=2(x+2)﹣3,∴g(x)=2x﹣3,故选:C.22.【解答】解:∵f(x)+3f(﹣x)=2x+1…①,用﹣x代替x,得:f(﹣x)+3f(x)=﹣2x+1…②;①﹣3×②得:﹣8f(x)=8x﹣2,∴f(x)=﹣x+,故选:C.23.【解答】解:由f(x)﹣g(x)=x3+x2+1,将所有x替换成﹣x,得f(﹣x)﹣g(﹣x)=﹣x3+x2+1,根据f(x)=f(﹣x),g(﹣x)=﹣g(x),得f(x)+g(x)=﹣x3+x2+1,再令x=1,计算得,f(1)+g(1)=1.故选:C.24.【解答】解:∵f(x)﹣4f()=x,①∴f()﹣4f(x)=,②联立①②解得:f(x)=﹣(),∴|f(x)|=(),当且仅当|x|=2时取等号,故选B.25.【解答】解:∵f(x)满足关系式f(x)+2f()=3x,∴,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.二.解答题(共5小题)26.【解答】解:(Ⅰ)由得,解得m=﹣1,a=2,故函数解析式为f(x)=﹣1+log2x,(Ⅱ)g(x)=2f(x)﹣f(x﹣1)=2(﹣1+log2x)﹣[﹣1+log2(x﹣1)]=,其中x>1,因为当且仅当即x=2时,“=”成立,而函数y=log2x﹣1在(0,+∞)上单调递增,则,故当x=2时,函数g(x)取得最小值1.27.【解答】解:设g(x)=ax+b,a≠0;则:f[g(x)]=2ax+b,g[f(x)]=a•2x+b;∴根据已知条件有:;∴解得a=2,b=﹣3;∴g(x)=2x﹣3.28.【解答】解:(1)∵已知f(x)=,f[g(x)]=4﹣x,∴,且g(x)≠﹣3.解得g(x)=(x≠﹣1).(2)由(1)可知:=.29.【解答】解:(Ⅰ)∵f(x)=x2+mx+n,且f(0)=f(1),∴n=1+m+n.…(1分)∴m=﹣1.…(2分)∴f(x)=x2﹣x+n.…(3分)∵方程x=f(x)有两个相等的实数根,∴方程x=x2﹣x+n有两个相等的实数根.即方程x2﹣2x+n=0有两个相等的实数根.…(4分)∴(﹣2)2﹣4n=0.…(5分)∴n=1.…(6分)∴f(x)=x2﹣x+1.…(7分)(Ⅱ)由(Ⅰ),知f(x)=x2﹣x+1.此函数的图象是开口向上,对称轴为的抛物线.…(8分)∴当时,f(x)有最小值.…(9分)而,f(0)=1,f(3)=32﹣3+1=7.…(11分)∴当x∈[0,3]时,函数f(x)的值域是.…(12分)30.【解答】解:(1)∵定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数,∴f(x)=g(x)+x3,故f(﹣x)=g(﹣x)+(﹣x)3=﹣g(x)﹣x3=﹣f(x),∴函数f(x)为奇函数;(2)∵x>0时,f(x)=2x,∴g(x)=2x﹣x3,当x<0时,﹣x>0,故g(﹣x)=2﹣x﹣(﹣x)3,由奇函数可得g(x)=﹣g(﹣x)=﹣2﹣x﹣x3.。
函数求解析式专项训练一、单选题(共8题;共16分)1.(2020高一上·开鲁期中)若,则的解析式为()A. B. C. D.2.(2020高三上·哈尔滨月考)若,则的解析式为()A. B. C. D.3.(2020高一上·定远月考)已知,则的解析式为()A. B. C. D.4.(2020高一上·定远月考)已知f(x-1)=x2,则f(x)的解析式为()A. f(x)=x2-2x-1B. f(x)=x2-2x+1C. f(x)=x2+2x-1D. f(x)=x2+2x+15.(2020高一上·泸县月考)已知函数,则的解析式是()A. B. C. D.6.(2020高一上·黄陵期中)已知,则的解析式为()A. B.C. D.7.(2020高二下·沈阳期末)已知,则的解析式为()A. B. C. D.8.(2020高一上·泉州期中)已知二次函数,,且,那么这个函数的解析式是().A. B. C. D.二、填空题(共7题;共7分)9.(2020高一上·湖南期中)已知,则的解析式为________.10.(2020高一上·赣县月考)已知, 则的解析式为________.11.(2020高一上·长治期中)已知则的解析式为________.12.(2020高一上·大名期中)已知函数,则函数的解析式为________.13.(2020高一上·江阴月考)已知,则的解析式为________.14.(2020高二上·六安开学考)若函数满足,则的解析式为________.15.(2020高一上·天津期中)设函数,,则的解析式是________.三、解答题(共6题;共75分)16.(2020高一上·广州期中)求下列函数的解析式.(1)已知一次函数满足,求;(2)已知,求.17.(2020高三上·新疆月考)根据条件,求函数解析式.(1);(2);(3);(4)已知是一元二次函数,且满足;.18.(2020高一上·南阳月考)根据下列条件,求的解析式.(1),其中为一次函数;(2).19.(2019高一上·长春月考)求函数解析式(1)已知是一次函数,且满足求.(2)已知满足,求.20.(2019高一上·辽源期中)根据条件求下列各函数的解析式:(1)已知函数f(x+1)=3x+2,则f(x)的解析式;(2)已知是一次函数,且满足,求的解析式;(3)已知满足,求的解析式.21.(2019高一上·昌吉月考)求下列函数的解析式:(1)已知f(x)是二次函数,且f(0)=2,f(x+1)-f(x)=x-1,求f(x);(2)已知3f(x)+2f(-x)=x+3,求f(x).答案解析部分一、单选题1.【答案】C【解析】【解答】f(1)=x+ ,设t,t≥1,则x=(t﹣1)2,∴f(t)=(t﹣1)2+ ﹣1=t2﹣t,t≥1,∴函数f(x)的解析式为f(x)=x2﹣x(x≥1).故答案为:C.【分析】令,利用换元法即可求得解析式,注意换元的等价性即可.2.【答案】D【解析】【解答】设,则,则,所以函数的解析式为.故答案为:D.【分析】设,则,解得,即可求得函数的解析式.3.【答案】B【解析】【解答】由,令,则,则,即,故答案为:B。
求函数的解析式精练30题一、单选题1.(23-24高二下·广东深圳·期中)已知)13fx =+,则()f x =( )A .()2220x x x -+³B .()2241-+³x x x C .()2240x x x -+³D .()2221x x x -+³2.(21-22高一上·内蒙古赤峰·期中)已知()f x 是一次函数,且2(2)3(1)5f f -=,2(0)(1)3f f --=,则()f x =( )A .32x -B .32x +C .9122x -D .41x -3.(23-24高一上·河南省直辖县级单位·阶段练习)设函数()f x 与()g x 的定义域是{}R1x x ι±∣,函数()f x 是一个偶函数,()g x 是一个奇函数,且()()21f xg x x -=-,则()f x 等于( )A .211x --B .2221x x -C .221x -D .221xx -4.(23-24高一上·河南开封·期中)已知函数()f x 的定义域为(0,)+¥,且满足14()26f x f x x x æö+=+ç÷èø,则()f x 的最小值为( )A .2B .3C .4D .835.(21-22高一上·内蒙古赤峰·期中)若函数()f x ,()g x 满足14()23f x f x x x æö-=-ç÷èø,且()g()26f x x x +=+,则()()21f g +-=( )A .6B .7C .8D .96.(19-20高一上·浙江·期中)已知函数2(1)(1)f x x +=-,则()f x 的解析式为( )A .()2f x x =B .2()(2)f x x =-C .2()1f x x =-D .2()(1)f x x =+7.(23-24高一上·湖南衡阳·期中)函数()f x 满足若()()()9331fg x x g x x =+=+,,则()f x =( )A .()3f x x=B .()3f x =二、多选题8.(20-21高一上·湖南常德·期中)已知()f x 满足()2(-)21f x f x x -=-,则( )A .(3)3f =B .(3)3f =-C .()()2f x f x +-=D .()()-2f x f x +-=9.(23-24高一上·山西·期中)已知一次函数()f x 满足(())8180f f x x =+,则()f x 的解析式可能为( )A .()98f x x =+B .()98f x x =--C .()910f x x =+D .()910f x x =--三、填空题10.(23-24高一上·北京·期中)已知:函数()4f x x =+,()22g x x x =-+,则()f g x =éùëû .11.(23-24高一上·安徽淮北·期中)若函数2211f x x x x æö-=+ç÷èø,且()8f a =,则实数a 的值为 .12.(23-24高一上·江苏盐城·期中)若函数1f x =-,则()f x = .13.(23-24高一上·福建莆田·期中)已知()123f x x +=-,且()3f a =,则a = .14.(22-23高三·广东深圳·阶段练习)写出一个满足:()()()2f x y f x f y xy +=++的函数解析式为 .15.(23-24高一上·辽宁辽阳·期中)已知()f x 是定义在()0,¥+上的单调函数,且()0,x "Î+¥,()(6f f x =,则()100f = .16.(18-19高二下·河北张家口·阶段练习)已知函数1)4f x +=-,则()f x = .四、解答题17.(21-22高一上·陕西渭南·期中)已知函数()f x 满足()214f x x +=-.(1)求()f x 的解析式;(2)当[]1,2x Î-时,求()f x 的最大值和最小值.18.(23-24高一上·山东淄博·期中)求下列函数的解析式(1)若)1f x +=+,求()f x ;(2)已知()f x 是一次函数,且()43f f x x =+éùëû,求()f x 19.(22-23高一上·广东深圳·期中)已知函数()21ax b f x x+=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且1225f æö=ç÷èø.(1)确定函数()f x 的解析式,并用定义研究()f x 在()1,1-上的单调性;(2)解不等式()()10f x f x -+<.()()b 5æö()1(1)求,a b 的值;(2)用定义法证明函数 y =f(x)在区间 ()1,¥-+上单调递增.21.(22-23高一上·辽宁·期中)解答下列问题:(1)已知()f x 是一次函数,且满足()()232221f x f x x +--=+,求()f x 的解析式;(2)已知()f x 满足()()324f x f x x +-=,求()f x 的解析式.()()()(1)求()f x 的解析式;(2)若(||)f x 在区间1[,]2a a +上单调递增,求实数a 的取值范围.23.(23-24高一上·江苏宿迁·期中)已知函数()22x f x x--=.(1)求函数()f x 的解析式;(2)若函数()g x 是定义域为R 的奇函数,且当0x >时,()()g x f x =,求()g x 的解析式,并写出()g x 的值域.24.(23-24高一上·山东济南·期中)已知函数()2b f x ax x =-,且()11f -=-,()13f =(1)求()f x 解析式;(2)判断并证明函数()f x 在区间()1,+¥的单调性.25.(23-24高一上·安徽滁州·期中)(1)已知函数()f x 满足()23f x x --为奇函数,函数()2f x x +为偶函数,求()f x 的解析式;(2)已知函数()g x 满足()1121562g x g x x æö-=-ç÷èø,判断()g x 在()2,+¥上的单调性并用定义证明.26.(23-24高一上·重庆沙坪坝·期中)已知函数()21243f x x x +=++(1)求函数()f x 的解析式;(2)求关于x 的不等式()21f x ax a x ->+-解集.(其中a ÎR )27.(22-23高一上·贵州遵义·期中)已知函数()f x 对于一切实数x ,y ,都有2()()()()(2)6f x y f y x f x f y y x +=-+×-+-成立,且当0x ³时,()0f x >.(1)求(0)f .(2)求()f x 的解析式.(3)若函数()()[1,4]g x f x x =+Î,试问是否存在实数a ,使得()g x 的最小值为1-?若存在,求出a 的值;若不存在,请说明理由.1æö(1)求函数()f x 的解析式;(2)用定义证明函数()f x 在()0,¥+上的单调性.29.(23-24高一上·江苏·期中)已知定义在R 上的函数()f x 满足:23(2)2()2f x f x x x --=-.(1)求函数()f x 的解析式;(2)已知R a Î,解关于x 的不等式()0f x a +>.30.(23-24高一上·安徽淮北·期中)已知二次函数()f x 满足:(1)()22,(0)1f x f x x f +=++=.(2)若()g x 为定义在R 上的奇函数,且当0x >时()()g x f x =,求()g x 在R 上的解析式.。
待定系数法求函数解析式10题1. 题目:已知一次函数y = kx + b的图象经过点(1,3)和( - 1, - 1),求这个一次函数的解析式。
- 解答:- 因为一次函数y = kx + b的图象经过点(1,3)和( - 1, - 1),所以把这两个点分别代入函数解析式中。
- 当x = 1,y = 3时,得到3=k×1 + b,也就是k + b=3;当x=-1,y = - 1时,得到-1=k×(-1)+b,也就是-k + b=-1。
- 现在有了一个方程组k + b = 3 -k + b=-1。
- 把这两个方程相加,(k + b)+(-k + b)=3+(-1),得到2b = 2,解得b = 1。
- 把b = 1代入k + b = 3,得到k+1 = 3,解得k = 2。
- 所以这个一次函数的解析式是y = 2x+1。
2. 题目:二次函数y = ax^2+bx + c的图象经过点(0,1),(1,2),( - 1,4),求这个二次函数的解析式。
- 解答:- 因为二次函数y = ax^2+bx + c的图象经过点(0,1),(1,2),( - 1,4)。
- 当x = 0,y = 1时,代入解析式得1=a×0^2+b×0 + c,也就是c = 1。
- 当x = 1,y = 2时,得到2=a×1^2+b×1 + c,也就是a + b + c=2;当x=-1,y = 4时,得到4=a×(-1)^2+b×(-1)+c,也就是a - b + c = 4。
- 因为c = 1,所以把c = 1代入a + b + c = 2和a - b + c = 4中,得到a + b+1 = 2 a - b+1 = 4。
- 化简这两个方程得a + b = 1 a - b = 3。
- 把这两个方程相加,(a + b)+(a - b)=1 + 3,得到2a = 4,解得a = 2。
函数的解析式目标:掌握求函数解析式的几种常用方法:待定系数法、配凑法、换元法,能将一些简单实际问题中的函数的解析式表示出来;掌握定义域的常见求法及其在实际中的应用. 重点:能根据函数所具有的某些性质或所满足的一些关系,列出函数关系式;含字母参数的函数,求其定义域要对字母参数分类讨论;实际问题确定的函数,其定义域除满足函数有意义外,还要符合实际问题的要求.一、函数的解析式(一)、函数的表示:1、列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法2、图像法:如果图形F 是函数)(x f y =的图像,则图像上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图像上.这种由图形表示函数的方法叫做图像法.3、解析法:如果在函数)(x f y =)(A x ∈中,)(x f 是用代数式来表达的,这种方法叫做解析法(二)、函数的解析式求法题型1、代入法例1、()21f x x =+,求(1)f x +题型2、待定系数法例2、二次函数()f x 满足(3)(1)f x f x +=-,且()0f x =的两实根平方和为10,图像过点(0,3),求()f x 解析式题型3、换元法例3、已知:()12fx x x +=+,求()f x 。
练习:1、2134(31)x xf x +-+=,求()f x 解析式 2、2(31)965f x x x +=-+,求()f x 解析式题型4、消元法(构造方程组法)例4、已知函数()f x 满足()213f x f x x ⎛⎫-=⎪⎝⎭,求函数()f x 的解析式。
练习、()()1f x f x x +-=-,求()f x 解析式题型5、抽象函数的解析式的求法例5、(06·重庆)已知定义域为R 的函数f(x)满足ƒ(f(x)-x 2+x)=f(x)-x 2+x.(Ⅰ)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x 0,使得f(x 0)= x 0,求函数f(x)的解析表达式.解:(Ⅰ)因为对任意x ∈R ,有f(f(x)- x 2 + x)=f(x)- x 2 +x ,所以f(f(2)- 22+2)=f(2)- 22+2.又由f(2)=3,得f(3-22+2)-3-22+2,即f(1)=1.;若f(0)=a ,则f(a-02+0)=a-02+0,即f(a)=a.(Ⅱ)因为对任意x εR ,有f(f(x))- x 2 +x)=f(x)- x 2 +x.;又因为有且只有一个实数x 0,使得f(x 0)- x 0.所以对任意x ∈R ,有f(x)- x 2 +x= x 0.;在上式中令x= x 0,有f(x 0)-x 20 + x 0= x 0,又因为f(x 0)- x 0,所以x 0- x 20=0,故x 0=0或x 0=1.;若x 0=0,则f(x)- x 2 +x=0,即f(x)= x 2 –x.但方程x 2 –x=x 有两上不同实根,与题设条件矛质,故x 2≠0.若x 2=1,则有f(x)- x 2 +x=1,即f(x)= x 2 –x+1.易验证该函数满足题设条件.综上,所求函数为f(x)= x 2 –x+1(x ∈R ).题型6、实际应用问题例6、用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形底边长为x 2,求此框架围成的面积y 与x 的函数解析式.练习:.某市郊空调公共汽车的票价按下列规则制定:(1) 乘坐汽车5公里以内,票价2元;(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.解:设票价为y 元,里程为x 公里,同根据题意,如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量x 的取值范围是{x ∈N *| x ≤19}.由空调汽车票价制定的规定,可得到以下函数解析式:⎪⎪⎩⎪⎪⎨⎧=5432y 1915151010550≤<≤<≤<≤<x x x x (*N x ∈)(三)提高练习:★【题1】、已知函数f (x)=2x-1,2(()x g x ⎧≥=⎨⎩当x 0时)-1(当x<0时),求f[g(x)]和g[f(x)]之值。
一次函数的解析式的专项练习一次函数的解析式的求法是初中函数的基础。
一. 一般型例1. 已知函数y m x m =-+-()3328是一次函数,求其解析式。
解:由一次函数定义知m m 28130-=-≠⎧⎨⎩∴=±≠⎧⎨⎩m m 33∴=-m 3,故一次函数的解析式为y x =-+33注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证m -≠30二. 已知一点例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。
解: 一次函数y kx =-3的图像过点(2,-1)∴-=-123k ,即k =1故这个一次函数的解析式为y x =-3变式问法:已知一次函数y kx =-3,当x =2时,y =-1,求这个函数的解析式。
三. 已知两点已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为_____________。
解:设一次函数解析式为y kx b =+由题意得024=-+=⎧⎨⎩k b b ∴==⎧⎨⎩k b 24故这个一次函数的解析式为y x =+24四. 已知图象例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。
y2O 1解:设一次函数解析式为y kx b =+由图可知一次函数y kx b =+的图像过点(1,0)、(0,2)∴有020=+=+⎧⎨⎩k b b ∴=-=⎧⎨⎩k b 22 故这个一次函数的解析式为y x =-+22五. 与座标轴相交例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为___________。
解析:两条直线l 1:y k x b =+11;l 2:y k x b =+22。
当k k 12=,b b 12≠时,l l 12// 直线y kx b =+与直线y x =-2平行,∴=-k 2。
求一次函数解析式专项练习1.已知A(2,﹣1),B(3,﹣2),C(a,a)三点在同一条直线上.(1)求a的值;(2)求直线AB与坐标轴围成的三角形的面积.2.如图,直线l与x轴交于点A(﹣1.5,0),与y轴交于点B(0,3)(1)求直线l的解析式;(2)过点B作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.3.已知一次函数的图象经过(1,2)和(﹣2,﹣1),求这个一次函数解析式及该函数图象与x 轴交点的坐标.4.如图所示,直线l是一次函数y=kx+b的图象.(1)求k、b的值;(2)当x=2时,求y的值;(3)当y=4时,求x的值.5.已知一次函数y=kx+b的图象与x轴交于点A(﹣6,0),与y轴交于点B.若△AOB的面积为12,求一次函数的表达式.6.已知一次函数y=kx+b,当x=﹣4时,y的值为9;当x=6时,y的值为3,求该一次函数的关系式.7.已知y与x+2成正比例,且x=0时,y=2,求:(1)y与x的函数关系式;(2)其图象与坐标轴的交点坐标.8.如果y+3与x+2成正比例,且x=3时,y=7.(1)写出y与x之间的函数关系式;(2)画出该函数图象;并观察当x取什么值时,y<0?9.直线y=kx+b是由直线y=﹣x平移得到的,此直线经过点A(﹣2,6),且与x轴交于点B.(1)求这条直线的解析式;(2)直线y=mx+n经过点B,且y随x的增大而减小.求关于x的不等式mx+n<0的解集.10.已知y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式,并建立平面直角坐标系,画出函数图象;(2)结合图象求,当﹣1<y≤0时x的取值范围.11.已知y﹣2与2x+1成正比例,且当x=﹣2时,y=﹣7,求y与x的函数解析式.12.已知y与x﹣1成正比例,且当x=﹣5时,y=2,求y与之间的函数关系式.13.已知一次函数的图象经过点A (,m)和B (,﹣1),其中常量m≠﹣1,求一次函数的解析式,并指出图象特征.14.已知一次函数y=(k﹣1)x+5的图象经过点(1,3).(1)求出k的值;(2)求当y=1时,x的值.15.一次函数y=k1x﹣4与正比例函数y=k2x的图象经过点(2,﹣1).(1)分别求出这两个函数的表达式;(2)求这两个函数的图象与x轴围成的三角形的面积.16.已知y﹣3与4x﹣2成正比例,且x=1时,y=﹣1.(1)求y与x的函数关系式.(2)如果y的取值范围为3≤y≤5时,求x的取值范围.17.若一次函数y=3x+b的图象与两坐标轴围成的三角形面积为24,试求这个一次函数的解析式.18.如果一次函数y=kx+b的变量x的取值范围是﹣2≤x≤6,相应函数值是﹣11≤y≤9,求此函数解析式.19.某一次函数图象的自变量的取值范围是﹣3≤x≤6,相应的函数值的变化范围是﹣5≤y≤﹣2,求这个函数的解析式.20.已知,直线AB经过A(﹣3,1),B(0,﹣2),将该直线沿y轴向下平移3个单位得到直线MN.(1)求直线AB和直线MN的函数解析式;(2)求直线MN与两坐标轴围成的三角形面积.21.一次函数的图象经过点A(0,﹣2),且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的解析式.22.如果y+2与x+1成正比例,当x=1时,y=﹣5.(1)求出y与x的函数关系式.(2)自变量x取何值时,函数值为4?23.已知y﹣3与4x﹣2成正比例,且当x=1时,y=5,(1)求y与x的函数关系式;(2)求当x=﹣2时的函数值:(3)如果y的取值范围是0≤y≤5,求x的取值范围;(4)若函数图象与x轴交于A点,与y轴交于B点,求S△AOB.24.已知y﹣3与x成正比例,且x=2时,y=7.(1)求y与x的函数关系式;(2)当时,求y的值;(3)将所得函数图象平移,使它过点(2,﹣1).求平移后直线的解析式.25.已知:一次函数y=kx+b的图象与y轴的交点到原点的距离为3,且过A(2,1)点,求它的解析式.26.已知一次函数y=(3﹣k)x+2k+1.(1)如果图象经过(﹣1,2),求k;(2)若图象经过一、二、四象限,求k的取值范围.27.正比例函数与一次函数y=﹣x+b的图象交于点(2,a),求一次函数的解析式.28.已知y+5与3x+4成正比例,且当x=1时,y=2.(1)求出y与x的函数关系式;(2)设点P(a,﹣2)在这条直线上,求P点的坐标.29.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式.30.已知:关于x的一次函数y=(2m﹣1)x+m ﹣2若这个函数的图象与y轴负半轴相交,且不经过第二象限,且m为正整数.(1)求这个函数的解析式.(2)求直线y=﹣x和(1)中函数的图象与x 轴围成的三角形面积.一次函数的解析式30题参考答案:1.(1)设直线AB解析式为y=kx+b,依题意,得,解得∴直线AB解析式为y=﹣x+1∵点C(a,a)在直线AB上,∴a=﹣a+1,解得a=;(2)直线AB与x轴、y轴的交点分别为(1,0),(0,1)∴直线AB 与坐标轴围成的三角形的面积为2.(1)设直线l的解析式为y=kx+b,∵直线l与x轴交于点A(﹣1.5,0),与y轴交于点B (0,3),∴代入得:,解得:k=2,b=3,∴直线l的解析式为y=2x+3;(2)解:分为两种情况:①当P在x轴的负半轴上时,∵A(﹣1.5,0),B(0,3),∴OP=2OA=3,0B=3,∴AP=3﹣1.5=1.5,∴△ABP 的面积是×AP×OB=×1.5×3=2.25;②当P在x轴的正半轴上时,∵A(﹣1.5,0),B(0,3),∴OP=2OA=3,0B=3,∴AP=3+1.5=4.5,∴△ABP 的面积是×AP×OB=×4.5×3=6.25.3.设一次函数的解析式为y=kx+b(k≠0),由已知得:,解得:,∴一次函数的解析式为y=x+1,当y=0时,x+1=0,∴x=﹣1,∴该函数图象与x轴交点的坐标是(﹣1,0)4.(1)由图象可知,直线l过点(1,0)和(0,),则,解得:,即k=,b=;(2)由(1)知,直线l的解析式为y=x+,当x=2时,有y=×2+=;(3)当y=4时,代入y=x+得:4=x+,解得x=﹣5.5.∵图象经过点A(﹣6,0),∴0=﹣6k+b,即b=6k ①,∵图象与y轴的交点是B(0,b),∴•OB=12,即:,∴|b|=4,∴b1=4,b2=﹣4,代入①式,得,,一次函数的表达式是或6.根据题意,得,解得.故该一次函数的关系式是y=﹣x+.7.(1)根据题意,得y=k(x+2)(k≠0);由x=0时,y=2得2=k(0+2),解得k=1,所以y与x的函数关系式是y=x+2;(2)由,得;由,得,所以图象与x轴的交点坐标是:(﹣2,0);与y轴的交点坐标为:(0,2).8.(1)∵y+3与x+2成正比例,∴设y+3=k(x+2)(k≠0),∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.则y+3=2(x+2),即y=2x+1;(2)由(1)知,y=2x+1.令x=0,则y=1,.令y=0,则x=﹣,所以,该直线经过点(0,1)和(﹣,0),其图象如图所示:由图示知,当x<﹣时,y<09.(1)一次函数y=kx+b的图象经过点(﹣2,6),且与y=﹣x的图象平行,则y=kx+b中k=﹣1,当x=﹣2时,y=6,将其代入y=﹣x+b,解得:b=4.则直线的解析式为:y=﹣x+4;(2)如图所示:∵直线的解析式与x轴交于点B,∴y=0,0=﹣x+4,∴x=4,∴B点坐标为:(4,0),∵直线y=mx+n经过点B,且y随x的增大而减小,∴m<0,此图象与y=﹣x+4增减性相同,∴关于x的不等式mx+n<0的解集为:x>410.(1)设y=k(x+2),∵x=1时,y=﹣6.∴﹣6=k(1+2)k=﹣2.∴y=﹣2(x+2)=﹣2x﹣4.图象过(0,﹣4)和(﹣2,0)点(2)从图上可以知道,当﹣1<y≤0时x的取值范围﹣2≤x<﹣.11.∵y﹣2与2x+1成正比例,∴设y﹣2=k(2x+1)(k≠0),∵当x=﹣2时,y=﹣7,∴﹣7﹣2=k(﹣4+1),∴k=3,∴y=6x+5.12.设y=k(x﹣1),把x=﹣5,y=2代入,得2=(﹣5﹣1)k,解得.所以y与x 之间的函数关系式是13.设过点A,B的一次函数的解析式为y=kx+b,则m=k+b,﹣1=k+b,两式相减,得m+1=k+k,即m+1=(m+1),∵m≠﹣1,则k=2,∴b=m﹣1,则函数的解析式为y=2x+m﹣1(m≠﹣1),其图象是平面内平行于直线y=2x(但不包括直线y=2x﹣2)的一切直线14.(1)∵一次函数y=(k﹣1)x+5的图象经过点(1,3),∴3=(k﹣1)×1+5.∴k=﹣1.(2)∵y=﹣2x+5中,当y=1时,1=﹣2x+5∴x=2.15.(1)把点(2,﹣1)代入y=k1x﹣4得:2k1﹣4=﹣1,解得:k1=,所以解析式为:y=x﹣4;把点(2,﹣1)代入y=k2x得:2k2=﹣1,解得:k2=﹣,所以解析式为:y=﹣x;(2)因为函数y=x﹣4与x 轴的交点是(,0),且两图象都经过点(2,﹣1),所以这两个函数的图象与x轴围成的三角形的面积是:S=××1=.16.(1)设y﹣3=k(4x﹣2),(2分)当x=1时,y=﹣1,∴﹣1﹣3=k(4×1﹣2),∴k=﹣2(4分),∴y﹣3=﹣2(4x﹣2),∴函数解析式为y=﹣8x+7.(5分)(2)当y=3时,﹣8x+7=3,解得:x=,当y=5时,﹣8x+7=5,解得:x=,∴x 的取值范围是≤x ≤.17.当x=0时,y=b,当y=0时,x=﹣,∴一次函数与两坐标轴的交点为(0,b)(﹣,0),∴三角形面积为:×|b|×|﹣|=24,即b2=144,解得b=±12,∴这个一次函数的解析式为y=3x+12或y=3x﹣12 18.根据题意,①当k>0时,y随x增大而增大,∴当x=﹣2时,y=﹣11,x=6时,y=9∴解得,∴函数解析式为y=x﹣6;②当k<0时,函数值随x增大而减小,∴当x=﹣2时,y=9,x=6时,y=﹣11,∴解得,∴函数解析式为y=﹣x+4.因此,函数解析式为y=x﹣6或y=﹣x+4 19.设一次函数解析式为y=kx+b,根据题意①当k>0时,x=﹣3时,y=﹣5,x=6时,y=﹣2,∴解得,∴函数的解析式为:y=x﹣4;②当k<0时,x=﹣3时,y=﹣2,x=6时,y=﹣5,∴解得,∴函数解析式为y=﹣x﹣3;因此这个函数的解析式为y=x﹣4或y=﹣x﹣3.20.设直线AB的解析式为y=kx+b,∵A(﹣3,1),B(0,﹣2),∴,∴k=﹣1,∴直线AB的解析式为:y=﹣x﹣2,∵将该直线沿y轴向下平移3个单位得到直线MN,∴直线MN的函数解析式为:y=﹣x﹣5;(2)∵直线MN与x轴的交点为(﹣5,0),与y轴的交点坐标为(0,﹣5),∴直线MN 与两坐标轴围成的三角形面积为×|﹣5|×||﹣5=12.5.21.设与x轴的交点为B,则与两坐标轴围成的直角三角形的面积=AO•BO,∵AO=2,∴BO=3,∴点B纵坐标的绝对值是3,∴点B横坐标是±3;设一次函数的解析式为:y=kx+b,当点B纵坐标是3时,B(3,0),把A(0,﹣2),B(3,0)代入y=kx+b,得:k=,b=﹣2,所以:y=x﹣2,当点B纵坐标=﹣3时,B(﹣3,0),把A(0,﹣2),B(﹣3,0)代入y=kx+b,得k=﹣,b=﹣2,所以:y=﹣x﹣2.22.(1)依题意,设y+2=k(x+1),将x=1,y=﹣5代入,得k(1+1)=﹣5+2,解得k=﹣1.5,∴y+2=﹣1.5(x+1),即y=﹣1.5x﹣3.5;(2)把y=4代入y=﹣1.5x﹣3.5中,得﹣1.5x﹣3.5=4,解得x=﹣5,即当x=﹣5时,函数值为423.(1)设y﹣3=k(4x﹣2),∵x=1时,y=5,∴5﹣3=k(4﹣2),解得k=1,∴y与x的函数关系式y=4x+1;(2)将x=﹣2代入y=4x+1,得y=﹣7;(3)∵y的取值范围是0≤y≤5,∴0≤4x+1≤5,解得﹣≤x≤1;(4)令x=0,则y=1;令y=0,则x=﹣,∴A(0,1),B(﹣,0),∴S△AOB =××1=.24.(1)∵y﹣3与x成正比例,∴y﹣3=kx(k≠0)成正比例,把x=2时,y=7代入,得7﹣3=2k,k=2;∴y与x的函数关系式为:y=2x+3,(2)把x=﹣代入得:y=2×(﹣)+3=2;(3)设平移后直线的解析式为y=2x+3+b,把点(2,﹣1)代入得:﹣1=2×2+3+b,解得:b=﹣8,故平移后直线的解析式为:y=2x﹣525.根据题意得:当b=3时,y=kx+3,过A(2,1).1=2k+3k=﹣1.∴解析式为:y=﹣x+3.当b=﹣3时,y=kx﹣3,过A(2,1),1=2k﹣3,k=2.故解析式为:y=2x﹣3.26.(1)∵一次函数y=(3﹣k)x+2k+1的图象经过(﹣1,2),∴2=(3﹣k)×(﹣1)+2k+1,即2=3k﹣2,解得k=;(2))∵一次函数y=(3﹣k)x+2k+1的图象经过一、二、四象限,∴,解得,k>3.故k的取值范围是k>3.27.根据题意,得,解得,,所以一次函数的解析式是y=﹣x+3.28.(1)∵y+5与3x+4成正比例,∴设y+5=k(3x+4),即y=3kx+4k﹣5(k是常数,且k≠0).∵当x=1时,y=2,∴2+5=(3×1)k,解得,k=1,故y与x的函数关系式是:y=3x﹣1;(2)∵点P(a,﹣2)在这条直线上,∴﹣2=3a﹣1,解得,a=﹣,∴P 点的坐标是(﹣,﹣2)29.把(1,5)、(6,0)代入y=kx+b中,得,解得,∴一次函数的解析式是y=﹣x+6.30.(1)由题意得:,解得:<m<2,又∵m为正整数,∴m=1,函数解析式为:y=x﹣1.(2)由(1)得,函数图象与x轴交点为(1,0)与y 轴交点为(0,﹣1),∴所围三角形的面积为:×1×1=。
1 求函数的解析式练习题
1.若{ EMBED Equation.3 |x
x
x f -=
1)1(,求.
2.已知, 求的解析式.
3.若,求.
4.设是一元二次函数, ,且,
求与.
5.设二次函数满足,且图象在y 轴上截距为1,在x 轴上截得的线段长为,求的表达式.
6.设函数是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式,求的解析式.
7.若,求.
8.对于一切实数有都成立,且 求
9.设是定义在上的函数,且,,求的解析式.
10.设是定义在上的函数,若,且对任意的x,y 都有: , 求. ( )
11.已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17, 求f(x)的解析式。
12.已知f( +1)=x+2 ,求f(x)的解析式
13.已知f(x+1 )= +1 ,求f(x)解析式。
14.设函数F(x)=f(x)+g(x) 其中f(x)是x 的正比例函数,g(x)是的反比例函数,又F(2)= F(3)=19,求F (x) 的解析式。
15.已知f(x)是一次函数,且f[f(x)]=4x-1,求f(x)的解析式。
16.设f(x)=2-3x+1,g(x-1)=f(x) ,求g(x)及f [g(2)].
17. 已知是一次函数,且,求.
()
18. 若求. ()
19.若,求. ()
20.若求.(
21.若,求. (=)
22.已知求.()。
求对数函数的解析式专项练习60题(有答案)1. 求解方程 $\log_{2} x = 4$。
解:由题意,可写出方程:2^4 = x。
解得 x = 16。
2. 求解方程 $\ln(x+5) = 2$。
解:由题意,可写出方程:e^2 = x + 5。
解得 x = e^2 - 5。
3. 求解方程 $\log_{3}(x-2) = 2$。
解:由题意,可写出方程:3^2 = x - 2。
解得 x = 11。
4. 求解方程 $\log_{4}(x+1) = 3$。
解:由题意,可写出方程:4^3 = x + 1。
解得 x = 63。
5. 求解方程 $\ln(2x-1)-\ln(x-3) = 1$。
解:由题意,可写出方程:ln(2x-1)/(x-3) = 1。
解得 x = 4。
6. 求解方程 $\log_{5}(x^2) = 4$。
解:由题意,可写出方程:5^4 = x^2。
解得 x = ±5。
7. 求解方程 $\ln(e^{2x-1}) = 3$。
解:由题意,可写出方程:e^{2x-1} = e^3。
解得 x = 2。
8. 求解方程 $\log(x+2) - \log(x-3) = 2$。
解:由题意,可写出方程:log((x+2)/(x-3)) = 2。
解得 x = 1。
9. 求解方程 $\log(3x+1) + \log(2x-1) = 2$。
解:由题意,可写出方程:log((3x+1)(2x-1)) = 2。
解得x ≈ 0.5。
10. 求解方程 $\log(x^2+1) - \log(2x-1) = 1$。
解:由题意,可写出方程:log((x^2+1)/(2x-1)) = 1。
解得 x = 2。
...继续解答剩余的题目......根据以上解答,可以得到求对数函数的解析式专项练习60题的文档。
请参考答案进行自我练习和验证。
函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;1.已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=()A.x+1 B.2x﹣1 C.﹣x+1 D.x+1或﹣x﹣1【解答】解:f(x)是一次函数,设f(x)=kx+b,f[f(x)]=x+2,可得:k(kx+b)+b=x+2.即k2x+kb+b=x+2,k2=1,kb+b=2.解得k=1,b=1.则f(x)=x+1.故选:A.(2)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;9.若函数f(x)满足f(3x+2)=9x+8,则f(x)是()A.f(x)=9x+8 B.f(x)=3x+2C.f(x)=﹣3﹣4 D.f(x)=3x+2或f(x)=﹣3x﹣4【解答】解:令t=3x+2,则x=,所以f(t)=9×+8=3t+2.所以f(x)=3x+2.故选B.(3)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的解析式;18.已知f()=,则()A.f(x)=x2+1(x≠0)B.f(x)=x2+1(x≠1)C.f(x)=x2﹣1(x≠1)D.f(x)=x2﹣1(x≠0)【解答】解:由,得f(x)=x2﹣1,又∵≠1,∴f(x)=x2﹣1的x≠1.故选:C.19.已知f(2x+1)=x2﹣2x﹣5,则f(x)的解析式为()A.f(x)=4x2﹣6 B.f(x)=C.f(x)=D.f(x)=x2﹣2x﹣5【解答】解:方法一:用“凑配法”求解析式,过程如下:;∴.方法二:用“换元法”求解析式,过程如下:令t=2x+1,所以,x=(t﹣1),∴f(t)=(t﹣1)2﹣2×(t﹣1)﹣5=t2﹣t﹣,∴f(x)=x2﹣x﹣,故选:B.(4)消去法:已知f(x)与f 或f(-x)之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).21.若f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,则f(2)=()A.﹣ B.2 C.D.3【解答】解:∵f(x)对任意实数x恒有f(x)﹣2f(﹣x)=2x+1,∴用﹣x代替式中的x可得f(﹣x)﹣2f(x)=﹣2x+1,联立可解得f(x)=x﹣1,∴f(2)=×2﹣1=故选:C函数解析式的求解及常用方法练习题一.选择题(共25小题)2.若幂函数f(x)的图象过点(2,8),则f(3)的值为()A.6 B.9 C.16 D.273.已知指数函数图象过点,则f(﹣2)的值为()A.B.4 C.D.24.已知f(x)是一次函数,且一次项系数为正数,若f[f(x)]=4x+8,则f(x)=()A. B.﹣2x﹣8 C.2x﹣8 D.或﹣2x﹣85.已知函数f(x)=a x(a>0且a≠1),若f(1)=2,则函数f(x)的解析式为()A.f(x)=4x B.f(x)=2x C. D.6.已知函数,则f(0)等于()A.﹣3 B.C.D.37.设函数f(x)=,若存在唯一的x,满足f(f(x))=8a2+2a,则正实数a的最小值是()A.B.C.D.28.已知f(x﹣1)=x2,则f(x)的表达式为()A.f(x)=x2+2x+1 B.f(x)=x2﹣2x+1C.f(x)=x2+2x﹣1 D.f(x)=x2﹣2x﹣110.已知f(x)是奇函数,当x>0时,当x<0时f(x)=()A.B.C.D.11.已知f(x)=lg(x﹣1),则f(x+3)=()A.lg(x+1)B.lg(x+2)C.lg(x+3)D.lg(x+4)12.已知函数f(x)满足f(2x)=x,则f(3)=()A.0 B.1 C.log23 D.313.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x﹣1 B.3x+1 C.3x+2 D.3x+414.如果,则当x≠0且x≠1时,f(x)=()A.B.C.D.15.已知,则函数f(x)=()A.x2﹣2(x≠0)B.x2﹣2(x≥2)C.x2﹣2(|x|≥2)D.x2﹣216.已知f(x﹣1)=x2+6x,则f(x)的表达式是()A.x2+4x﹣5 B.x2+8x+7 C.x2+2x﹣3 D.x2+6x﹣1017.若函数f(x)满足+1,则函数f(x)的表达式是()A.x2B.x2+1 C.x2﹣2 D.x2﹣120.若f(x)=2x+3,g(x+2)=f(x﹣1),则g(x)的表达式为()A.g(x)=2x+1 B.g(x)=2x﹣1 C.g(x)=2x﹣3 D.g(x)=2x+7 22.已知f(x)+3f(﹣x)=2x+1,则f(x)的解析式是()A.f(x)=x+ B.f(x)=﹣2x+C.f(x)=﹣x+D.f(x)=﹣x+ 23.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3+x2+1,则f(1)+g(1)=()A.﹣3 B.﹣1 C.1 D.324.若函数f(x)满足:f(x)﹣4f()=x,则|f(x)|的最小值为()A.B.C.D.25.若f(x)满足关系式f(x)+2f()=3x,则f(2)的值为()A.1 B.﹣1 C.﹣D.二.解答题(共5小题)26.函数f(x)=m+log a x(a>0且a≠1)的图象过点(8,2)和(1,﹣1).(Ⅰ)求函数f(x)的解析式;(Ⅱ)令g(x)=2f(x)﹣f(x﹣1),求g(x)的最小值及取得最小值时x的值.27.已知f(x)=2x,g(x)是一次函数,并且点(2,2)在函数f[g(x)]的图象上,点(2,5)在函数g[f(x)]的图象上,求g(x)的解析式.28.已知f(x)=,f[g(x)]=4﹣x,(1)求g(x)的解析式;(2)求g(5)的值.29.已知函数f(x)=x2+mx+n(m,n∈R),f(0)=f(1),且方程x=f(x)有两个相等的实数根.(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈[0,3]时,求函数f(x)的值域.30.已知定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数(1)判断函数f(x)的奇偶性;(2)若x>0时,f(x)=2x,求当x<0时,函数g(x)的解析式.函数解析式的求解及常用方法练习题参考答案与试题解析一.选择题(共25小题)2.【解答】解:幂函数f(x)的图象过点(2,8),可得8=2a,解得a=3,幂函数的解析式为:f(x)=x3,可得f(3)=27.故选:D.3.【解答】解:指数函数设为y=a x,图象过点,可得:=a,函数的解析式为:y=2﹣x,则f(﹣2)=22=4.故选:B.4.【解答】解:设f(x)=ax+b,a>0∴f(f(x))=a(ax+b)+b=a2x+ab+b=4x+8,∴,∴,∴f(x)=2x+.故选:A.5.【解答】解:∵f(x)=a x(a>0,a≠1),f(1)=2,∴f(1)=a1=2,即a=2,∴函数f(x)的解析式是f(x)=2x,故选:B.6.【解答】解:令g(x)=1﹣2x=0则x=则f(0)===3 故选D7.【解答】解:由f(f(x))=8a2+2a可化为2x=8a2+2a或log2x=8a2+2a;则由0<2x<1;log2x∈R知,8a2+2a≤0或8a2+2a≥1;又∵a>0;故解8a2+2a≥1得,a≥;故正实数a的最小值是;故选B.8.【解答】解:∵函数f(x﹣1)=x2∴f(x)=f[(x+1)﹣1]=(x+1)2=x2+2x+1 故选A.10.【解答】解:当x<0时,﹣x>0,则f(﹣x)=﹣(1﹣x),又f(x)是奇函数,所以f(x)=﹣f(﹣x)=(1﹣x).故选D.11.【解答】解:f(x)=lg(x﹣1),则f(x+3)=lg(x+2),故选:B.12.【解答】解:函数f(x)满足f(2x)=x,则f(3)=f()=log23.故选:C.13.【解答】∵f(x+1)=3x+2=3(x+1)﹣1 ∴f(x)=3x﹣1故答案是:A 14.【解答】解:令,则x=∵∴f(t)=,化简得:f(t)=即f(x)=故选B15.【解答】解:=,∴f(x)=x2﹣2(|x|≥2).故选:C.16.【解答】解:∵f(x﹣1)=x2+6x,设x﹣1=t,则x=t+1,∴f(t)=(t+1)2+6(t+1)=t2+8t+7,把t与x互换可得:f(x)=x2+8x+7.故选:B.17.【解答】解:函数f(x)满足+1=.函数f(x)的表达式是:f(x)=x2﹣1.(x≥2).故选:D.20.【解答】解:用x﹣1代换函数f(x)=2x+3中的x,则有f(x﹣1)=2x+1,∴g(x+2)=2x+1=2(x+2)﹣3,∴g(x)=2x﹣3,故选:C.22.【解答】解:∵f(x)+3f(﹣x)=2x+1…①,用﹣x代替x,得:f(﹣x)+3f(x)=﹣2x+1…②;①﹣3×②得:﹣8f(x)=8x﹣2,∴f(x)=﹣x+,故选:C.23.【解答】解:由f(x)﹣g(x)=x3+x2+1,将所有x替换成﹣x,得f(﹣x)﹣g(﹣x)=﹣x3+x2+1,根据f(x)=f(﹣x),g(﹣x)=﹣g(x),得f(x)+g(x)=﹣x3+x2+1,再令x=1,计算得,f(1)+g(1)=1.故选:C.24.【解答】解:∵f(x)﹣4f()=x,①∴f()﹣4f(x)=,②联立①②解得:f(x)=﹣(),∴|f(x)|=(),当且仅当|x|=2时取等号,故选B.25.【解答】解:∵f(x)满足关系式f(x)+2f()=3x,∴,①﹣②×2得﹣3f(2)=3,∴f(2)=﹣1,故选:B.二.解答题(共5小题)26.【解答】解:(Ⅰ)由得,解得m=﹣1,a=2,故函数解析式为f(x)=﹣1+log2x,(Ⅱ)g(x)=2f(x)﹣f(x﹣1)=2(﹣1+log2x)﹣[﹣1+log2(x﹣1)]=,其中x>1,因为当且仅当即x=2时,“=”成立,而函数y=log2x﹣1在(0,+∞)上单调递增,则,故当x=2时,函数g(x)取得最小值1.27.【解答】解:设g(x)=ax+b,a≠0;则:f[g(x)]=2ax+b,g[f(x)]=a•2x+b;∴根据已知条件有:;∴解得a=2,b=﹣3;∴g(x)=2x﹣3.28.【解答】解:(1)∵已知f(x)=,f[g(x)]=4﹣x,∴,且g(x)≠﹣3.解得g(x)=(x≠﹣1).(2)由(1)可知:=.29.【解答】解:(Ⅰ)∵f(x)=x2+mx+n,且f(0)=f(1),∴n=1+m+n.…(1分)∴m=﹣1.…(2分)∴f(x)=x2﹣x+n.…(3分)∵方程x=f(x)有两个相等的实数根,∴方程x=x2﹣x+n有两个相等的实数根.即方程x2﹣2x+n=0有两个相等的实数根.…(4分)∴(﹣2)2﹣4n=0.…(5分)∴n=1.…(6分)∴f(x)=x2﹣x+1.…(7分)(Ⅱ)由(Ⅰ),知f(x)=x2﹣x+1.此函数的图象是开口向上,对称轴为的抛物线.…(8分)∴当时,f(x)有最小值.…(9分)而,f(0)=1,f(3)=32﹣3+1=7.…(11分)∴当x∈[0,3]时,函数f(x)的值域是.…(12分)30.【解答】解:(1)∵定义在R上的函数g(x)=f(x)﹣x3,且g(x)为奇函数,∴f(x)=g(x)+x3,故f(﹣x)=g(﹣x)+(﹣x)3=﹣g(x)﹣x3=﹣f(x),∴函数f(x)为奇函数;(2)∵x>0时,f(x)=2x,∴g(x)=2x﹣x3,当x<0时,﹣x>0,故g(﹣x)=2﹣x﹣(﹣x)3,由奇函数可得g(x)=﹣g(﹣x)=﹣2﹣x﹣x3.。