第八章 认识概率单元测试题2
- 格式:doc
- 大小:62.50 KB
- 文档页数:2
第8章认识概率一、选择题(每小题4分,共24分)1.下列事件中是不可能事件的是 ()A.三角形的内角和小于180°B.两实数之和为正C.买体育彩票中奖D.抛一枚硬币2次都正面朝上2.下列事件中是随机事件的是()A.把一枚硬币抛向空中,落地时正面朝上B.手抛一块石头,石头终将下落C.小强任意买了一张电影票,座位号既不是奇数,也不是偶数D.南京夏天的平均气温比冬天低3.在一个不透明的袋子中装有1个白球,2个黄球和3个红球,每个球除颜色外完全相同,将球摇匀,从中任取l个球.①恰好取出白球;②恰好取出黄球;③恰好取出红球.根据你的判断,将这些事件按发生的可能性从小到大的顺序排列是()A.①③②B.②①③C.①②③D.③②①4.在一个不透明布袋中装有若干个只有颜色不同的小球,如果布袋中有红球4个,黄球3个,其余的为绿球,那么从布袋中随机摸出一个球,“摸出黄球”的可能性为,则布袋中绿球的个数是()A.12B.5C.4D.25.图1显示了用计算机模拟随机投掷一枚图钉的某次试验的结果.图1下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此试验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A.①B.②C.①②D.①③6.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚质地均匀的骰子,掷出的点数是偶数的概率是C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖二、填空题(每小题4分,共24分)7.袋中有4个白球和2个红球,这些球除颜色不同外其他完全相同,将袋中的球搅拌均匀后,小强同学闭上眼睛随机从袋中取出3个球,这3个球都是球是可能发生的,都是球是不可能发生的.(填“白”或“红”)8.根据天气预报,明天降水的概率为20%,后天降水的概率为80%,假如你准备明天或后天去放风筝,你选择为佳.(填“明天”或“后天”)9.在一个不透明的口袋里装有2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.在一个不透明的口袋中,装有除颜色不同外无其他差别的白球和黄球.某同学进行了如下试验:从袋中随机摸出一个球记下它的颜色,放回摇匀,为一次摸球试验.记录摸球的次数与摸出白球的次数列表如下:摸球的次数100 200 500 1000摸出白球的次数21 39 102 199根据上表可以估计摸出白球的概率为.11.事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.12.如图2,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是m2.图2三、解答题(共52分)13.(9分)按下列要求各举一例:(1)一个发生可能性为0的不可能事件;(2)一个发生可能性为100%的必然事件;(3)一个发生可能性大于50%的随机事件.14.(9分)有一个转盘(如图3所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.思考各事件的可能性大小,然后回答下列问题:(1)可能性最大和最小的事件分别是哪个?(用序号表示)(2)将这些事件的序号按发生的可能性从小到大的顺序排列.图315.(9分)对某工厂生产的直径为38 mm的乒乓球进行产品质量检测,结果如下:抽取球数n50 100 500 1000 5000优等品的频数m45 92 455 890 4500优等品的频率(1)填写表中的空格;(2)估计该厂生产的乒乓球“优等品”的概率.16.(12分)在不透明的袋中装有只有颜色不同的8个小球,其中红球3个,黑球5个.(1)先从袋中取出m(m>1)个红球,再从袋中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:事件A必然事件随机事件m的值(2)先从袋中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出一个球是黑球的概率是,求m的值.17.(13分)某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图4所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在,成活的概率的估计值为.(2)该地区已经移植这种树苗5万棵.①估计这种树苗成活万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?图4答案1. A2. A3. C4. B5. B6. A7.白红8.明天9.答案不唯一.摸1个球是白球10. 0.19911. 512. 113.解:答案不唯一.(1)一个发生可能性为0的不可能事件:在一个装着白球和黑球的袋中摸球,摸出红球.(2)一个发生可能性为100%的必然事件:抛掷一块石头,石头终将落地.(3)一个发生可能性大于50%的随机事件:在一个装着10个白球和1个黑球的袋中摸球,摸出白球.14.解:(1)可能性最大的事件是④,可能性最小的事件是②.(2)由题意得②<③<①<④.15.解:(1)0.900.920.910.890.90(2)估计该厂生产的乒乓球“优等品”的概率是0.9.16.解:(1)从袋中取出3个红球,再从袋中随机摸出1个球,“摸出黑球”是必然事件;从袋中取出2个红球,再从袋中随机摸出1个球,“摸出黑球”是随机事件.故答案为3,2.(2)由题意得=,解得m=1.故m的值为1.17.解:(1)0.90.9(2)①4.5②18÷0.9-5=15(万棵).答:该地区还需移植这种树苗约15万棵.。
第8章认识概率(原卷版)考试时间:100分钟;满分:120分一、单选题(共18分)1.(本题2分)在下图的各事件中,是随机事件的有()A.1个B.2个C.3个D.4个2.(本题2分)下列事件属于不可能事件的是()A.经过有交通信号灯的路口,遇到红灯B.任意画一个三角形,其内角和等于180°C.连续掷两次骰子,向上一面的点数都是6D.明天太阳从西边升起3.(本题2分)下列事件中属于必然事件的是()A.两直线平行,同位角相等B.在一张纸上任意画两条线段,这两条线段相交C.有两条边长为3,4的三角形是直角三角形D.在一个只装有白球的袋子中摸出一个红球4.(本题2分)下列事件中是必然事件的是()A.平移后的图形与原来的图形对应线段相等B.同位角相等C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.-a是负数5.(本题2分)如表是一位同学在罚球线上投篮的试验结果,根据表中数据回答下列问题:估计这位同学投篮一次,投中的概率约是()(精确到0.1)A.0.55B.0.4C.0.6D.0.56.(本题2分)在一个不透明的布袋中装有45个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有()A.18B.27C.36D.307.(本题2分)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.抛一枚硬币,连续两次出现正面的概率B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.任意写一个正整数,它能被5整除的概率D.掷一枚正六面体的骰子,出现1点的概率8.(本题2分)在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数大于2的概率D.朝上的点数是3的倍数的概率9.(本题2分)一个不透明的袋子中装有除颜色外完全相同的黑、白棋子若干,小明进行了大量的摸出棋子记录颜色后放回再摸的试验,发现摸出黑棋子的频率稳定在0.6附近,那么摸出白棋子的概率约是()A.12B.25C.3150D.35二、填空题(共16分)10.(本题2分)在一个不透明的布袋中装有50个白球和黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有______个.11.(本题2分)在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.12.(本题2分)一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________.13.(本题2分)有如下四个事件:①随机抛掷一枚硬币,落地后正面向上;②任意写出一个数字,这个数字是一个有理数;③等腰三角形的三边长分别为2cm、2cm和5cm;④《九章算术》是中国传统数学重要的著作,书中《勾股章》说,把勾和股分别自乘,然后把它们的乘积加起来,再进行开方,便可以得到弦.在这四个事件中是不可能事件是________.(填写序号即可)14.(本题2分)下列事件:①打雷后会下雨;②明天是晴天;③1小时等于60分钟;④从装有2个红球,2个白球的袋子中摸出一个蓝球.其中是确定性事件的是________.(填序号)15.(本题2分)下列四个事件中:①如果a为实数,那么20a ;②在标准大气压下,水在1C时结冰;③同时掷两枚均匀的骰子,朝上一面的点数和为13;④小明期中考试数学得满分.其中随机事件有_____(填序号)16.(本题2分)在一个不透明的袋子中装有2个红球、5个白球和3个黑球,这些球除颜色外都相同.从中任意摸出1个球,摸到_______________________色的球的可能性最大.(填“红”、“白”或“黑”)17.(本题2分)某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)三、解答题(共86分)18.(本题9分)在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?19.(本题6分)在不透明箱里放有红、白、黄、蓝四种颜色球共16个,除颜色外都相同,其中白球5个,黄球4个.(1)小军和小颖为争一个竞赛的名额,决定用摸球的方式来确定,从不透明箱里随机摸出1个球,是白球就小军去,是黄球,就小颖去.请问这个规则是否公平?并通过计算概率说明理由.(2)现每次从箱中任意摸出一个球记下颜色,再放回箱中,通过大量重复摸球实验后发现,摸到蓝球的频率稳定在25%,那么箱里大约有多少个红球?20.(本题10分)在一个口袋里有大小形状都一样的10张卡片,分别写有-1,-2,-3,-4,-5,1,2,3,4,5.从中任意抽出一张卡片.(1)抽到正数的可能性大还是抽到负数的可能性大?(2)抽到奇数的可能性大还是抽到偶数的可能性大?(3)抽到小于2的可能性大还是抽到大于-3的可能性大?(4)抽到平方数的可能性大还是抽到立方数的可能性大?(5)抽到绝对值大于1的可能性大还是抽到绝对值小于6的可能性大?21.(本题8分)小覃和小莫两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了100次试验,实验的结果如下:(1)求表格中x的值.(2)计算“3点朝上”的频率.(3)小覃说:“根据实验,一次实验中出现1点朝上的概率是12%”;小覃的这一说法正确吗?为什么?(4)小莫说:“如果掷6000次,那么出现5点朝上的次数大概是1500次左右.”小莫的这一说法正确吗?为什么?22.(本题8分)孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为1A级、2A级、3A级,其中1A级最好,3A级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到1A级的可能性大?为什么?23.(本题9分)九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:编号一二三四五人数a152010b已知前面两个小组的人数之比是1:5.解答下列问题:+=.(1)a b(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)24.(本题8分)某射击运动员在相同条件下的射击160次,其成绩记录如下:射击次数20406080100120140160射中9环以上的次数1533637997111130射中9环以上的频率0.750.830.800.790.790.790.81(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.25.(本题8分)[概率中的方案设计]小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影部分时小红胜,否则小明胜,未掷入圈内(半径为3m的圆内)或掷在边界上重掷.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想:能否用频率估计概率的方法,来估算不规则图形的面积呢?请你设计一个方案,解决这一问题(要求画出图形,说明设计步骤、原理,并给出计算公式)26.(本题9分)某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?27.(本题11分)在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色后,再把它放回盒子中,不断重复上述过程,下表是试验中的组统计数据:摸球的次数m10020030050080010003000摸到白球的次数n661281713024815991806摸到白球的频率nm0.660.640.570.6040.6010.5990.602(2)估算盒子里约有白球__________个;(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个.然后每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请你推测x可能是多少?第8章认识概率(解析版)一、单选题(共18分)1.(本题2分)在下图的各事件中,是随机事件的有()A.1个B.2个C.3个D.4个【答案】B【解析】根据随机事件的概率值即可判断.【详解】解:因为不可能事件的概率为0,0<随机事件的概率<1,必然事件的概率为1,所以在如图的各事件中,是随机事件的有:事件B和事件C,共有2个,故选:B.【点睛】本题考查了随机事件,弄清不可能事件的概率,随机事件的概率,必然事件的概率是解题的关键.2.(本题2分)下列事件属于不可能事件的是()A.经过有交通信号灯的路口,遇到红灯B.任意画一个三角形,其内角和等于180°C.连续掷两次骰子,向上一面的点数都是6D.明天太阳从西边升起【答案】D【解析】【分析】根据事件发生的可能性大小判断即可.【详解】解:A、经过有交通信号灯的路口,遇到红灯,是随机事件,选项不符合题意;B、任意画一个三角形,其内角和等于180 ,是必然事件,选项不符合题意;C、连续掷两次骰子,向上一面的点数都是6,是随机事件,选项不符合题意;D、明天太阳从西边升起,是不可能事件,选项符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(本题2分)下列事件中属于必然事件的是()A.两直线平行,同位角相等B.在一张纸上任意画两条线段,这两条线段相交C.有两条边长为3,4的三角形是直角三角形D.在一个只装有白球的袋子中摸出一个红球【答案】A【解析】必然事件是在一定条件下一定会发生的事件,对各个选项进行判断即可得出答案.【详解】解:A中两直线平行,同位角相等是平行线的性质,属于必然事件,故符合要求;B中任意两条线段的位置关系可相交,可不相交,属于随机事件,故不符合要求;C中两条边长为3,4的三角形中,第三条边的长度大于1小于7均可,当第三边长为5时,该三角形为直角三角形,属于随机事件,故不符合要求;D中在只装有白球的袋子中摸出一个红球,属于不可能事件,故不符合要求;故选A.【点睛】本题考查了必然事件.解题的关键在于对必然事件,随机事件与不可能事件的理解.4.(本题2分)下列事件中是必然事件的是()A.平移后的图形与原来的图形对应线段相等B.同位角相等C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.-a是负数【答案】A【解析】根据必然事件和随机事件的定义解答即可.【详解】解:A.平移后的图形与原来的图形对应线段相等是必然事件;B.∵两直线平行同位角相等,∴同位角相等是随机事件;C.∵随机抛掷一枚质地均匀的硬币,落地后可能正面朝上,也可能反面朝向,∴随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件;D.∵当a=0时,-a=0,0既不是负数,也不是正数,∴-a 是负数是随机事件;故选A .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 5.(本题2分)如表是一位同学在罚球线上投篮的试验结果,根据表中数据回答下列问题:估计这位同学投篮一次,投中的概率约是( )(精确到0.1)A .0.55B .0.4C .0.6D .0.5【答案】D【解析】【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.【详解】解:估计这名球员投篮一次,投中的概率约是2860781041241532520.550100150200250300500++++++≈++++++,故选:D . 【点睛】本题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.6.(本题2分)在一个不透明的布袋中装有45个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有( )A .18B .27C .36D .30【答案】D【解析】 【分析】设黑球的个数为x 个,根据频率可列出方程,解方程即可求得x ,从而得到答案.【详解】设黑球的个数为x 个,由题意得:0.445x x=+ 解得:x=30经检验x=30是原方程的解,则袋中黑球的个数为30个故选:D【点睛】本题考查了用频率估计概率,解方程,根据概率列出方程是关键.7.(本题2分)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( )A .抛一枚硬币,连续两次出现正面的概率B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .任意写一个正整数,它能被5整除的概率D .掷一枚正六面体的骰子,出现1点的概率【答案】B【解析】【分析】根据统计图可得,实验结果在0.33附近波动,故概率0.33P ≈,计算四个选项的概率即可得出答案.【详解】A. 抛一枚硬币两次,出现得结果有(正,正),(正,反),(反,正)和(反,反)四种,所以连续两次出现正面的概率14P =,故A 排除; B. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为10.333P =≈,故B 正确; C. 任意写一个正整数,它能被5整除的概率为21105P ==,故C 排除; D. 掷一枚正六面体的骰子,出现1点的概率为16P =,故D 排除.故选:B 【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,在解答过程中掌握概率公式是解决本题的关键.8.(本题2分)在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A .朝上的点数是5的概率B .朝上的点数是奇数的概率C .朝上的点数大于2的概率D .朝上的点数是3的倍数的概率【答案】D【解析】【分析】计算出各个选项中事件的概率,根据概率即可作出判断.【详解】A 、朝上的点数是5的概率为.%≈116676,不符合试验的结果; B 、朝上的点数是奇数的概率为%==315062,不符合试验的结果; C 、朝上的点数大于2的概率.%≈466676,不符合试验的结果;D 、朝上的点数是3的倍数的概率是.%≈233336,基本符合试验的结果. 故选:D .【点睛】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率.9.(本题2分)一个不透明的袋子中装有除颜色外完全相同的黑、白棋子若干,小明进行了大量的摸出棋子记录颜色后放回再摸的试验,发现摸出黑棋子的频率稳定在0.6附近,那么摸出白棋子的概率约是( )A .12B .25C .3150D .35【答案】B【解析】【分析】根据摸出黑棋子的频率稳定在0.6附近,则摸出白棋子的频率稳定在1-0.6=0.4附近,由此即可得到答案.【详解】解:∵摸出黑棋子的频率稳定在0.6附近,∴摸出白棋子的频率稳定在1-0.6=0.4附近, ∴那么摸出白棋子的概率约是20.45=, 故选B .【点睛】本题主要考查了用频率估计概率,解题的关键在于能够准确求出摸出白棋子的频率.二、填空题(共16分)10.(本题2分)在一个不透明的布袋中装有50个白球和黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有______个.【答案】10【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程即可求解.【详解】解:设袋中有黑球x 个, 由题意得:0.250x ,解得:x=10, 则,布袋中黑球的个数可能有10个.故答案为:10.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.11.(本题2分)在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.【答案】12【解析】【分析】根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题.【详解】解:由题意知摸到黄色球的频率稳定在40%,所以摸到白色球的概率:1-40%=60%,因为不透明的布袋中,有黄色、白色的玻璃球共有20个,所以布袋中白色球的个数为20×60%=12(个),故答案为:12.【点睛】本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键. 12.(本题2分)一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________. 【答案】15##0.2【解析】【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【详解】解:∵共摸球4000次,其中800次摸到黑球,∴从中随机摸出一个球是黑球的概率为8001=40005,故答案为:15【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(本题2分)有如下四个事件:①随机抛掷一枚硬币,落地后正面向上;②任意写出一个数字,这个数字是一个有理数;③等腰三角形的三边长分别为2cm、2cm和5cm;④《九章算术》是中国传统数学重要的著作,书中《勾股章》说,把勾和股分别自乘,然后把它们的乘积加起来,再进行开方,便可以得到弦.在这四个事件中是不可能事件是________.(填写序号即可)【答案】③【解析】【分析】根据随机事件、不可能事件、必然事件的定义解答.【详解】解:①②是随机事件,③是不可能事件,④是必然事件,故答案为:③.【点睛】此题考查事件的分类:不确定事件、不可能事件、必然事件,正确掌握各定义是解题的关键.14.(本题2分)下列事件:①打雷后会下雨;②明天是晴天;③1小时等于60分钟;④从装有2个红球,2个白球的袋子中摸出一个蓝球.其中是确定性事件的是________.(填序号)【答案】③④【解析】【分析】因为确定事件包括必然事件和不可能事件,根据这两种事件的概念判断即可.【详解】①打雷后会下雨,随机事件;②明天是晴天,随机事件;③1小时等于60分钟,必然事件;④从装有2个红球,2个白球的袋子中摸出一个蓝球,不可能事件.故确定性事件的是:③④.【点睛】考查了必然事件、不可能事件、随机事件的概念:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事.15.(本题2分)下列四个事件中:①如果a为实数,那么20a≥;②在标准大气压下,水在1C时结冰;③同时掷两枚均匀的骰子,朝上一面的点数和为13;④小明期中考试数学得满分.其中随机事件有_____(填序号)【答案】④【解析】【分析】根据必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】①如果a为实数,那么20a≥是必然事件;②在标准大气压下,水在1C时结冰是不可能事件;③同时掷两枚均匀的骰子,朝上一面的点数和为13是不可能事件;④小明期中考试数学得满分是随机事件.故答案是:④.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.16.(本题2分)在一个不透明的袋子中装有2个红球、5个白球和3个黑球,这些球除颜色外都相同.从中任意摸出1个球,摸到_______________________色的球的可能性最大.(填“红”、“白”或“黑”)【答案】白【解析】【分析】分别计算出摸到红、白、黑球的可能性,比较大小后即可得到答案.【详解】∵袋子中装有2个红球、5个白球和3个黑球,∴摸出红球的可能性是:2÷(2+5+3)=15,摸出白球的可能性是:5÷(2+5+3)=12,摸出黑球的可能性是:3÷(2+5+3)=3 10,∵12>310>15,∴白球出现的可能性大.故答案为:白【点睛】本题主要考查了求简单事件发生的可能性,用到的知识点为:可能性等于所求情况数与总情况数之比.17.(本题2分)某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.抛掷次数5010020050010002000300040005000“正面向上”的次数193868168349707106914001747“正面向上”的频率0.38000.38000.34000.33600.34900.35350.35630.35000.3494则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)【答案】0.35【解析】【分析】随着实验次数的增加,“正面向上”的频率总在0.35附近摆动,显示出一定的稳定性,据此进行判断即可.【详解】随着实验次数的增加,“正面向上”的频率总在0.35附近摆动,显示出一定的稳定性,据此进行判断抛掷该纪念币正面朝上的概率约为0.35.故答案为:0.35.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义.三、解答题(共86分)18.(本题9分)在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?【答案】(1)n=5或6;(2)n=1或2;(3)n=3或4【解析】【分析】(1)利用必然事件的定义确定n的值;(2)利用不可能事件的定义确定n的值;(3)利用随机事件的定义确定n的值.【详解】(1)当n=5或6时,这个事件必然发生;(2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件.【点睛】本题考查了随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.也考查了必然事件和不可能事件.19.(本题6分)在不透明箱里放有红、白、黄、蓝四种颜色球共16个,除颜色外都相同,其中白球5个,黄球4个.。
o o1、 从1, 2 , - 3三个数中,随机抽取两个数相乘,积是正数的概率是()B 1C 2 A. 0 BE C •三 D. 1 2、 甲袋装有4个红球和1个黑球,乙袋装有 6个红球、4个黑球和5个白球.这些球除了颜色外没有其他区别,分别搅匀两袋中的球,从袋中分别任意摸出一个球,正确说 法是() A. 从甲袋摸到黑球的概率较大 B. 从乙袋摸到黑球的概率较大 C. 从甲、乙两袋摸到黑球的概率相等 D. 无法比较从甲、乙两袋摸到黑球的概率 3、如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为4、一项 过关游戏”规定:在过第n 关时要将一颗质地均匀的骰子 (六个面上分别刻有 1 到6的点数)抛掷n 次,若n 次抛掷所出现的点数之和大于 丄n 2,则算过关;否则不算 4 过关,则能过第二关的概率是 A .空 B . 5 C. 1 D. 1 18 1S 4 55、 在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、 质地等完全相同•小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机 摸出一球,记下颜色,••…;如此大量摸球实验后,小新发出其中摸出红球的频率稳定 于20%,摸出黑球的频率稳定于 50%.对此实验,他总结出下列结论: ①若进行大量 摸球实验,摸出白球的频率应稳定于 30%;②若从布袋中任意摸出一个球,该球是黑 球的概率最大; ③ 若再摸球100次,必有20次摸出的球是红球.其中说法正确的是 A. ①②③ B .①② C.①③ D.②③6、 中央电视台 幸运52”栏目中的 百宝箱”互动环节,是一种竞猜游戏,游戏规则如下: 在20个商标中,有5个商标牌的背面是一张哭脸,若翻到哭脸,就不能得奖,参与这 个游戏的观众有三次翻牌机会(翻过的牌不能再翻) 。
某观众前两次翻牌均获得若干奖 金,那么他第三次翻牌获奖的概率是( ) A . 1/20 B . 1/52 C. 1/4 D. 1/67、 下列事件是必然事件的是( ) A. 酒瓶会爆炸 B. 抛掷一枚硬币,正面朝上 C. 地球在自转 3o 线戋 o o订订A .丄B . 亍 C. 1 D. 1 3 4 5 6 o o装装°o外内D. 今天的气温是100度8、一名运动员连续射靶 10次,其中2次命中10环,2次命中9环,6次命中8环,针 对某次射击,下列说法正确的是( )A .射中10环的可能性最大B .命中9环的可能性最大C .命中8环的可能性最大D .以上可能性均等 9、如图所示是用相同的正方形砖铺成的地板,一宝物藏在某一块下面,宝物在白色区10、 袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不 到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( ) A. 摸出的三个球中至少有一个球是黑球 B. 摸出的三个球中至少有一个球是白球 C. 摸出的三个球中至少有两个球是黑球 D. 摸出的三个球中至少有两个球是白球 11、 口袋中有2个白球,1个黑球,从中任取一个球,摸到白球的概率为 ________ . 12、如图所示是一飞镖游戏板, 大圆的直径把组同心圆分成四等份,假设击中圆面上每 个点都等可能的,则落在黑色区域的概率 _.13、如图,A 是正方体小木块(质地均匀)的一顶点,将木块随机投掷在水平桌面上, 则A 与桌面接触的概率是14、甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为 5、6、7的三张扑克 牌中•随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数, 则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏 -(填公平”或 不公平”) 15、 P (太阳从东边升起) = ________ 。
2022-2023学年苏科版八年级数学下册《第8章认识概率》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.下列事件是随机事件的是()A.打开电视,正在播放《中国机长》B.白发三千丈,缘愁似个长C.离离原上草,一岁一枯荣D.钝角三角形的内角和大于180°2.下列事件中,是必然事件的是()A.任意画一个三角形,其内角和为180°B.掷一次色子,向上一面的点数是3C.购买一张彩票,一定中奖D.明天大连下雪3.连续三次抛掷一枚硬币都是正面朝上,则第四次抛掷正面朝上的是()A.必然事件B.不可能事件C.随机事件D.确定事件4.在一个不透明的盒子中,装有绿色、黑色、白色的小球共有60个,除颜色外其他完全相同,一同学通过多次摸球试验后发现其中摸到绿色球、黑色球的频率稳定在30%和40%,盒子中白色球的个数可能是()A.24个B.18个C.16个D.6个5.口袋中有10个红球、8个黄球和若干个白球,将它们充分摇匀后从中摸出一球,小明通过多次摸球试验后,发现摸到白球的频率稳定在0.4左右,则口袋中大约有()个白球.A.30B.12C.18D.156.从一定的高度任意抛掷一枚质地均匀的硬币的次数很大时,落下后,正面朝上的频率最有可能接近的数值为()A.0.53B.0.87C.1.03D.1.507.在一口锅里有外表一样的汤圆,其中7个是花生馅的,5个是黑芝麻馅的,8个是豆沙馅的.小文随意捞起一个,捞到可能性最大的汤圆是()A.花生馅汤圆B.黑芝麻馅汤圆C.豆沙馅汤圆D.无法确定8.某射击运动员在同一条件下射击,结果如表所示:射击总次数n1020501002005001000击中靶心的次数m8174079158390780击中靶心的频率0.80.850.80.790.790.780.78根据频率的稳定性,这名运动员射击一次击中靶心的概率约是()A.0.78B.0.79C.0.8D.0.85二.填空题(共8小题,满分40分)9.“太阳总是从东方升起”是事件.(填“不可能”、“必然”或“随机”)10.一个不透明的布袋中装有4个红色球、m个白色球、1个黑色球,其颜色外都相同,每次将球充分搅拌均匀后,任意摸出1个球记下颜色再放回袋中,通过大量摸球试验发现摸到白色球的频率稳定在0.5,可估计这个布袋中白球的个数为.11.在一个不透明的袋中装有若干个材质、大小完全相同的红球,小明在袋中放入3个黑球(每个黑球除颜色外其余都与红球相同),摇匀后每次随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.8左右,估计袋中红球有个.12.一个不透明袋子中有3个红球,1个绿球和n个白球,这些球除颜色外无其他差别,从袋中随机摸出1个球,摸到红球和白球的可能性相同,则n的值是.13.绿化公司对某种花苗种植的成活率进行调查,结果如表所示:移植总数(n)400750150035007000900010000成活数(m)36966213353203633580739013成活的频率0.9230.8830.8900.9150.9050.8970.901根据表中数据,估计这种花苗种植的成活概率为.(精确到0.1).14.如图是一个等分成8个扇形区域的转盘,转动转盘一次,估计事件“指针落在标有奇数的区域内”发生的可能性大小为.15.某批排球的质量检验结果如下:抽取的篮球数n5020040060080010001200优等品的频数m461863725617449311116优等品的频率0.920.9300.9300.9350.9300.9310.930从这批排球中,任意抽取的一个排球是优等品的概率的估计值是.(精确到0.01)16.将A,B两位篮球运动员在一段时间内的投篮情况记录如下:投篮次数2030506080100A投中次数152338456075投中频率0.7500.7670.7600.7500.7500.750 B投中次数142335436180投中频率0.7000.7670.7000.7170.7630.800下面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750.③投篮达到400次时,A运动员投中次数估计为300次,其中合理的是(填序号).三.解答题(共4小题,满分40分)17.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球,现从袋中取出若干个黑球,搅匀后,在袋中剩下的球中随机摸出一个球,记录颜色后放回、搅匀,再随机摸出一个小球,记录颜色后放回、搅匀,…不断重复这一过程,经过大量试验发现从袋中摸出一个球是黑球的频率稳定在,估计从袋中取出黑球的个数.18.某玩具公司承接了第19届杭州亚运会吉祥物公仔的生产任务,现对一批公仔进行抽检,其结果统计如下,请根据表中数据,回答问题:抽取的公仔数n101001000200030005000优等品的频数m996951190028564750优等品的频率0.90.960.9510.950.9520.95(精确到0.01)(1)从这批公仔中任意抽取1只公仔是优等品的概率的估计值是;(2)若该公司这一批次生产了10000只公仔,求这批公仔中优等品大约有多少只?19.如图,某商场有一个可以自由转动的圆形转盘.规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:1001502005008001000转动转盘的次数n68111136345546701落在“铅笔”的次数m0.680.740.680.690.680.70落在“铅笔”的频率(1)转动该转盘一次,获得一瓶饮料的概率约为;(结果保留小数点后一位)(2)经统计该商场每天约有5000名顾客参加扡奖活动,一瓶饮料和一支铅笔单价和为4元,估算支出的铅笔和饮料的奖品总费用是8000元,请计算该商场一瓶饮料和一支铅笔的单价.20.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格剩余部分:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345564701落在“铅笔”的频率m/n0.680.740.690.705(2)请估计,当n很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中表示“可乐”区域的扇形的圆心角约是多少(精确到1°)参考答案一.选择题(共8小题,满分40分)1.解:A、打开电视,正在播放《中国机长》,是随机事件,符合题意;B、白发三千丈,缘愁似个长,是不可能事件,不符合题意;C、离离原上草,一岁一枯荣,是必然事件,不符合题意;D、钝角三角形的内角和大于180°,是不可能事件,不符合题意;故选:A.2.解:A、任意画一个三角形,其内角和为180°,是必然事件,故A符合题意;B、掷一次色子,向上一面的点数是3,是随机事件,故B不符合题意;C、购买一张彩票,一定中奖,是随机事件,故C不符合题意;D、明天大连下雪,是随机事件,故D不符合题意;故选:A.3.解:“第四次抛掷正面朝上”是随机事件.故选:C.4.解:由题意可得,盒子中白色球的有:60×(1﹣30%﹣40%)=60×30%=18(个),故选:B.5.解:设白球的数量为x个,由题意得,解得x=12,经检验x=12是原方程的解,∴白球的数量为12个,故选:B.6.解:当抛掷的次数很大时,正面朝上的频率最有可能接近正面向上的概率是,故选:A.7.解:∵在一口锅里有外表一样的汤圆,其中7个是花生馅的,5个是黑芝麻馅的,8个是豆沙馅的.∴小文随意捞起一个,捞到可能性最大的汤圆是豆沙馅汤圆.故选:C.8.解:根据频率的稳定性,估计这名运动员射击一次时击中靶心的概率约是0.78,故选:A.二.填空题(共8小题,满分40分)9.解:“太阳总是从东方升起”是必然事件,故答案为:必然.10.解:根据题意得:=0.5,解得:m=5,经检验m=5是方程的解,答:估计这个布袋中白球的个数为5个;故答案为:5.11.解:通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,口袋中有3个黑球,∵假设有x个红球,∴=0.8,解得:x=12,经检验x=12是分式方程的解,∴口袋中红球约有12个.故答案为:12.12.解:∵袋子中有3个红球,1个绿球和n个白球,从袋中随机摸出1个球,摸到红球和白球的可能性相同,∴袋中的红球和白球的个数相同,即n=3,故答案为:3.13.解:由表格数据可得,随着样本数量不等增加,这种花苗种植成活的概率稳定在0.9左右,故这种树花苗种植成活的概率为0.9.故答案为:0.9.14.解:∵转盘上的奇数区域占转盘的,∴“指针落在标有奇数的区域内”发生的可能性大小为,故答案为:.15.解:从这批排球中,任意抽取一个排球是优等品的概率的估计值是0.93,故答案为:0.93.16.解:①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的频率估计它的概率,投篮30次,次数太少,不可用于估计概率,故①推断不合理.②随着投篮次数增加,A运动员投中的概率显示出稳定性,因此可以用于估计概率,故②推断合理.③频率用于估计概率,但并不是准确的概率,因此投篮次400时,只能估计投中300次数,故③合理;故答案为:②③.三.解答题(共4小题,满分40分)17.解:设从袋中取出x个黑球,根据题意得,解得:x=2,经检验,x=2是原分式方程的解.所以从袋中取出黑球的个数为2个.18.解:(1)从这批公仔中,任意抽取1只公仔是优等品的概率的估计值是0.95,故答案为:0.95;(2)10000×0.95=9500(只),答:这批公仔中优等品大约有9500只.19.解:(1)利用频率估计概率可知:转动该转盘一次,获得铅笔的概率约为0.7,∴转动该转盘一次,获得饮料的概率约为1﹣0.7=0.3,故答案为:0.3;(2)设该商场每支铅笔x元,则每瓶饮料(4﹣x)元,由题意得:5000×(4﹣x)×0.3+5000x×0.7=8000,解得:x=1,则:4﹣x=3(元),答:该商场每支铅笔1元,每瓶饮料3元.20.解:(1)第3次落在“铅笔”的频率为136÷200=0.68,第6次落在“铅笔”的频率为701÷1000=0.701,由表知当n很大时,频率将会接近0.7,故答案为:0.68、0.701;(2)转动该转盘一次,获得铅笔的概率约是0.7;(3)360°×(1﹣0.7)=108°,答:在该转盘中表示“可乐”区域的扇形的圆心角约是108°.。
苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、为验证“掷一个质地均匀的骰子,向上的点数为偶数的概率是0.5”,下列模拟实验中,不科学的是().A.袋中装有1个红球一个绿球,它们除颜色外都相同,计算随机摸出红球的概率B.用计算器随机地取不大于10的正整数,计算取得奇数的概率 C.随机掷一枚质地均匀的硬币,计算正面朝上的概率 D.如图,将一个可以自由旋转的转盘分成甲、乙、丙3个相同的扇形,转动转盘任其自由停止,计算指针指向甲的概率2、下列说法正确的是()A.某种彩票的中奖机会是则买100张这种彩票一定会中奖B.为了解全国中学生的睡眠情况,应该采用普查的方式C.一组数据3,4,5,5,5,6,10的平均数大于中位数D.同时抛掷两枚均匀的硬币,出现一枚正面朝上且另一枚反面朝上的概率是3、中央电视台“非常6+1”栏目中有个互动环节,在电视直播现场有三个“金蛋”三个“银蛋”其中只有一个“金蛋”内有礼物,银蛋也是如此.有一个打进电话的观众,选择并打开后得到礼物的可能性是()A. B. C. D.4、盒子里有15个象棋子,其中有5个炮,4个马,6个象,任意摸一个,摸到()的可能性最大,摸到()的可能性最小.A.马,象B.炮,马C.象,马D.都有可能5、袋子中装有4个黑球、2个白球,这些球的形状、大小、质地完全相同,即除颜色外无其他差别在看不到球的条件下,随机从袋中摸出1个球,是白球的概率是()A. B. C. D.6、袋子里有3个红球和2个蓝球,它们只有颜色上的区别,从袋子中随机地取出一个球,取出红球的概率是().A. B. C. D.7、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率8、在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A. B. C. D.9、下列事件是必然发生事件的是()A.打开电视机,正在转播足球比赛B.小麦的亩产量一定为1000公斤 C.在只装有5个红球的袋中摸出1球,是红球 D.农历十五的晚上一定能看到圆月10、下列事件中,不可能事件是()A.掷一枚均匀的正方形骰子,朝上一面的点数是5B.任意选择某个电视频道,正在播放动画片C.明天太阳从西边升起D.抛出一枚硬币,落地后正面朝上11、下列事件中是必然事件的是()A.明天一定会下雨B.抛掷一枚均匀硬币,落地后正面朝上C.任取两个正数,其和大于零D.直角三角形的两锐角分别是20°和60°12、如图,在方格纸中,随机选择标有序号①②③④⑤⑥中的一个小正方形涂黑,与图中的阴影部分构成轴对称图形的概率是()A. B. C. D.13、在一副(54张)扑g牌中,摸到“A”的频率是()A. B. C. D.无法估计14、一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20B.24C.28D.3015、下列说法正确的是()A.要了解一批灯泡的使用寿命,应采用普查的方式B.若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C.甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定D.“掷一枚硬币,正面朝上”是必然事件二、填空题(共10题,共计30分)16、桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率为________.17、小慧准备给妈妈打个电话,但她只记得号码的前位,后三位由,,这三个数字组成,具体顺序忘记了,则她第一次试拨就拨通电话的概率是________.18、从﹣1、0、、0.3、π、这六个数中任意抽取一个,抽取到无理数的概率为________.19、小明第一次抛一枚质地均匀的硬币时,正面向上,他第二次再抛这枚硬币时,正面向上的概率是________。
第8章认识概率单元测试一.单选题(共10题;共30分)1.下列说法正确的是().A. 若明天降水概率为50%,那么明天一定会降水B. 任意掷一枚均匀的1元硬币,一定是正面朝上C. 任意时刻打开电视,都正在播放动画片《喜洋洋》D. 本试卷共24小题2.下列事件中,属于必然事件的是()A. 男生一定比女生高B. 掷一枚均匀的骰子,落地后偶数点朝上C. 在操场上抛出的篮球会下落D. 天气一天比一天冷3.下列说法属于不可能事件的是()A. 四边形的内角和为360°B. 梯形的对角线不相等C. 内错角相等D. 存在实数x满足x2+1=04.下列说法正确的是().①试验条件不会影响某事件出现的频率;②在相同的条件下试验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A. ①②B. ②③C. ③④D. ①③5.一个不透明的口袋里装有除颜色外都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有125次摸到白球,因此小亮估计口袋中的红球大约有()个.A. 100B. 90C. 80D. 706.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球有4个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱,通过大量重复摸球实验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是()A. 3B. 4C. 12D. 167.一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口块中有红球大约多少只?()A. 8B. 12C. 18D. 308.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A. 12B. 15C. 18D. 219.“a是实数,|a|<0”这一事件是()A. 必然事件B. 不确定事件C. 不可能事件D. 随机事件10.下列说法中正确的是()A. “任意画出一个等边三角形,它是轴对称图象”是随机事件B. 任意掷一枚质地均匀的硬币10次,正面向上的一定是5次C. “概率为0.0001的事件”是不可能事件D. “任意画出一个平行四边形,它是中心对称图形”是必然事件二.填空题(共8题;共30分)11.袋子里装有两个红球,它们除颜色外完全相同.从袋中任意摸出一球,摸出一个为红球,称为________事件;摸出一个为白球,称为________事件;(选填“必然”“不确定”“不可能”)12.某事件发生的可能性是99.9%.下面的三句话:①发生的可能性很大,但不一定发生;②发生的可能性较小;③肯定发生.以上三句话对此事件描述正确的是________(选填序号).13.某班学生分组做抛掷瓶盖实验,各组实验结果如下表:累计抛掷次数100 200 300 400 500盖面朝上次数54 105 158 212 264盖面朝上频率0.5400 0.5250 0.5267 0.5300 0.5280根据表中的信息,估计掷一枚这样的瓶盖,落地后盖面朝上的概率为________ .(精确到0.01)14.在某次试验数据整理过程中,某个事件发生的频率情况如下表所示.估计这个事件发生的概率是________ (精确到0.01),试举出一个随机事件的例子,使它发生的概率与上述事件发生的概率大致相同:________15.在一个透明的布袋中,红色、黑色、白色的玻璃球共有80个,它们除颜色外其他完全相同,小李通过多次摸球试验后,发现其中摸到红色球、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是________ 个.16.现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.17.在一个不透明的口袋中装有3个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有________个.18.“打开电视,正在播放《新闻联播》”是________事件.三.解答题(共6题;共42分)19.一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球除了颜色以外没有任何区别.若小王取出的第一个球是白色,将它放在桌上,闭上眼睛从袋中余下的球中再任意取出一个球,取出红球的概率是多少?20.你还记得什么是频数、什么叫频率、什么叫概率吗?请举例说明.21.某工厂生产的一批零件,出现次品的概率为5%,若生产这种零件10000个,大约出现次品多少个?22.大家看过中央电视台“购物街”节目吗?其中有一个游戏环节是大转轮比赛,转轮上平均分布着5、10、15、20一直到100共20个数字.选手依次转动转轮,每个人最多有两次机会.选手转动的数字之和最大不超过100者为胜出;若超过100则成绩无效,称为“爆掉”.(1)某选手第一次转到了数字5,再转第二次,则他两次数字之和为100的可能性有多大?(2)现在某选手第一次转到了数字65,若再转第二次了则有可能“爆掉”,请你分析“爆掉”的可能性有多大?23.转动下面这些可以自由转动的转盘,当转盘停止转动后,估计“指针落在白色区域内”的可能性大小,并将转盘的序号按事件发生的可能性从小到大的顺序排列.24.下表记录了一名球员在罚球线上投篮的结果,投篮次数(n)50 100 150 209 250 300 350投中次数(m)28 60 78 104 123 152 175投中频率(n/m)0.56 0.60 0.49(1)计算并填写表中的投中频率(精确到0.01);(2)这名球员投篮一次,投中的概率约是多少(精确到0.1)?。
第八单元认识概率综合测试卷一、选择题(每题3分;共24分)1.“a是实数;I a I≥0”这一事件是( )A.必然事件B.不确定事件C.不可能事件D.随机事件2.在某次国际乒乓球单打比赛中;甲、乙两名中国选手进入最后决赛;那么下列事件为必然事件的是( )A.冠军属于中国选手B.冠军属于外国选手C.冠军属于中国选手甲D.冠军属于中国选手乙3.下列事件是随机事件的是( )A.太阳绕着地球转B.小明骑车经过某个十字路口时遇到红灯C.地球上海洋面积大于陆地面积D.李刚的生日是2月30日4.某商场为促销开展抽奖活动;让顾客转动一次转盘;当转盘停止后;只有指针指向阴影区域时;顾客才能获得奖品;下列有四个大小相同的转盘可供选择;使顾客获得奖品可能性最大的是( )A B C D5.从只装有4个红球的袋中随机摸出一球;若摸到白球的概率是P1;摸到红球的概率是P2;则( )A.P1=1;P2=1 B.P1=0;P2=1C.P1=0;P2=14D.P1=P2=146.如图;一个可以自由转动的转盘被等分成6个扇形区域;并涂上了相应的颜色;转动转盘;转盘停止后;指针指向蓝色区域的概率是( )A.16B.13C.12D.237.投掷一枚普通的正方体骰子;四个同学各自发表了以下见解:①出现“点数为奇数"的概率等于出现“点数为偶数”的概率;②只要连掷6次;一定会“出现1点";③投掷前默念几次“出现6点";投掷结果“出现6点”的可能性就会增大;④连续投掷3次;出现点数之和不可能等于19.其中正确见解的个数是( )A.1个B.2个C.3个D.4个8.甲、乙两位同学在一次实验中统计了某一结果出现的频率;给出的统计图如图所示;则符合这一结果的实验可能是( )A.掷一枚正六面体的骰子;出现5点的概率B.掷一枚硬币;出现正面朝上的概率C.任意写出一个整数;能被2整除的概率D.一个袋子中装着只有颜色不同;其他都相同的两个红球和一个黄球;从中任意取出一个是黄球的概率二、填空题(每空2分;共24分)9.某同学期中考试数学考了100分;则他期末考试数学考100分.(选填“不可能”“可能"或“必然”)10.袋子里有5只红球;3只白球;每只球除颜色以外都相同;从中任意摸出1只球;是红球的可能性选填“大于”“小于”或“等于”)是白球的可能性.11.至少需要调查名同学;才能使“有两个同学的生日在同一天”这个事件为必然事件.12.下列4个事件:①异号两数相加;和为负数;②异号两数相减;差为正数;③异号两数相乘;积为正数;④异号两数相除;商为负数.这4个事件中:必然事件是;不可能事件是;随机事件是.13.如图是一枚图钉被抛起后钉尖触地频率随抛掷次数变化趋势图;则一枚图钉被抛起后钉尖触地的概率估计值是.14.一个圆形转盘的半径为2 cm;现将转盘分成若干个扇形;并分别相间涂上红、黄两种颜色.转盘转动10 000次;指针指向红色部分有2 500次.请问指针指向红色的概率的估计值是;转盘上黄色部分的面积大约是.15.在英语句子“Wish you success”(祝你成功)中任选一个字母;这个字母为“s”的概率是.16.为了帮助残疾人;某地举办“即开型"福利彩票销售活动;规定每10万张为一组;其中有10名一等奖;100名二等奖.1 000名三等奖;5 000名爱心奖;小明买了10张彩票;则他中奖的概率为.17.某射击运动员在相同的条件下的射击成绩记录如下:根据频率的稳定性;估计这名运动员射击一次“射中9环以上”的概率是.三、解答题(共52分)18.(本题6分)一枚普通的正方体骰子;六个面上分别标有1、2、3、4、5、6.在抛掷一枚普通的正方体骰子的过程中;请用语言描述:(1)一个不可能事件;(2).一个必然事件;(3)一个随机事件.19.(本题5分)下面第一排表示十张扑克牌的不同情况;任意摸一张.请你用第二排的语言来描述摸到红色扑克牌的可能性大小;并用线连起来.20.(本题8分)在三个不透明的布袋中分别放人一些除颜色不同外;其他都相同的玻璃球;并搅匀;具体情况如下表:下列事件中;哪些是随机事件?哪些是必然事件?哪些是不可能事件?(1)随机从第一个布袋中摸出一个玻璃球;该球是黄色、绿色或红色的;(2)随机从第二个布袋中摸出两个玻璃球;两个球中至少有一个不是绿色的;(3)随机从第三个布袋中摸出一个玻璃球;该球是红色的;(4)随机从第一个布袋和第二个布袋中各摸出一个玻璃球;两个球的颜色一致.21.(本题8分)下图是甲、乙两个可以自由旋转的转盘;转盘被等分成若干个扇形;并将其涂成红、白两种颜色;转动转盘;分别计算指针指向红色区域的机会;若要使它们的机会相等;则应如何改变涂色方案?22.(本题8分)某公司的一批某品牌衬衣的质量抽检结果如下:(1)求从这批衬衣中任抽1件是次品的概率.(2)如果销售这批衬衣600件;至少要准备多少件正品衬衣供买到次品的顾客退换? 23.(本题9分)下表是光明中学七年级(5)班的40名学生的出生月份的调查记录:(1)请你重新设计一张统计表;使全班同学在每个月出生人数情况一目了然;(2)求出10月份出生的学生的频数和频率;(3)现在是1月份;如果你准备为下个月生日的每一位同学送一份小礼物;那你应该准备多少份礼物?24.(本题8分)小强和小明两个同学设计一种同时抛出两枚1元硬币的游戏;游戏规则如下:如果抛出的硬币落下后朝上的两个面都为1元;则小强得1分;其余情况小明得1分;谁先得到10分谁就赢得比赛。
2020-2021年度苏科版八年级数学下册《第8章认识概率》单元综合达标测试(附答案)1.某同学掷一枚硬币,结果是一连8次都掷出正面朝上,请问他第9次掷出硬币时出现正面朝上的概率是()A.小于B.大于C.等于D.不能确定2.为了估计水塘中的鱼数,养鱼者先从鱼塘中捕获30条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼.通过多次实验后发现捕捞的鱼中有作记号的频率稳定在2.5%左右,则鱼塘中鱼的条数估计为()A.600条B.1200条C.2200条D.3000条3.下列说法中不正确的是()A.抛掷一枚质量均匀的硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉至少有两个球是必然事件C.为了呈现某个月的气温变化情况,应选择的统计图为扇形统计图D.从一副扑克牌中任意抽取1张,摸到的牌是“A”的可能性比摸到的牌是“红桃”可能性小4.下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C.13个人参加一个集会,他们中至少有两个人的出生月份是相同的D.太阳从西方升起5.掷一枚质地均匀的骰子,骰子停止后,在下列四个选项中,可能性最大的是()A.点数小于4B.点数大于4C.点数大于5D.点数小于5 6.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0B.任意一个五边形的外角和等于540°C.某个数的相反数等于它本身D.长分别为3,4,6的三条线段能围成一个三角形7.掷一枚质地均匀的硬币6次,下列说法正确的是()A.必有3次正面朝上B.可能有3次正面朝上C.至少有1次正面朝上D.不可能有6次正面朝上8.下列说法中错误的是()A.必然事件发生的概率为1B.随机事件发生的概率大于0、小于1C.任意画一个三角形,其内角和是180°D.概率很小的事件不可能发生9.一个盒中装有4个均匀的球,其中2个白球,2个黑球,今从中取出2个球,“两球同色”与“两球异色”的可能性分别记为a,b,则()A.a>b B.a<b C.a=b D.不能确定10.在一个不透明的布袋中装有红球、白球共20个,它们除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红球的频率稳定在0.6,则随机从布袋中摸出一个球是红球的概率是.11.一个不透明的口袋中装有若干个红球,小明又放入10个黑球,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程后发现,摸到黑球的频率稳定在0.4左右,则估计口袋中红球的数量为个.12.在一个不透明的箱子里装有红色、蓝色、黄色的球共50个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球试验后发现摸到红色、黄色球的频率分别稳定在20%和30%,则箱子里蓝色球的个数很可能是.13.小明和小丽按如下规则做游戏:桌面上放有20根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件.则小明第一次应该取走火柴棒的根数是.14.下列事件:①掷一枚质地均匀的硬币,正面朝上;②某彩票中奖率为,买100张一定会中奖;③13人中至少有2人的生日在同一个月.其中是必然事件的是.(填序号)15.在一个不透明的口袋中装有3个红球,1个白球,他们除了颜色外,其余均相同,若把它们搅匀后从中任意摸一个球,则摸到白球的可能性是.16.一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到球的可能性最大.17.已知袋中有若干个小球,它们除颜色外其它都相同,其中只有2个红球,若随机从中摸出一个,摸到红球的概率是,则袋中小球的总个数是18.从形状、大小相同的9张数字卡片(分别标有数字1,2,3,4,5,6,7,8,9)中任意抽1张,抽出的恰好是:①偶数;②小于6的数;③不小于9的数,这些事件按发生的可能性从大到小排列是(填序号)19.质检部门为了检测某品牌电器的质量,从同一批次共1000件产品中随机抽取20件进行检测,检测出次品2件,由此估计这一批产品中的次品件数是.20.在一个不透明的袋子中装有仅颜色不同的5个小球,其中红球3个,黑球2个,先从袋中取出m(m≥1)个红球,不放回,再从袋子中随机摸出1个球.将“摸出黑球”记为事件A.(1)若A为必然事件,则m的值为;(2)若A发生的概率为,则m 的值为.21.随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.为此,老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了如图所示的两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次参与调查的共有人;在扇形统计图中,表示“微信”的扇形圆心角的度数为°;(2)将条形统计图补充完整;(3)如果我国有13亿人在使用手机;①请估计最喜欢用“微信”进行沟通的人数;②在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?22.在一个袋子中装有大小相同的4个小球,其中1个蓝色,3个红色.(1)从袋中随机摸出1个,求摸到的是蓝色小球的概率;(2)从袋中随机摸出2个,用列表法或树状图法求摸到的都是红色小球的概率;(3)在这个袋中加入x个红色小球,进行如下试验:随机摸出1个,然后放回,多次重复这个试验,通过大量重复试验后发现,摸到红色小球的频率稳定在0.9,则可以推算出x的值大约是多少?23.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?24.在5个不透明的袋子中分别装有10个球,其中,1号袋中有10个红球,2号袋中有8红2白球,3号袋中有5红5白球,4号袋中有1红9白球,5号袋中有10个白球,从各个袋子中摸到白球的可能性一样吗?请将袋子的序号按摸到白球的可能性从小到大的顺序排列.25.一个不透明的袋中装有黄球、黑球和红球共40个,它们除颜色外都相同,其中红球有22个,且经过大量试验发现摸出一个球为黄球的频率接近0.125.(1)求袋中有多少个黑球;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个球是黄球的概率达到,问取出了多少个黑球?26.抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后:(1)朝上的点数有哪些结果?他们发生的可能性一样吗?(2)朝上的点数是奇数与朝上的点数是偶数,这两个事件的发生可能性大小相等吗?(3)朝上的点数大于4与朝上的点数不大于4,这两个事件的发生可能性大小相等吗?如果不相等,那么哪一个可能性大一些?参考答案1.解:无论哪一次抛掷硬币,都有2种情况,即正、反,故第10次掷出硬币时出现正面朝上的概率为.故选:C.2.解:30÷2.5%=1200条故选:B.3.解:A.抛掷一枚质量均匀的硬币,硬币落地时正面朝上是随机事件,正确;B.把4个球放入三个抽屉中,其中一个抽屉至少有两个球是必然事件,正确;C.为了呈现某个月的气温变化情况,应选择的统计图为折线统计图,所以C选项错误;D.从一副扑克牌中任意抽取1张,摸到的牌是“A”的可能性比摸到的牌是“红桃”可能性小,正确;故选:C.4.解:A.任意一个五边形的外角和等于540°,属于不可能事件,不合题意;B.投掷一枚均匀的硬币100次,正面朝上的次数为50次是随机事件,不合题意;C.13个人参加一个集会,他们中至少有两个人的出生月份是相同的,属于必然事件,符合题意;D.太阳从西方升起,属于不可能事件,不合题意;故选:C.5.解:掷一枚质地均匀的骰子,骰子停止后共有6种等可能的情况,即:点数为1,2,3,4,5,6;其中点数小于4的有3种,点数大于4的有2种,点数大于5的有1种,点数小于5的有4种,故点数小于5的可能性较大,故选:D.6.解:一个非零的有理数的绝对值都大于0,而0的绝对值就不大于0,因此选项A不符合题意,任意多边形的外角和都等于360°,因此选项B符合题意,除0外的数的相反数就不等于它本身,0的相反数是0,因此选项C不符合题意,根据三角形的三边关系可知,长为3,4,6的三条线段可以围成三角形,因此选项D不符合题意,故选:B.7.解:掷一枚质地均匀的硬币,可能正面向上,也可能反面向上,可能性是均等的,不会受到前一次的影响,掷一枚质地均匀的硬币6次,不一定3次正面朝上,因此A选项不符合题意,“可能有3次正面朝上”是正确的,因此B选项正确;可能6次都是反面向上,因此C不符合题意,有可能6次正面向上,因此D选项不符合题意;故选:B.8.解:必然事件是一定会发生,也就是100%发生,因此选项A不符合题意;随机事件发生的概率大于0、小于1是正确的,因此选项B不符合题意;任意三角形的内角和都是180°,因此选项C不符合题意;概率很小的事件,也可能发生,只是发生的可能性很小,因此选项D符合题意;故选:D.9.解:一个盒中装有4个均匀的球,今从中取出2个球共有以下情况:(1)白1白2,(2)黑1黑2,(3)白1黑1,(4)白1黑2,(5)白2黑1,(6)白2黑2,根据概率的计算方法,可得a<b;故选:B.10.解:∵通过多次摸球试验后发现,其中摸到红球的频率稳定在0.6,∴估计摸到红球的概率为0.6,故答案为:0.6.11.解:∵不断重复这一过程后发现,摸到黑球的频率稳定在0.4左右,∴估计摸到黑球的概率为0.4,设袋中红球的个数为x,根据题意,得:=0.4,解得x=15,经检验x=15是分式方程的解,所以袋中红球的个数约为15,故答案为:15.12.解:根据题意得摸到红色、黄色球的概率为20%和30%,所以摸到蓝球的概率为50%,因为50×50%=25(个),所以可估计箱子中蓝色球的个数为25个.故答案为25.13.解:根据游戏规则,先取的人第一次取2根,然后保证第二次所取的根数与另一人所取根数之和为3,即可取到最后1根,从而使获胜是必然事件,所以小明先取,小明第一次应该取走2根.故答案为:2.14.解:①掷一枚质地均匀的硬币,不一定正面朝上,有可能反面朝上,故不是必然事件;②某彩票中奖率为,则买100 张也不一定会中奖,故不是必然事件;③一年共有12个月,13 人中至少有2 人的生日在同一个月,是必然事件;故答案为:③.15.解:∵在一个不透明的口袋中装有3个红球、1个白球,共4个球,∴任意摸出1个球,摸到白球的概率是,故答案为:.16.解:∵袋中装有6个红球,4个黄球,1个白球,∴总球数是:6+4+1=11个,∴摸到红球的概率是=;摸到黄球的概率是;摸到白球的概率是;∴摸出红球的可能性最大.故答案为:红.17.解:袋中小球的总个数是:2÷=8(个).故答案为:8个.18.解:从形状、大小相同的9张数字卡片(分别标有数字1,2,3,4,5,6,7,8,9)中任意抽1张,抽出的恰好是偶数的概率是;小于6的数的概率是;不小于9的数概率是,则这些事件按发生的可能性从大到小排列是②①③;故答案为:②①③.19.解:∵随机抽取1000件进行检测,检测出次品20件,∴次品所占的百分比是:=,∴这一批次产品中的次品件数是:2÷=100(件),故答案为100.20.解:(1)∵“摸出黑球”为必然事件,∴m=3.故答案是:3;(2)∵“摸出黑球”为必然事件,且m≥1,∴m=1;故答案为:1.21.解:(1)∵喜欢用电话沟通的人数为400,所占百分比为20%,∴此次共抽查了400÷20%=2000(人),表示“微信”的扇形圆心角的度数为:360°×=144°,故答案为:2000;144.(2)短信人数为2000×5%=100(人),微信人数为2000﹣(400+440+260+100)=800(人),如图:(3)①由(2)知:参与调查的人中喜欢用“微信”进行沟通的人数有800人,所以在全国使用手机的13亿人中,估计最喜欢用“微信”进行沟通的人数有13×=5.2(亿人).②由(1)可知:参与这次调查的共有2000人,其中喜欢用“QQ”进行沟通的人数为440人,所以,在参与这次调查的人中随机抽取一人,抽取的恰好使用“QQ”的频率是×100%=22%.所以,用频率估计概率,在全国使用手机的人中随机抽取一人,抽取的恰好使用“QQ”的概率是22%.22.解:(1)∵4个小球中,有1个蓝色小球,∴P(蓝色小球)=;(2)画树状图如下:共有12种情况,摸到的都是红色小球的情况有6种,P(摸到的都是红色小球)==;(3)∵大量重复试验后发现,摸到红色小球的频率稳定在0.9,∴摸到红色小球的概率等于0.9,∴=0.9,解得:x=6.23..解:因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.24.解:1号袋子摸到白球的可能性=0;2号袋子摸到白球的可能性==;3号袋子摸到白球的可能性==;4号袋子摸到白球的可能性=,5号袋子摸到白球的可能性=1.故排序为:1号,2号,3号,4号,5号.25.解:(1)黄球有40×0.125=5个,黑球有40﹣22﹣5=13个.答:袋中有13个黑球;(2)设取出x个黑球,根据题意得=,解得x=3.答:取出3个黑球.26.解:(1)因为抛掷一枚均匀的骰子(各面上的点数分别为1﹣6点)1次,落地后朝上的点数可能是1、2、3、4、5、6,所以它们的可能性相同;2)因为朝上的点数是奇数的有1,3,5,它们发生的可能性是,朝上的点数是偶数的有2,4,6,它们发生的可能性是所以发生的可能性大小相同;(3)因为朝上的点数大于4的数有5,6,发生可能性是=,朝上的点数不大于4的数有1,2,3,4,发生可能性是=,所以朝上的点数大于4与朝上的点数不大于4可能性大小不相等,朝上的点数不大于4发生的可能性大。
数据的收集、整理与描述单元测试题2
一、选择题(每题5分,共25分)
1.(5分)下列事件中,随机事件是()
A.太阳从东方升起B.掷一枚骰子,出现6点朝上
C.袋中有3个红球,从中摸出白球D.若a是正数,则﹣a是负数
2.(5分)在1,3,5,7,9中任取出两个数,组成一个奇数的两位数,这一事件是()
A.不确定事件B.不可能事件C.可能性大的事件D.必然事件
3.(5分)(2008•泰州)有下列事件:①367人中必有2人的生日相同;②抛掷一只均匀的骰子两次,朝上一面的点数之和一定>等于2;③在标准大气压下,温度低于0℃时冰融化;④如果a,b为实数,那么a+b=b+a.其中是必然事件的有()
A.1个B.2个C.3个D.4个
4.(5分)(2008•郴州)下列说法正确的是()
A.抛一枚硬币,正面一定朝上
B.掷一颗骰子,点数一定不大于6
C.为了解一种灯泡的使用寿命,宜采用普查的方法
D.“明天的降水概率为80%”,表示明天会有80%的地方下雨
5.(5分)(2007•河北)在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()
A.12 B.9C.4D.3
二、填空题(每题5分,共30分)
6.(5分)给出下列事件:
(1)某餐厅供应客饭,共准备2荤2素4种不同的品种,一顾客任选一种菜肴,且选中素菜;
(2)某一百件产品全部为正品,今从中选出一件次品;
(3)在1,2,3,4,5五条线路停靠的车站上,张老师等候到6路车;
(4)七人排成一排照相,甲、乙正好相邻;
(5)在有30个空位的电影院里,小红找到了一个空位,
请将事件的序号填写在横线上:
必然事件_________,不可能事件_________,不确定事件_________.
7.(5分)我们知道π约为3.14159265359,在这串数字中,任挑一个数是5的可能性为_________.
8.(5分)小杨、小刚用摸球游戏决定谁去看电影,袋中有一个红球和一个白球(除颜色不同外都相同),这个游戏对双方是_________(填“公平”或“不公平”)的.
9.(5分)为了估计湖里有多少条鱼,我们先从湖里捕100条鱼做标记,然后放回湖里,经过一段时间,待带标记的鱼完全混合于鱼群中,再捕200条鱼,若其中带标记的鱼有25条,则估计湖里有_________条鱼.
10.(5分)(2008•武汉)在创建国家生态园林城市活动中,某市园林部门为了扩大城市的绿化面积.进行了大量的树木移栽.下表记录的是在相同的条件下移栽某种幼树的棵数与成活棵树:依此估计这种幼树成活的概率是_________.(结果用小数表示,精确到0.1)
移栽棵数100 1000 10000
成活棵数89 910 9008
11.(5分)国家为鼓励消费者向商家索要发票消费,制定了一定的奖励措施,其中对100元的发票(外观一样,奖励金额密封签封盖)设有奖金5元,奖金10元,奖金50元和谢谢索要四种奖励可能.现某商家有1000张100元的发票,经税务部门查证,这1000张发票的奖励情况如表所示.某消费者消费100元,向该商家索要发票一张,中10元奖金的概率是_________.
奖项5元10元50元谢谢索要
数量50张20张10张剩余部分
三、解答题(共45分)
12.(15分)某儿童娱乐场有一种游戏,规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个.
(1)求参加一次这种游戏活动得到福娃玩具的概率;
(2)请你估计袋中白球接近的概率.
13.(15分)(2009•安顺)下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图表如下:
比赛项目票价(张/元)
足球1000
男篮800
乒乓球x
依据上列图表,回答下列问题:
(1)其中观看足球比赛的门票有_________张;观看乒乓球比赛的门票占全部门票的_________%;(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是_________;
(3)若购买乒乓球门票的总款数占全部门票总款数的,求每张乒乓球门票的价格.
14.(15分)(2008•盐城)一只不透明的袋子中装有4个小球,分别标有数字2,3,4,x,这些球除数字外都相同.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和.记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表:解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为7”的概率将稳定在它的概率附近,试估计出现“和为7”的概率;
(2)根据(1),若x是不等于2,3,4的自然数,试求x的值.
摸球总次数10 20 30 60 90 120 180 240 330 450
“和为7”出现的频次1 9 14 24 26 37 58 82 109 150
“和为7”出现的频率0.10 0.45 0.47 0.40 0.29 0.31 0.32 0.34 0.33 0.33。