1.1 第3课时 等腰三角形的判定与反证法 省优精品教案
- 格式:doc
- 大小:1.69 MB
- 文档页数:5
第3课时 等腰三角形的判定与反证法1.掌握等腰三角形的判定定理并学会运用;(重点)2.理解并掌握反证法的思想,能够运用反证法进行证明.一、情境导入某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(A 点)为目标,然后在这棵树的正南方南岸B 点插一小旗作标志,沿南偏东60度方向走一段距离到处时,测得∠AB 为30度,这时,地质专家测得B 的长度是50米,就可知河流宽度是50米.同学们,你们想知道这样估测河流宽度的根据是什么吗?他是怎么知道B 的长度是等于河流宽度的呢?今天我们就要学习等腰三角形的判定. 二、合作探究探究点一:等腰三角形的判定(等角对等边)【类型一】 确定等腰三角形的个数如图,在△AB 中,AB =A ,∠A =36°,BD 、E 分别是∠AB 、∠BD的角平分线,则图中的等腰三角形有( )A .5个B .4个.3个 D .2个解析:共有5个.(1)∵AB =A ,∴△AB 是等腰三角形;(2)∵BD 、E 分别是∠AB 、∠BD 的角平分线,∴∠EB =错误!∠AB ,∠EB =错误!∠BD ∵△AB是等腰三角形,∴∠EB =∠EB ,∴△BE 是等腰三角形;(3)∵∠A =36°,AB =A ,∴∠AB =∠AB =错误!(180°-36°)=72°又∵BD 是∠AB 的角平分线,∴∠ABD =错误!∠AB =36°=∠A ,∴△ABD 是等腰三角形;同理可证△DE 和△BD 也是等腰三角形.故选A方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 判定一个三角形是等腰三角形如图,在△AB 中,∠AB =90°,D 是AB 边上的高,AE 是∠BA 的角平分线,AE 与D 交于点F ,求证:△EF 是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE =∠AD ,然后根据三角形外角的性质求得∠EF =∠FE ,根据等角对等边求得E =F ,从而求得△EF 是等腰三角形.解:∵在△AB 中,∠AB =90°,∴∠B +∠BA =90°∵D 是AB 边上的高,∴∠AD +∠BA =90°,∴∠B =∠AD ∵AE 是∠BA 的角平分线,∴∠BAE=∠EA ,∴∠B +∠BAE =∠AE ,∠AD +∠EA =∠FE ,即∠EF =∠FE ,∴E =F ,∴△EF 是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型三】 等腰三角形性质和判定的综合运用如图,在△AB 中,AB =A ,点D 、E 、F 分别在AB 、B 、A 边上,且BE =F ,BD =E(1)求证:△DEF 是等腰三角形; (2)当∠A =50°时,求∠DEF 的度数.解析:(1)根据等边对等角可得∠B =∠,利用“边角边”证明△BDE 和△EF 全等,根据全等三角形对应边相等可得DE =EF ,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE =∠EF ,然后求出∠BED+∠EF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF(1)证明:∵AB=A,∴∠B=∠在△BDE和△EF中,∵错误!∴△BDE≌△EF(SAS),∴DE=EF,∴△DEF是等腰三角形;(2)解:∵△BDE≌△EF,∴∠BDE =∠EF,∴∠BED+∠EF=∠BED+∠BDE∵∠B+∠BDE=∠DEF+∠EF,∴∠B=∠DEF∵∠A=50°,AB=A,∴∠B=错误!×(180°-50°)=65°,∴∠DEF=65°方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.探究点二:反证法【类型一】假设用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.有一个内角大于60°B.有一个内角小于60°.每一个内角都大于60°D.每一个内角都小于60°解析:用反证法证明命题时,应先假设结论不成立,所以可先假设三角形中每一个内角都不小于或等于60°,即都大于60°故选方法总结:在假设结论不成立时,要注意考虑结论的反面所有可能的情况,必须把它全部否定.【类型二】用反证法证明一个命题求证:△AB中不能有两个钝角.解析:用反证法证明,假设△AB 中能有两个钝角,得出的结论与三角形的内角和定理相矛盾,所以原命题正确.证明:假设△AB中能有两个钝角,即∠A<90°,∠B>90°,∠>90°,所以∠A+∠B+∠>180°,与三角形的内角和为180°矛盾,所以假设不成立,因此原命题正确,即△AB中不能有两个钝角.方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法。
1.1 第3课时等腰三角形的判定与反证法(导学案)
一、知识目标
1.知道等腰三角形的定义、性质以及等腰三角形的判定方法;
2.会运用反证法证明一些三角形不是等腰三角形。
二、学习重点
1.等腰三角形的定义和性质;
2.等腰三角形的判定方法;
3.反证法的运用。
三、学习内容
3.1 等腰三角形的定义和性质
等腰三角形是指两条边长相等的三角形。
在等腰三角形ABC中,若AB = AC,则我们称之为等腰三角形。
等腰三角形的性质有:
1.两底角(即底边两侧的角)相等。
2.两腰(即两相等的边)上的角相等。
3.底角的平分线也是高(即垂直于底边的线)的垂线。
3.2 等腰三角形的判定方法
判定一个三角形是不是等腰三角形,可以使用以下方法:
1.若有两边相等,则这个三角形是等腰三角形。
2.若一个三角形的底角和另外一个角相等,则这个三角形是等腰三角形。
3.3 反证法的运用
证明一个三角形不是等腰三角形时,可以运用反证法。
比如,要证明一个三角形ABC不是等腰三角形,可以假设它是等腰三角形,即AB = AC。
然后,我们通过推理可以发现这种假设是错误的。
因此,我们得出结论:三角形ABC不是等腰三角形。
3.4 练习题
1.已知三角形ABC中,AB = BC,且∠BAC = 120度。
判断它是否为等腰三角形,并说明理由。
2.已知三角形DEF中,DE = EF,且∠D = ∠F。
证明:三角形DEF是等腰三角形。
四、课后作业
1.完成练习题。
2.思考:如何判断一个三角形是直角三角形?。
北师大版数学八年级下册1.1《等腰三角形的判定与反证法》(第3课时)教案一. 教材分析《等腰三角形的判定与反证法》是北师大版数学八年级下册第1.1节的内容,本节课的主要目的是让学生掌握等腰三角形的判定方法,并运用反证法证明等腰三角形的性质。
在此之前,学生已经学习了三角形的性质和分类,为本节课的学习打下了基础。
教材通过实例引入等腰三角形的概念,然后引导学生探究等腰三角形的性质,最后运用反证法证明等腰三角形的性质。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和探究能力,对于三角形的性质和分类有一定的了解。
但是,对于反证法的理解和运用还不够熟练,需要通过本节课的学习来提高。
在导入环节,我会通过复习三角形的性质和分类,激发学生的学习兴趣,为新课的学习做好铺垫。
三. 教学目标1.知识与技能:使学生掌握等腰三角形的判定方法,能够运用反证法证明等腰三角形的性质。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的逻辑思维能力和探究能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:等腰三角形的判定方法,反证法的运用。
2.难点:反证法的运用,等腰三角形性质的证明。
五. 教学方法1.引导发现法:通过问题引导,让学生发现等腰三角形的性质,培养学生的探究能力。
2.反证法:运用反证法证明等腰三角形的性质,培养学生的逻辑思维能力。
3.小组讨论法:让学生在小组内进行讨论,培养学生的团队协作能力。
六. 教学准备1.教学PPT:制作相关的PPT,展示等腰三角形的判定和性质。
2.教学素材:准备一些等腰三角形的模型,供学生观察和操作。
3.练习题:准备一些练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过复习三角形的性质和分类,引导学生回顾已学知识,为新课的学习做好铺垫。
2.呈现(10分钟)利用PPT展示等腰三角形的判定和性质,让学生直观地感受等腰三角形的特征。
第一章三角形的证明1 等腰三角形课时3 等腰三角形的判定与反证法1.探索等腰三角形判定定理,掌握反证法2.理解等腰三角形的判定定理,并会运用其进行简单的证明.3.培养学生的逆向思维能力.理解等腰三角形的判定定理.了解反证法的基本证明思路,并能简单应用.问题 1.等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么?问题2.我们是如何证明上述定理的?【教学说明】通过问题回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进行交流.1.我们把等腰三角形的性质定理的条件和结论反过来还成立吗?如果一个三角形有两个角相等,那么这两个角所对的边也相等吗?【归纳结论】有两个角相等的三角形是等腰三角形.(简称:等角对等边)2.小明说,在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.你认为这个结论成立吗?如果成立,你能证明它吗?我们来看一位同学的想法:如图,在△ABC中,已知∠B≠∠C,此时AB与AC要么相等,要么不相等.假设AB=AC,那么根据“等边对等角”定理可得∠C=∠B,但已知条件是∠B≠∠C.“∠C=∠B”与已知条件“∠B≠∠C”相矛盾,因此AB≠AC 你能理解他的推理过程吗?再例如,我们要证明△ABC中不可能有两个直角,也可以采用这位同学的证法,假设有两个角是直角,不妨设∠A=90°,∠B=90°,可得∠A+∠B=180°,但∠A+∠B+∠C=180°, “∠A+∠B=180°”与“∠A+∠B+∠C=180°”相矛盾,因此△ABC中不可能有两个直角.引导学生思考:上面两道题的证法有什么共同的特点呢?【归纳结论】都是先假设命题的结论不成立,然后由此推导出了与已知公理或已证明过的定理相矛盾,从而证明命题的结论一定成立.这也是证明命题的一种方法,我们把它叫做反证法.【教学说明】总结这一证明方法,叙述并阐释反证法的含义,让学生了解.例1.已知:如图,∠CAE是△ABC的外角,AD∥BC且∠1=∠2.求证:AB=AC.证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C.∴AB=AC(等角对等边).例2.如图,BD平分∠CBA,CD平分∠ACB,且MN∥BC,设AB=12,AC=18,求△AMN的周长.解:∵BD 平分∠CBA ,CD 平分∠ACB ,∴∠MBD=∠DBC,∠NCD=∠BCD.∵MN ∥BC,∴∠MDB=∠DBC,∠NDC=∠BCD.∴∠MDB=∠MBD,∠NDC=∠NCD.∴MB=MD,NC=ND.∴C △AMN =AM+AN+MN=AM+AN+MD+ND=AM+AN+MB+NC=(AM+MB)+(AN+NC) =AB+AC=30.例3.如图,在△ABC 中,BD ⊥AC 于D ,CE ⊥AB 于E ,BD = CE.求证:△ABC 是等腰三角形.解:∵S △ABC =21(AB·CE)=21(AC·BD)且BD = CE , ∴AB=AC.∴△ABC 是等腰三角形.例4.如图,在△ABC 中,AB = AC ,DE ∥BC ,求证:△ADE 是等腰三角形.证明:∵AB = AC ,∴∠B=∠C ,∵DE ∥BC ,∴∠B=∠E ,∠D=∠C.∴∠D=∠E.∴△ADE 是等腰三角形.例5.垂直于同一条直线的两条直线平行.证明:假设a 、b 不平行,那么a 、b 相交∵a ⊥c ,b ⊥c∴∠1=900,∠2=900∴∠1+∠2=180°而a、b相交,则∠1+∠2≠180°与∠1+∠2=180°相矛盾.∴假设不成立.即:垂直于同一条直线的两条直线平行【教学说明】学生在独立思考的基础上再小组交流,培养学生应用知识解决问题的能力.本节课应掌握:等腰三角形性质的判定的区别和联系.教材“习题1.3”中第1、2、3 题.。
北师大版八年级下册数学《1.1 第3课时等腰三角形的判定与反证法》教学设计一. 教材分析北师大版八年级下册数学《1.1 第3课时等腰三角形的判定与反证法》这一节课,主要让学生了解等腰三角形的判定方法,并运用反证法进行证明。
教材通过丰富的图片和实例,引导学生探索等腰三角形的性质,培养学生的观察能力和逻辑思维能力。
本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣。
二. 学情分析学生在七年级已经学习了三角形的性质,对三角形有了一定的认识。
但是,对于等腰三角形的判定和反证法的应用,还需要进一步引导和培养。
因此,在教学过程中,教师需要关注学生的认知水平,通过合适的教学方法,帮助学生理解和掌握等腰三角形的判定方法,以及如何运用反证法进行证明。
三. 教学目标1.了解等腰三角形的判定方法,能够运用反证法证明等腰三角形的性质。
2.培养学生的观察能力、逻辑思维能力和解决问题的能力。
3.激发学生对数学学习的兴趣,培养学生的团队合作精神。
四. 教学重难点1.等腰三角形的判定方法。
2.反证法的应用。
五. 教学方法1.情境教学法:通过图片和实例,引导学生观察和探索等腰三角形的性质。
2.问题驱动法:提出问题,引导学生思考和解决问题。
3.合作学习法:分组讨论,培养学生的团队合作精神。
4.实践操作法:让学生动手操作,加深对知识的理解。
六. 教学准备1.准备相关的图片和实例,用于引导学生观察和探索。
2.准备投影仪,用于展示教学内容。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用图片和实例,引导学生观察等腰三角形的性质,激发学生的学习兴趣。
2.呈现(10分钟)介绍等腰三角形的判定方法,通过PPT展示相关的定理和证明过程。
3.操练(10分钟)让学生分组讨论,运用反证法证明等腰三角形的性质。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)出示练习题,让学生独立完成,巩固所学知识。
5.拓展(10分钟)引导学生思考:如何运用反证法证明其他几何性质?教师给予提示和指导。
1.1 等腰三角形第3课时 等腰三角形的判定与反证法一、学习准备:1、等腰三角形的两底角 。
2、等腰三角形 、 及 互相重合。
3、等腰三角形两底角的平分线 。
4、等边三角形的三个内角都 ,并且每个内角 。
二、学习目标:1、掌握等腰三角形的判别方法。
2、结合实例体会反证法的含义。
三、学习提示:1、自主学习:看书P8完成填空:等腰三角形的 相等。
反过来,有两个角相等的三角形是 。
定理: 是等腰三角形。
简称: 。
2、合作探究:例2 已知:如图,AB=DC ,BD=CA 。
求证:△AED 是等腰三角形。
讨论:①证明一个三角形是等腰三角形,可以利用的方法是什么? ②怎样证明AE=DE ? ③怎样证明∠ADB=∠DAC? 3、自主学习P8的想一想。
小明在证明时,先假设 ,然后推导出 、基本事实、 相矛盾ABC DE的结果,从而证明命题的结论一定成立。
这种证明方法称为反证法。
4、自主学习P9例3,并完成证明。
练习:P9 随堂练习四、学习小结:这节课你有哪些收获和体会?五、夯实基础:1.在△ABC中,AB=AC,∠B=36°,D、E在BC边上,且AD和AE把∠BAC三等分,则图中等腰三角形的个数()(A)3 (B)4 (C)5 (D)62.如图,在△ABC中,AB=AC,BD=BC,AD=DE=EB,则∠A等于()(A)30°(B)36°(C)45 °(D)54°3.等腰三角形的一个内角为70°,它的一腰上的高与底边所夹的角的度数是()(A)35°(B)20°(C)35 °或20°(D)无法确定4.等腰三角形的顶角等于一个底角的3倍,则顶角的度数为,底角的度数为5.等腰三角形三个内角与顶角的外角之和等于260°,则它的底角度数为6.等腰△ABC中,AB=AC,BC=6cm,则△ABC的周长的取值范围是7.已知如图,在△ABC中,∠B=90°,AB=BC,BD=CE,M是AC的中点,求证:△DEM是等腰三角形六、能力提升:1.如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC 且BC=10,求△DCE的周长。
北师大版八年级下册数学《1.1 第3课时等腰三角形的判定与反证法》教案一. 教材分析《1.1 第3课时等腰三角形的判定与反证法》这一课时,是在学生已经掌握了三角形的基本概念、三角形的分类、三角形性质等知识的基础上进行学习的。
本课时主要让学生学习等腰三角形的判定方法,以及运用反证法证明等腰三角形的性质。
通过这一课时的学习,使学生进一步理解三角形的性质,提高解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的几何知识,对三角形有了一定的认识。
但是,对于等腰三角形的判定和反证法的运用,可能还存在一定的困难。
因此,在教学过程中,要注重引导学生,激发他们的思考,帮助他们理解和掌握等腰三角形的判定方法和反证法的运用。
三. 教学目标1.知识与技能:使学生掌握等腰三角形的判定方法,能够运用反证法证明等腰三角形的性质。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们的观察能力、思考能力和创新能力。
四. 教学重难点1.教学重点:等腰三角形的判定方法,反证法的运用。
2.教学难点:反证法的运用,等腰三角形性质的证明。
五. 教学方法1.情境教学法:通过设置问题情境,引导学生观察、思考、交流,激发学生的学习兴趣。
2.探究式教学法:引导学生主动探究等腰三角形的性质,培养学生的探究能力。
3.小组合作学习法:学生进行小组讨论,培养学生的合作意识,提高他们的交流能力。
六. 教学准备1.准备等腰三角形的模型或图片,用于引导学生观察和操作。
2.准备反证法的相关案例,用于讲解和练习。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示等腰三角形的图片,引导学生观察等腰三角形的特征,激发学生的学习兴趣。
提问:你们知道等腰三角形有什么特点吗?2.呈现(10分钟)呈现等腰三角形的判定方法,引导学生思考和交流,总结出等腰三角形的判定方法。
第3课时 等腰三角形的判定与反证法1.掌握等腰三角形的判定定理并学会运用;(重点)2.理解并掌握反证法的思想,能够运用反证法进行证明.一、情境导入某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(A 点)为目标,然后在这棵树的正南方南岸B 点插一小旗作标志,沿南偏东60度方向走一段距离到C 处时,测得∠ACB 为30度,这时,地质专家测得BC 的长度是50米,就可知河流宽度是50米.同学们,你们想知道这样估测河流宽度的根据是什么吗?他是怎么知道BC 的长度是等于河流宽度的呢?今天我们就要学习等腰三角形的判定.二、合作探究探究点一:等腰三角形的判定(等角对等边) 【类型一】 确定等腰三角形的个数如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD 的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE 是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 判定一个三角形是等腰三角形如图,在△ABC 中,∠ACB =90°,CD 是AB 边上的高,AE 是∠BAC 的角平分线,AE 与CD 交于点F ,求证:△CEF 是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE =∠ACD ,然后根据三角形外角的性质求得∠CEF =∠CFE ,根据等角对等边求得CE =CF ,从而求得△CEF 是等腰三角形.解:∵在△ABC 中,∠ACB =90°,∴∠B +∠BAC =90°.∵CD 是AB 边上的高,∴∠ACD +∠BAC =90°,∴∠B =∠ACD .∵AE 是∠BAC 的角平分线,∴∠BAE =∠EAC ,∴∠B +∠BAE =∠AEC ,∠ACD +∠EAC =∠CFE ,即∠CEF =∠CFE ,∴CE =CF ,∴△CEF 是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型三】 等腰三角形性质和判定的综合运用如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =50°时,求∠DEF 的度数.解析:(1)根据等边对等角可得∠B =∠C ,利用“边角边”证明△BDE 和△CEF 全等,根据全等三角形对应边相等可得DE =EF ,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE =∠CEF ,然后求出∠BED +∠CEF =∠BED +∠BDE ,再利用三角形的内角和定理和平角的定义求出∠B =∠DEF .(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF =65°. 方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.探究点二:反证法 【类型一】 假设用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°解析:用反证法证明命题时,应先假设结论不成立,所以可先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选C.方法总结:在假设结论不成立时,要注意考虑结论的反面所有可能的情况,必须把它全部否定.【类型二】用反证法证明一个命题求证:△ABC中不能有两个钝角.解析:用反证法证明,假设△ABC中能有两个钝角,得出的结论与三角形的内角和定理相矛盾,所以原命题正确.证明:假设△ABC中能有两个钝角,即∠A<90°,∠B>90°,∠C>90°,所以∠A+∠B+∠C>180°,与三角形的内角和为180°矛盾,所以假设不成立,因此原命题正确,即△ABC中不能有两个钝角.方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.3.1图形的平移第1课时平移的认识1.理解并掌握平移的定义及性质;(重点)2.能够根据平移的性质进行简单的平移作图.一、情境导入观察下列图片,你能发现图中描绘的运动的共同点吗?二、合作探究 探究点一:平移的定义下列各组图形可以通过平移互相得到的是( ) A. B. C. D. 解析:根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是C ,故选C.方法总结:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.探究点二:平移的性质【类型一】 利用平移的性质进行计算如图,将等腰直角△ABC 沿BC 方向平移得到△A 1B 1C 1,若BC =32,△ABC 与△A 1B 1C 1重叠部分面积为2,则BB 1等于()A .1 B. 2 C. 3 D .2解析:设B 1C =2x ,根据等腰直角三角形和平移的性质可知,重叠部分为等腰直角三角形,则B 1C 边上的高为x ,∴12×x ×2x=2,解得x =2(舍去负值),∴B 1C =22,∴BB 1=BC -B 1C = 2.故选B.方法总结:本题考查了等腰直角三角形的性质和平移的性质.关键是判断重叠部分图形为等腰直角三角形,利用等腰直角三角形的性质和重叠部分面积列出方程,求重叠部分的长.【类型二】 平移性质的综合应用如图,原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移线段BE 的距离,就得到此图形,下列结论正确的有( )①AC ∥DF ;②HE =5;③CF =5;④阴影部分面积为552.A .1个B .2个C .3个D .4个 解析:根据平移的性质得出对应点所连的线段平行且相等,对应角相等,对应线段平行且相等,阴影部分和三角形面积之间的关系,结合图形与所给的结论即可得出答案.①对应线段平行可得AC ∥DF ,正确;②对应线段相等可得AB =DE =8,则HE =DE -DH =8-3=5,正确;③平移的距离CF =BE =5,正确;④S 四边形HDFC =S 梯形ABEH =12(AB +EH )·BE =12×(8+5)×5=652,错误.故选C.方法总结:本题考查平移的基本性质:①平移不改变图形的形状和大小;②对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.本题关键要找到平移的对应点.探究点三:简单的平移作图将如图方格中的图形向右平移4格,再向上平移2格,在方格中画出平移后的图形.解析:按照题目要求:向右平移4格,再向上平移2格,先作各个关键点的对应点,再连接即可.解:方法总结:作平移图形时,找关键点的对应点是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.三、板书设计1.平移的定义在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.2.平移的性质一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条直线上)且相等,对应线段平行(或在一条直线上)且相等,对应角相等.3.简单的平移作图教学过程中,强调学生自主探索和合作交流,学生经历将实际问题抽象成图形问题,培养学生的逻辑思维能力和空间想象能力,使得学生能将所学知识灵活运用到生活中.。