等腰三角形的判定教学设计
- 格式:doc
- 大小:863.50 KB
- 文档页数:8
13.3.2等腰三角形的判定教学设计一、教学目标:1.掌握等腰三角形的判定方法.2.掌握等腰三角形的判定定理,并运用其进行证明和计算.二、教学重、难点:重点:理解和运用等腰三角形的判定定理.难点:利用尺规作等腰三角形:已知底边及底边上的高作等腰三角形.三、教学过程:复习回顾性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”)情境引入在△AB C中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形画出来?知识精讲思考:已知:如图,在△AB C中,∠B=∠C,那么它们所对的边AB和AC有什么数量关系?猜想:AB =AC如图,在△AB C 中,∠B =∠C.作△ABC 的角平分线AD.在△BAD 与△CA D 中,⎪⎩⎪⎨⎧=∠=∠∠=∠AD AD C B 21∴△BAD ≌△CAD (AAS )∴AB =AC等腰三角形判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).定理应用格式:∵∠B =∠C∴AB =AC典例解析例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:如图,∠CAE 是△ABC 的外角,∠1=∠2,AD ∥B C.求证:AB =AC.分析:要证明AB=AC,可先证明∠B=∠C.因为∠1=∠2,所以可以设法找出∠B,∠C与∠1,∠2的关系.证明:∵AD∥AC∴∠1=∠B(_______________________)∠2=∠C(_______________________)又∵∠1=∠2∴∠B=∠C∴AB=AC(____________)【针对练习】求证:如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.已知:如图,△AB C中,CD是AB边上的中线,且CD=12A B.求证:△ABC是直角三角形.证明:∵CD是AB边上的中线,且CD=12AB∴AD=CD=BD∴∠A=∠ACD,∠B=∠BCD∵∠A+∠B+∠ACD+∠BCD=180°∴∠ACD+∠BCD=90°即∠ACB=90°∴△ABC是直角三角形.思考1:已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作的三角形都全等吗?已知:三角形的一条边a和这边上的高h.求作:△ABC,使AB=a,AB边上的高为h.思考2:如果已知是等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?例2.已知等腰三角形底边长为a,底边上的高的长为h,求作这个等腰三角形.作法:1.作线段AB=a;2.作线段AB的垂直平分线MN,与AB相交于点D;3.在MN上取一点C,使DC=h;4.连接AC,B C.例3.如图,在△AB C中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.证明:∵在△AB C中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠AC D.∵AE是∠BAC的平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.【点睛】“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【针对练习】如图,把一张长方形的纸沿对角线折叠,重合部分是一个等腰三角形吗?为什么?解:△BED是等腰三角形.理由如下:∵△BC′D与△BCD关于直线BD对称∴△BC′D≌△BCD∴∠C′BD=∠CBD又∵AD∥BC∴∠ADB=∠CBD∴∠ADB=∠C′BD∴EB=ED即△BED是等腰三角形.例4.如图,在△AB C中,AB=AC,∠ABC和∠ACB的平分线交于点O.过O作EF∥BC交AB于E,交AC于F.探究EF、BE、FC之间的关系.解:EF=BE+CF.理由如下:∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO.∵BO、CO分别平分∠ABC、∠ACB,∴∠CBO=∠ABO,∠BCO=∠ACO,∴∠EOB=∠ABO,∠FOC=∠ACO,∴BE=OE,CF=OF,∴EF=EO+FO=BE+CF.若AB≠AC,其他条件不变,图中还有等腰三角形吗?结论还成立吗?【点睛】判定线段之间的数量关系,一般做法是通过全等或利用“等角对等边”,运用转化思想,解决问题.例5.如图,点E在△ABC的AC边的延长线上,点D在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.证明:如图,过点D作DG//AE交BC于点G.∴∠GDF=∠CEF在△GDF和△CEF中,GDF CEF DF EF DFG EFC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GDF ≌△CEF (ASA )∴GD =CE又∵BD =CE∴BD =DG∴∠DBG =∠DGB∵DG //AC∴∠DGB =∠ACB∴∠ABC =∠ACB∴AB =AC ,即△ABC 是等腰三角形课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。
等腰三角形的教学设计(合集3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等腰三角形的教学设计(合集3篇)等腰三角形的教学设计(1)教材分析:《等腰三角形》是冀教版八年级数学上册第十七章第一节内容。
等腰三角形的判定【教学目标】1.知识与技能:通过动手操作探索并掌握识别一个三角形是等腰三角形和等边三角形的方法。
2.过程与方法:理解并掌握“等角对等边”,体会与“等边对等角”的互逆关系,能够利用三角形的识别方法去解决问题。
3.情感、态度与价值观:提高学生的动手能力,学会数学说理,发展初步的演绎推理能力,进一步体会等腰三角形的对称美。
【教学重难点】1.重点:理解并掌握识别等腰三角形和等边三角形的方法。
2.难点:对边、角关系互相转化的理解及运用。
【教学过程】一、创设情境,导入新课我们学过等腰三角形两底角相等,反过来,有两个角相等的三角形是等腰三角形吗?同学们画一画,量一量,你有什么结论,请表达。
二、师生互动,探究新知1.等腰三角形的判定:教师活动:如何证明AB=AC→AB.AC所在的两个三角形全等→作AD⊥BC。
学生活动:完成证明过程。
教师归纳:如果一个三角形有两个角相等,那么它们所对的边也相等。
(简写成“等角对等边”)。
那么证明一个三角形有几条途径?学生活动:证边所在三角形有两个角相等;证边所在的两个三角形全等。
2.等边三角形的判定:教师活动:由等腰三角形的判定方法可以直接得到等边三角形的判定吗?学生活动:探索——交流——发言。
教师活动:归纳:三个角相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形(分两种情况分析)。
三、随堂练习,巩固新知在△ABC中,已知∠A=50°,∠B=65°,你能判断△ABC的形状吗?为什么?答案:因为∠C=180°-∠A-∠B,又∠A=50°,∠B=65°,所以∠C=180°-50°-65°=65°,所以∠C=∠B,所以△ABC是一个等腰三角形。
四、典例精析,拓展新知例:如图,OB=OC,∠ABO=∠ACO,求证:AB=AC。
分析:连结BC,BO=OC⇒∠OBC=∠OCB⇒∠ABC=∠ACB⇒AB=AC;证明:连结BC,∵OB=OC,∴∠OBC=∠OCB,又∵∠ABC=∠ACB,∴∠ABC=∠ACB,∴AB=AC。
等腰三角形性质教学设计(共5篇)第1篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标(一)、知识目标1、了解等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行相关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间的联系。
(2)、能力目标1、培养学生“转化”的数学思要及应用意识,初步了解作辅助线的规律及“分类讨论”的思要。
2、培养学生进行独立思考,提高了独立解决问题的能力。
(三)、德育目标通过本节课教学,激发学生探索在实际生活中和数学相关的现实问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。
二、教学重难点1、教学着重:等腰三角形的性质定理及其证明。
2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。
三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。
四、教学过程课的导入:(一)、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形) (二)、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.(三)、一般三角形有那些性质?(两边之和大于第三边.三次内角的和等于180°).(四)、图片展示等腰三角形在日常生活中的实例。
新课讲解(一)、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两次底角还有什么关系?(二)、(电脑或几何画板演示)结论:折叠等腰三角形或改变等腰三角形的腰长后,两底角之间依旧坚持相等关系。
(三)、证明结论,得出性质1、性质定理的证明。
(1)学生找出文字命题的题设、结论、画图,换成符号语言。
(2)引导学生寻找辅助线、如何添加辅助线。
(3)电脑显示证明过程。
(4)说明“等边对等角”的作用。
2、推论1的证明。
(1)进一步启发学生得到“等腰三角形三线合一”的性质。
(2)说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。
等腰三角形判定教案5篇等腰三角形判定教案5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形判定教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形判定教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
1教学目标1.会从作图实践和理论推证中得到等腰三角形的判定定理,掌握等腰三角形的判定定理并能简单应用.2.通过作图实践培养观察、分析和归纳问题的能力.3.在学习过程中,勇于发表自己的看法,增强探究问题的意识,感受学习的乐趣.2学情分析从学生学习的基础和认知特点来看,学生已经掌握了等腰三角形的概念和性质的基础上对等腰三角形的又一深入探究。
在学习态度上,绝大部分学生上课能全神贯注,积极投入到学习中去,个别学生学习上有困难。
课前任务,大部分学生能认真完成,个别学生需要教师督促,这一少数学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,课上专心致至学习的习惯,主动纠正错误的习惯,还需要加强。
3重点难点重点:等腰三角形的判定定理.难点:等腰三角形的判定证明中辅助线的添加.4教学过程4.1 第一学时4.1.1教学活动活动1【导入】前面我们学习了等腰三角形的定义与性质,今天我们来共同研究等腰三角形的判定.(以“思维导图”形式呈现)活动2【活动】展示交流(前置研究:画一个等腰三角形,方法越多越好,并说出作图的过程以及验证或证明方法。
)(一)组内交流.下面请同学们在小组内对“前置研究”进行交流,并达成共识,时间为5分钟.(二)班级展示.方法预设见素材活动3【练习】巩固应用见素材活动4【活动】归纳反思1.等腰三角形的判定方法:(1)定义:两条边相等的三角形.(2)判定:两个角相等的三角形.2.思想方法:证明线段相等的思路现在有两个:(1)利用三角形全等(两个三角形);(2)等角对等边(一个三角形).活动5【作业】导学:P57 必做题:A组选做题:拓展提高。
等腰三角形的判定教学
设计
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
12.3.1等腰三角形(二)教学设计
一、教材分析
本课是人教版数学八年级上册第十二章第三节第二课时的内容,是学生在已有的全等的证明、命题、轴对称以及等腰三角形的性质基础上的进一步探究,等腰三角形的判定揭示了同一个三角形的边、角关系,与等腰三角形的性质定理互为逆定理,它为我们提供了证明两条线段相等的新方法,为以后的学习提供了新的证明和计算依据,是解题论证的必备知识,因此,本节内容至关重要。
二、学情分析
学生在学习了全等的证明,轴对称及等腰三角形的性质的基础上,对等腰三角形已有了一定的了解和认识,会利用全等来证明边、角相等,为验证判定定理奠定了基础。
初二学生观察、操作、猜想能力较强,但推理、归纳、运用数学的意识和思想比较薄弱,思维的广阔性、敏捷性、严密性、灵活性比较缺乏,自主探究和合作学习能力也需要在课堂教学中进一步的加强和引导。
三、教学目标
(一)知识与能力:
1、会阐述、推证等腰三角形的判定定理。
2、学会比较等腰三角形的性质定理与判定定理的联系与区
别。
(二)过程与方法:
通过学习等腰三角形的判定,进一步发展学生的抽象概括能力。
(三)情感、态度与价值观:
经历综合应用等腰三角形性质定理和判定定理的过程,体验数
学
的应用价值。
四、教学重难点
重点:等腰三角形的判定定理的探索和应用。
难点:等腰三角形的判定与性质的区别。
五、教学过程
(一)导入
如图,位于海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B,如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)
在一般的三角形中,如果有两个角相等,那么它们所对的边是什么关系?
设计意图:由现实中的实际问题入手,设置问题情境,导入本课的主题,为学生提供参与活动的时间和空间,调动学生的主观能动性。
(二)导学(探索新知)
Ⅰ、知识回顾
等腰三角形的性质有哪些那么一个三角形满足了什么样的条件就是一个等腰三角形呢
设计意图:复习等腰三角形的性质为判定作铺垫。
Ⅱ、实践
1、画一画:请同学们先画一个锐角,然后分别以一条线段AB 的两个端点为顶点在AB的同侧作两个角,使它们等于已知角,所作两个角另外一条边相交于点C
2、比一比:请你用刻度尺量出上面图形中AC、BC的长度并比较它们的大小
(学生画图、测量)
3、想一想:你能从上面的结果中发现什么规律?
Ⅲ、归纳
如果一个三角形有两个角相等,那么这两个角所对的边也相等。
注:多钟叙述方法,是学生更好地掌握等腰三角形的判定定理,注意纠正语言上不严谨的错误。
不要说成:“如果一个三角形有
两个底角相等,那么它是等腰三角形。
”提高语言表述的严谨与科学。
设计意图:培养学生的动手能力,探究归纳得出等腰三角形的判定定理。
Ⅳ、验证
证。
已知:如图,在△ABC
中,∠B=∠(学生先独立完成、后小组交流不同的证明方法。
)
设计意图:探究新知采取提出问题、实践操作、归纳验证这一方式,体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想。
(三)导法(例题解析)
例2 求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形。
(先写已知和求证)
(学生先独立思考,再小组讨论,书写出证明过程后与书本规范的证明过程比对。
)
设计意图:及时巩固、反馈,开方式的变式训练,培养学生思维的发散性。
(四)导练(课堂练习)
课本P53练习1、2、3
(五)课堂小结:
请你谈一谈本节课学习的感受。
(本节课学习了等腰三角形的判定定理,在判定定理中,是由角相等→边相等,在等腰三角形的性质1中,是由边相等→角相等)
设计意图:通过比较,加深对等腰三角形性质定理和判定定理的认识,正确地理解和应用两者。
(六)课后层级训练【Ⅰ、Ⅱ题必做,Ⅲ题选做】
Ⅰ、双基训练
1.填空
(1)在△ABC中,∠A的相邻外角是110º,要使△ABC是等腰三角形,则∠B=_______
(2)在一个三角形中,等角对________;等边对___________ (3)如果等腰三角形底边上的高线和腰上的高线相等,则它的各内角的度数是_______________
2. 先求证以下三个结论,然后归纳你发现的结论。
(1) 已知:OD 平分∠AOB ,EO=ED ,求证:ED ∥OB (2) 已知:OD 平分∠AOB ,ED ∥OB ,求证: EO=ED (3) 已知: ED ∥OB , EO=ED ,求证:OD 平分∠AOB
3.
角形是等腰三角形吗?说明理由。
Ⅱ、创新提升
如图:△ABC 中,∠ABC 与∠ACB 的平分线交于点D ,过点D 作EF ∥BC 交AB
于点E 、交AC 于点F
求证:EF=BE+CF
Ⅲ、探究拓展
如图,在△ABC中,AD⊥BC于D,AB+BD=CD,
求证:∠B=2∠C 六、课后反思。