轮胎设计力学
- 格式:ppt
- 大小:275.50 KB
- 文档页数:43
轮胎设计与工艺学 (3) (2学时) 第二章 轮胎力学基础及设计理论 一、教学目的及要求通过学习掌握轮胎在法向的应力和法向变形规律以及影响因素。
二、重点难点 重点掌握在法向的应力和法向变形规律以及影响因素。
三、主要内容 §2-2 轮胎的法向力与法向变形 主要研究轮胎在法向力作用下,引起的轮胎法向和径向变形与轮胎的气压、负荷的关系;及轮胎与路面接触时的接地面积与表面压力分布。
一、轮胎静负荷性能 (一)下沉量(法向变形)和压缩系数 (二)接地系数 (三)硬度系数 (四)轮胎负荷与气压的关系二、轮胎下沉量的理论计算 (一)赫德克尔(Hadekel)近似公式 Q=pF=πh c p D R n 2式中: D---轮胎充气外直径,Rn---胎面曲率半径, h c ---下沉量,Q---轮胎负荷,p---轮胎气压 进行修正!(二)高孟田(G Komandi 匈牙利)经验公式 其中: K p D B Q C h c 6.043.07.085.01=K---15×103B+0.42 C 1---轮胎设计参数,斜交胎=1.15,子午胎=1.5 Q---轮胎负荷 B---轮胎充气断面宽 D---轮胎充气外直径 p---轮胎充气压力 三、轮胎接地面积和接地压力分布(一)接地面积的影响因素1.行驶面曲率半径:胎冠曲率半径大,接地印痕的长轴会变短;短轴略微变长。
但总的接地面积还是小于曲率半径小的,胎冠曲率半径小,接地长轴较长,接地面积较大。
2.充气压力:P增大,接地面积减小。
3.下沉量:下沉量增大,接地面积增大,在一定范围内接近线性关系4.行驶速度(二)接地压力分布的影响因素1.胎面曲率半径:胎冠弧度半径减小,接地压力分布行驶面中部大于肩部;弧度半径增大,接地压力中部逐渐减少,肩部逐渐增大。
2.轮胎结构:3.带束层结构(三)接地压力分布对使用性能的影响1.胎面耐磨性能2.轮胎制动性能3.轮胎通过性能四、基本概念下沉量、硬度系数、接地系数、五、英文词汇六、习题1.轮胎的径向变形量、负荷性能。
轮胎动力学的研究与应用轮胎是汽车的重要组成部分,其性能直接影响到整个车辆的驾驶稳定性、制动距离、油耗等方面。
而轮胎动力学作为轮胎工程学科中重要的一个分支,研究轮胎的力学特性,以提高轮胎性能和安全性。
本文将从轮胎动力学的基本概念、轮胎动力学模型、轮胎动力学的应用等方面展开论述。
一、轮胎动力学的基本概念轮胎动力学指的是轮胎与地面之间的相互作用力学问题。
一般来说,轮胎与地面的接触面积很小,只有车轮接触地面的一小部分,因此这个问题也被看作是一个点接触问题。
轮胎动力学的研究主要涉及轮胎力学、轮胎动力、轮胎与地面之间的相互作用力等方面。
轮胎力学是研究轮胎变形、刚度和耗能等性能的学科。
轮胎动力是指轮胎的运动学和动力学特性。
而轮胎与地面之间的相互作用力包括接触力、摩擦力、支撑力等。
二、轮胎动力学模型轮胎动力学模型是轮胎动力学研究中重要的工具。
它是对轮胎与地面之间的相互作用力进行模拟分析的数学模型。
其中最基本的轮胎动力学模型是布洛赫模型,它认为轮胎承受的负载力可以分解为切向力和法向力两个方向的力。
接下来,我们简单介绍一些常用的轮胎动力学模型。
1. 符号模型符号模型是一种用符号和代数表达式描述轮胎动态行为的模型。
它不考虑轮胎和地面之间的接触条件,只考虑负载和受力之间的平衡关系。
因为它不涉及精细的接触性质,所以计算速度比较快,适用于轮胎的基本特性研究。
2. 模态模型模态模型是一种基于振动模态分析的轮胎动力学模型。
它主要考虑了轮胎的弹性变形和刚性形变,还考虑了轮胎和地面之间的接触强度和形状。
模态模型适用于轮胎垂向动力学特性的研究。
3. 有限元模型有限元模型是一种用于计算物体形变和应力分布的数学模型。
它可以很好地模拟轮胎与地面之间的接触力,能够更精细地分析轮胎变形、刚度和耗能性能等方面。
有限元模型适用于轮胎在车速较高时的动力学分析。
三、轮胎动力学的应用轮胎动力学的应用非常广泛,不仅可以在汽车工程领域中得到应用,还可以在航空、船舶等领域中得到应用。
轮胎动态力学性能分析与优化近年来,随着汽车行业的不断发展,轮胎作为汽车的重要零部件之一,也得到了广泛的关注与研究。
而轮胎的动态力学性能则是衡量轮胎质量优劣的重要指标之一。
本文旨在探究轮胎动态力学性能的分析方法和优化途径。
一、轮胎动态力学性能分析方法1. 实验法实验法是评价轮胎动态力学性能的常用方法,在实验中可以对轮胎的滑移、溢出、横向力、滚转阻力等性能进行测试。
常用的实验设备有滚筒试验机、角动量试验机、会车试验机等。
滚筒试验机是一种用于测试轮胎滚动阻力和抗侧滑性能的设备,可以模拟不同的道路情况,比如湿滑、干滑、铺设不同路面材料的路面情况。
角动量试验机则是一种用于测试轮胎抗旋性能的设备,主要测试轮胎急弯时的旋转惯量和动态响应特性。
会车试验机则是一种用于测试轮胎湿滑道路行驶性能的设备,可以模拟不同的湿度和道路情况。
2. 数值模拟法数值模拟法则是一种利用计算机仿真的方法,对轮胎动态力学性能进行分析。
数值模拟法可以采用有限元法、多体系统动力学法等,将轮胎的力学性质抽象为数学模型,再进行仿真模拟。
在仿真中,可以调整轮胎材料、结构、路面情况等参数,对轮胎的动态力学性能进行优化。
二、轮胎动态力学性能的优化途径1.材料优化轮胎的材料包括胶料、钢丝和纤维等,材料的优化可以提高轮胎的强度、耐磨性、抗老化性能等。
例如,采用新型材料如硅橡胶、低能损耗材料等可以提高轮胎的抗磨损性能。
2. 结构优化轮胎结构的优化可以提高轮胎的承载能力和耐久性。
例如,采用更高强度的胎面和侧壁结构、增加胎纹深度、优化轮胎胎面和侧壁的纹路形状等可以提高轮胎的抗滑性能和耐久性。
3. 设计优化轮胎设计的优化可以提高轮胎的性能和降低轮胎的制造成本。
例如,通过改变轮胎尺寸来减少轮胎胎肩的应力集中,提高轮胎抗侧滑性能;通过优化轮胎胎面和侧壁的纹路设计,来提高轮胎的抗滑性能和降低轮胎噪音等。
4. 模拟优化数值模拟法可以用于轮胎动态力学性能的优化,通过对轮胎结构和材料参数进行仿真模拟,可以评估轮胎的性能指标并寻找最佳设计方案,从而提高轮胎的动态力学性能和降低轮胎制造成本。
轮胎的力学性能与耐久性评估在汽车行业中,轮胎是车辆安全性和性能的重要组成部分。
轮胎的力学性能和耐久性评估,对于保证车辆在各种路况下的稳定性和耐久性至关重要。
本文将探讨轮胎的力学性能以及如何评估轮胎的耐久性。
一、轮胎的力学性能1. 抗滚动阻力轮胎的抗滚动阻力指的是轮胎在行驶过程中受到的滚动阻力。
抗滚动阻力越小,车辆的燃油经济性就越高。
为了评估轮胎的抗滚动阻力,常用的方法是通过滚动阻力试验来测量轮胎在不同载荷和不同行驶速度下的滚动阻力系数。
2. 抓地力轮胎的抓地力是指轮胎与路面之间的摩擦力,直接决定了车辆的操控性能和制动性能。
抓地力的大小与轮胎胎面的花纹设计、胎压以及路面状况等因素密切相关。
通常,用轮胎的湿地附着系数和干地附着系数来评估轮胎的抓地力。
3. 高速稳定性高速稳定性是指轮胎在高速行驶时的稳定性。
评估轮胎的高速稳定性,可以采用测量轮胎的侧滑角、侧滑刚度以及横摆耐力等参数,其中横摆耐力是最重要的指标之一,它反映了轮胎在高速过弯时的稳定性能。
二、轮胎的耐久性评估轮胎的耐久性评估主要指轮胎在使用过程中的磨损和寿命。
轮胎的磨损与行驶里程、路况以及胎压等因素有关。
为了评估轮胎的耐久性,可通过以下几个方面进行考察:1. 磨损测试磨损测试是评估轮胎磨损情况的重要手段之一。
其中,常用的方法是通过在不同路面上进行行驶试验,测量轮胎花纹深度的变化来评估轮胎的磨损情况。
2. 耐久性测试耐久性测试是评估轮胎寿命的关键。
常用的测试方法是通过在不同路况下进行长时间行驶试验,观察轮胎的性能变化和磨损情况,以确定轮胎的耐久性能。
3. 寿命预测寿命预测是根据轮胎的磨损情况和性能变化,来估计轮胎的使用寿命。
通过建立寿命模型和使用寿命预测方法,可以为车辆的维护和更换轮胎提供科学依据。
结语轮胎的力学性能和耐久性评估对于确保车辆在各种路况下的安全和可靠性至关重要。
通过评估轮胎的抗滚动阻力、抓地力和高速稳定性,可以保证车辆在行驶过程中的稳定性和操控性能。
第四章轮胎配方设计基础知识轮胎在负载条件下在公路上滚动,由于受到负荷作用以及路面的反作用,使轮胎在行驶过程中受到了复杂的动态变形和磨损。
随着公路的发展,特别是高等级公路的发展,车速的提高,轮胎的变形和磨损变的更为复杂,其寿命和安全性及其对汽车的操纵稳定性能的影响,更成为人们日益关心的问题。
因此对汽车轮胎的结构设计和配方设计及其相应的工艺投入了巨大的力量进行研究和改进。
子午胎的出现,从根本上改变了轮胎的力学性能和轮胎的使用性能,大大提高了轮胎的使用寿命,显示了极大的优越性能,被称之为轮胎工业的革命。
在世界范围来讲,子午胎问世于二十世纪40年代,50年代起步,60年代推广,70年代大发展,90年代基本实现子午化。
目前在西欧和美国等发达国家汽车轮胎基本上100%子午化,农业轮胎、航空轮胎也正在子午化。
我国的子午胎起步于60年代,经历了70年代的徘徊不前,直到80年代的中后期才有足够的认识和一定的经济实力发展子午胎。
通过引进邓录普、皮列里和费尔斯通等的半钢和全钢子午胎生产技术,并通过以北京橡胶院为代表的研究单位的消化吸收,我国的子午胎得到了大发展,行成了国有、股份、合资和民营齐头并进的局面。
到2003年末,汽车轮胎子午化率达到了47%,特别是载重子午胎从2001年开始每年以50%的速度递增,2003年产量突破了1000万条。
随着橡胶加工制造业的向中国的转移,斜交胎也得到了一定的发展,中国的小型、中型斜交胎有1/3以上出口,填补了部分发达国家的市场空缺,满足了发展中国家的需要,在2002年中国首次超过美国,成为世界第一橡胶消费大国,可以讲,我们正迎来橡胶工业,特别是轮胎工业的大发展阶段。
胶料和骨架材料作为轮胎的组成部分,其物理性能和工艺性能关系到轮胎的制造工艺的可行性和轮胎的使用性能,因此胶料的配方设计成为轮胎工业的一个重要组成部分。
随着轮胎结构从实心到充气轮胎,从斜交胎到子午胎,从高断面轮胎到低断面即扁平化,从有内胎到无内胎,从全天候到高行驶性能轮胎;骨架材料从棉帘线到人造丝、尼龙、聚酯和钢丝帘线、芳纶;以及橡胶原材料和橡胶加工工艺的一系列的发展过程中,轮胎胶料配方的设计也随之有较大的发展和变化。
轮胎动力学毕业设计毕业设计题目:轮胎动力学分析与优化一、设计背景与意义轮胎是车辆行驶中的重要部件,其动力学性能直接影响到车辆的操控性、舒适性和安全性。
随着汽车工业的发展,对于轮胎的性能要求也越来越高。
因此,对轮胎动力学进行深入分析,并对其进行优化设计,具有重要的理论意义和实际应用价值。
二、设计目标与内容本毕业设计的主要目标是:1.建立轮胎动力学模型,分析轮胎在行驶过程中的动态特性;2.通过模拟分析,探讨轮胎结构参数对动力学性能的影响;3.基于分析结果,对轮胎结构进行优化设计,提高其动力学性能。
具体设计内容如下:1.理论研究:收集与整理轮胎动力学相关的文献资料,了解轮胎的结构特点、力学性质和动力学模型等;2.模型建立:基于理论研究结果,建立轮胎动力学模型,包括轮胎的刚体模型和弹性模型,并编写相应的数值计算程序;3.模拟分析:利用建立的模型和程序,对不同工况下的轮胎动力学性能进行模拟分析,包括稳态工况和非稳态工况;4.结构优化:根据模拟分析结果,针对影响轮胎动力学性能的关键结构参数进行优化设计,提出改进方案;5.实验验证:制作优化后的轮胎样品,进行实际测试,对比优化前后的性能差异,验证设计的有效性。
三、实施方案与步骤1.理论研究:收集并阅读关于轮胎动力学的研究文献,了解其发展历程、研究现状及未来趋势;2.模型建立:基于理论研究结果,利用力学、数学和计算机技术,建立轮胎动力学模型,并编写相应的数值计算程序;3.模拟分析:将建立的模型和程序应用于不同工况下的轮胎动力学性能模拟分析,观察并记录轮胎的动力学特性;4.结构优化:根据模拟分析结果,针对影响轮胎动力学性能的关键结构参数进行优化设计,提出改进方案;5.实验验证:制作优化后的轮胎样品,进行实际测试,对比优化前后的性能差异,验证设计的有效性;6.论文撰写:整理研究成果,撰写毕业论文。
四、预期成果与价值通过本次毕业设计,希望能够达到以下预期成果和价值:1.深入了解轮胎动力学的研究现状和发展趋势;2.掌握轮胎动力学模型的建立方法和数值计算技术;3.揭示轮胎结构参数对动力学性能的影响规律;4.提出一种有效的轮胎结构优化设计方案;5.提高自身的科研能力和实践技能;6.为汽车工业的发展提供理论支持和实际应用价值。
一、背景介绍随着汽车工业的快速发展,轮胎动力学研究成为汽车工程领域的一个重要课题。
全工况高精度轮胎动力学体系的创建和应用对于提升汽车性能、安全和舒适性具有重要意义。
本文将对全工况高精度轮胎动力学体系的创建及应用进行探讨。
二、全工况高精度轮胎动力学体系的创建1. 轮胎参数建模轮胎是汽车行驶中至关重要的部件,其动力学性能直接影响着汽车的操控性、稳定性和舒适性。
建立准确的轮胎参数模型是创建高精度轮胎动力学体系的第一步。
通过合理的试验设计和数据采集,可以获取轮胎在各种工况下的力学特性,包括侧向力、纵向力、滚动阻力等。
2. 动力学仿真模型在轮胎参数建模的基础上,可以建立轮胎的动力学仿真模型。
该模型可以利用有限元分析、多体动力学分析等方法,对轮胎在不同工况下的动力学响应进行模拟和预测。
这样可以更好地理解轮胎的性能特点,为后续的控制策略优化和系统集成提供依据。
3. 轮胎传感器与数据采集为了实现全工况高精度轮胎动力学的实时监测和分析,需要在轮胎上布设传感器,并搭建相应的数据采集系统。
通过这些传感器可以获取轮胎的实时参数,包括轮胎的接地面形状、接触压力分布、温度分布等信息,为系统建模和控制提供重要数据支持。
三、全工况高精度轮胎动力学体系的应用1. 汽车动力学控制策略优化利用全工况高精度轮胎动力学体系可以优化汽车的动力学控制策略。
在紧急制动或急加速工况下,系统可以根据实时获取的轮胎动力学参数进行智能控制,使汽车更加稳定和安全。
2. 轮胎结构与材料优化通过对轮胎动力学性能的深入研究和分析,可以指导轮胎结构和材料的优化设计,提升轮胎的耐磨性、抓地力和舒适性,并降低滚动阻力,提高汽车的能效性能。
3. 高级驾驶辅助系统全工况高精度轮胎动力学体系的应用也为高级驾驶辅助系统提供了重要支持。
利用轮胎动力学参数的实时监测和分析,可以实现更加智能化的车辆控制,例如自适应巡航、车道保持辅助等功能。
四、结语全工况高精度轮胎动力学体系的创建及应用是汽车工程领域的一个重要研究方向,对于提升汽车性能、安全和舒适性具有重要意义。
《高等轮胎力学》阅读笔记目录一、内容简述 (2)1.1 轮胎力学的重要性 (2)1.2 高等轮胎力学的定义和研究范围 (4)二、轮胎的基本特性 (5)2.1 轮胎的结构和材料 (6)2.2 轮胎的静态特性 (7)2.3 轮胎的动态特性 (8)三、轮胎与路面的相互作用 (10)3.1 线性轮胎模型 (11)3.2 非线性轮胎模型 (12)3.3 路面不平度对轮胎的影响 (13)3.4 轮胎-路面相互作用的研究方法 (14)四、轮胎力学性能分析 (16)4.1 轮胎的承载能力 (17)4.2 轮胎的制动性能 (18)4.3 轮胎的行驶稳定性和安全性 (20)4.4 轮胎的节能性能 (21)五、轮胎设计理论 (22)5.1 轮胎的基本尺寸和形状设计 (23)5.2 轮胎的载荷分布和优化设计 (24)5.3 轮胎的性能预测和仿真分析 (26)六、轮胎试验与评价 (27)6.1 轮胎的基本性能测试 (28)6.2 轮胎的疲劳性能测试 (30)6.3 轮胎的安全性能测试 (31)6.4 轮胎的环保性能测试 (32)七、高等轮胎力学的发展趋势 (33)7.1 新型轮胎材料的研发和应用 (34)7.2 高性能轮胎的设计和制造技术 (36)7.3 智能化轮胎监控和管理系统 (37)7.4 未来轮胎力学研究的方向和挑战 (39)八、结论 (40)8.1 高等轮胎力学的重要性和应用价值 (41)8.2 对未来轮胎力学研究的展望 (43)一、内容简述《高等轮胎力学》一书深入探讨了轮胎在各种行驶条件下的力学行为,为轮胎设计、制造和应用提供了科学的理论支持。
书中详细分析了轮胎与道路之间的相互作用力,包括垂直载荷、侧向力和纵向力等,以及这些力如何影响轮胎的变形和应力分布。
在轮胎材料方面,本书介绍了常用的橡胶材料及其性能特点,如弹性模量、损耗因子等,以及这些材料在轮胎使用过程中的变化规律。
通过对轮胎结构设计的深入研究,阐述了如何通过优化结构参数来提高轮胎的性能和安全性。