几何体的外接球
- 格式:pdf
- 大小:460.26 KB
- 文档页数:5
特殊几何体的外接球半径
首先,我们来看正四面体。
正四面体的外接球半径可以通过其边长来计算。
设正四面体的边长为a,则可以通过公式R = a√6/4来计算其外接球半径R。
接下来是正六面体,也就是立方体。
正六面体的外接球半径可以通过其对角线长度来计算。
设立方体的对角线长度为d,则可以通过公式R = d/2来计算其外接球半径R。
再来看正八面体,外接球半径可以通过其顶点到中心的距离来计算。
设正八面体的顶点到中心的距离为r,则可以通过公式R = r√2来计算其外接球半径R。
除了这些特殊几何体,其他复杂的几何体的外接球半径的计算可能需要更复杂的方法,比如利用向量、线性代数等数学工具来进行推导和计算。
总之,特殊几何体的外接球半径可以通过不同的方法来计算,需要根据具体的几何体形状和特征来确定计算方法。
希望这些信息能够帮助你更好地理解特殊几何体外接球半径的计算方法。
立体几何专题:外接球问题中常见的8种模型1.知识梳理一、墙角模型适用范围:3组或3条棱两两垂直;可在长方体中画出该图且各顶点与长方体的顶点重合直接用公式(2R )2=a 2+b 2+c 2,即2R =a 2+b 2+c 2,求出R【补充】图1为阳马,图2和图4为鳖臑二、麻花模型适用范围:对棱相等相等的三棱锥对棱相等指四面体的三组对棱分别对应相等,且这三组对棱构成长方体的三组对面的对角线。
推导过程:三棱锥(即四面体)中,已知三组对棱分别相等,(AB =CD ,AD =BC ,AC =BD )第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为a ,b ,c ,AD =BC =x ,AB =CD =y ,AC =BD =z ,列方程组,a 2+b 2=x 2b 2+c 2=y 2c 2+a 2=z 2⇒(2R )2=a 2+b 2+c 2=x 2+y 2+z 22,补充:V A −BCD =abc −16abc ×4=13abc 第三步:根据墙角模型,2R =a 2+b 2+c 2=x 2+y 2+z 22,R 2=x 2+y 2+z 28,R =x 2+y 2+z 28,求出R .三、垂面模型适用范围:有一条棱垂直于底面的棱锥。
推导过程:第一步:将ABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O .第二步:O 1为ABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r(三角形的外接圆直径算法:利用正弦定理a sin A =b sin B=csin C =2r ,OO 1=12PA .第三步:利用勾股定理求三棱锥的外接球半径:(1)(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;(2)R 2=r 2+OO 21⇔R =r 2+OO 21.公式:R 2=r 2+h 24四、切瓜模型适用范围:有两个平面互相垂直的棱锥推导过程:分别在两个互相垂直的平面上取外心O 1、O 2过两个外心做两个垂面的垂线,两条垂线的交点即为球心0,取B C 的中点为E ,连接OO 1、OO 2、O 2E 、O 1E 为矩形由勾股可得|OC |2=|O 2C |2+|OO 2|2=|O 2C |2+|O 1C |2-|CE |2∴R 2=r 21+r 22-l 24公式:R 2=r 21+r 22-l 24五、斗笠模型适用于:顶点的投影在底面的外心上的棱锥推导过程:取底面的外心01,连接顶点与外心,该线为空间几何体的高h ,在h 上取一点作为球心0,根据勾股定理R 2=(h -R )2+r 2⇔R =r 2+h 22h公式:R =r 2+h 22h六、矩形模型适用范围:两个直角三角形的斜边为同一边,则该边为球的直径推导过程:图中两个直角三角形ΔPAB 和ΔQAB ,其中∠APB =∠AQB =90°,求外接圆半径取斜边AB 的中点O ,连接OP ,OQ ,则OP =12AB =OA =OB =OQ 所以O 点即为球心,然后在ΔPOQ 中解出半径R 公式:R 2=l22(l 为斜边长度)七、折叠模型适用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠.推导过程:两个全等的三角形或者等腰拼在一起,或者菱形折叠,设折叠的二面角∠A EC =α,CE =A E =h .如图,作左图的二面角剖面图如右图:H 1和H 2分别为△BCD ,△A BD 外心,分别过这两个外心做这两个平面的垂线且垂线相交于球心O CH 1=r =BD 2sin ∠BCD,EH 1=h -r ,OH 1=(h -r )tanα2由勾股定理可得:R 2=OC 2=OH 21+CH 21=r 2+(h -r )2tan 2α2.公式:R 2=r 2+(h -r )2tan 2α2八、鳄鱼模型适用范围:所有二面角构成的棱锥,普通三棱锥方法:找两面外接圆圆心到交线的距离m ,n ,找二面角α,找面面交线长度l 推导过程:取二面角两平面的外心分别为O 1,O 2并过两外心作这两个面的垂线,两垂线相交于球心O ,取二面角两平面的交线中点为E ,则O ,O 1,E ,O 2四点共圆,由正弦定理得:OE =2r =O 1O 2sin α①在ΔO 1O 2E 中,由余弦定理得:O 1O 2 2=O 1E 2+O 2E 2-2O 1E O 2E cos α②由勾股定理得:OD 2=O 1O 2+O 1D 2③由①②③整理得:OD2=O 1O 2+O 1D 2=OE 2-O 1E 2+O 1D 2=O 1O 2sin α2-O 1E 2+O 1D 2=O 1E2+O 2E 2-2O 1E O 2E cos αsin 2α-O 1E 2+O 1D 2=O1E2+O2E2-2O1EO2Ecosαsin2α-O1E2+O1B2记O1E=m,O2E=n,AB=l,则R2=m2+n2-2mn cosαsin2α+l22公式:R2=m2+n2-2mn cosαsin2α+l222.常考题型3.题型精析题型一:墙角模型1(2023·高一单元测试)三棱锥A-BCD中,AD⊥平面BCD,DC⊥BD,2AD=BD=DC=2,则该三棱锥的外接球表面积为()A.3π2B.9π2C.9πD.36π1.(2022秋·陕西西安·高一统考期末)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑A-BCD中,满足AB⊥平面BCD,且AB=BD=5,BC=3,CD=4,则此鳖臑外接球的表面积为()A.25πB.50πC.100πD.200π2.(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50πC.100πD.500π33.(2023·广西南宁·统考二模)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD =2,已知动点E 从C 点出发,沿外表面经过棱AD 上一点到点B 的最短距离为10,则该棱锥的外接球的体积为.4.(2023春·辽宁朝阳·高二北票市高级中学校考阶段练习)已知四棱锥P -ABCD 的外接球O 的表面积为64π,PA ⊥平面ABCD ,且底面ABCD 为矩形,PA =4,设点M 在球O 的表面上运动,则四棱锥M -ABCD 体积的最大值为.题型二:麻花模型1(2023春·广东梅州·高二统考期中)已知三棱锥S -ABC 的四个顶点都在球O 的球面上,且SA =BC =2,SB =AC =7,SC =AB =5,则球O 的体积是()A.83π B.3223π C.423π D.823π1.(2022春·江西景德镇·高一景德镇一中校考期中)在△ABC 中,AB =AC =2,cos A =34,将△ABC 绕BC 旋转至△BCD 的位置,使得AD =2,如图所示,则三棱锥D -ABC 外接球的体积为.2.(2023秋·吉林·高一吉林一中校考阶段练习)如图,在△ABC 中,AB =25,BC =210,AC =213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π3.(2023·江西·统考模拟预测)在三棱锥P -ABC 中,已知PA =BC =213,AC =BP =41,CP =AB =61,则三棱锥P -ABC 外接球的表面积为()A.77πB.64πC.108πD.72π4.(2022·全国·高三专题练习)已知四面体ABCD 的棱长满足AB =AC =BD =CD =2,BC =AD =1,现将四面体ABCD 放入一个轴截面为等边三角形的圆锥中,使得四面体ABCD 可以在圆锥中任意转动,则圆锥侧面积的最小值为.题型三:垂面模型1(2023·高一单元测试)在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,则三棱锥P -ABC 的外接球半径为()A.3B.23C.32D.61.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.4πB.8πC.16πD.32π2.(2020春·天津宁河·高一校考期末)在三棱锥P -ABC 中,AP =2,AB =3,PA ⊥面ABC ,且在△ABC 中,C =60°,则该三棱锥外接球的表面积为()A.20π3B.8πC.10πD.12π3.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且其面积为334,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.πB.2πC.4πD.8π4.(2022春·山东聊城·高一山东聊城一中校考阶段练习)在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为矩形,BC =2,PC 与平面PAB 所成的角为30o ,则该四棱锥外接球的体积为()A.433π B.43πC.823πD.833π题型四:切瓜模型1(2023·贵州贵阳·校联考模拟预测)在三棱锥A -BCD 中,已知AC ⊥BC ,AC =BC =2,AD =BD =6,且平面ABD ⊥平面ABC ,则三棱锥A -BCD 的外接球表面积为()A.8πB.9πC.10πD.12π1.(2023·四川达州·统考二模)三棱锥A -BCD 的所有顶点都在球O 的表面上,平面ABD ⊥平面BCD ,AB =AD =6,AB ⊥AD ,∠BDC =2∠DBC =60°,则球O 的体积为()A.43πB.32π3C.49π3D.323π2.(2023春·陕西西安·高一长安一中校考期中)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=4,点P 为B 1C 1的中点,则四面体PABC 的外接球的体积为()A..41416π B.41413π C.41412π D.4141π3.(2022·高一单元测试)四棱锥P -ABCD 的顶点都在球O 的表面上,△PAD 是等边三角形,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,若AB =2,BC =3,则球O 的表面积为()A.12πB.16πC.20πD.32π4.(2021·高一课时练习)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,∠DPA =π2,AD =23,AB =2,PA =PD ,则四棱锥P -ABCD 的外接球的体积为()A.163π B.323π C.643π D.16π5.(2023春·全国·高一专题练习)在四棱锥P-ABCD中,ABCD是边长为2的正方形,AP=PD=10,平面PAD⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为()A.4πB.8πC.136π9D.68π3题型五:斗笠模型1(2023·全国·高一专题练习)正四面体S-ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为()A.64B.33C.263D.31.(2022·高一专题练习)已知正四棱锥P-ABCD(底面四边形ABCD是正方形,顶点P在底面的射影是底面的中心)的各顶点都在同一球面上,底面正方形的边长为10,若该正四棱锥的体积为50 3,则此球的体积为()A.18πB.86πC.36πD.323π2.(2022·全国·高一专题练习)某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥内有一个半径为1的球,则该四棱锥的表面积最小值是()A.16B.8C.32D.243.(2022春·安徽·高三校联考阶段练习)在三棱锥P-ABC中,侧棱PA=PB=PC=10,∠BAC=π4,BC=22,则此三棱锥外接球的表面积为.题型六:矩形模型1(2022春·全国·高一期末)已知三棱锥A-BCD中,CD=22,BC=AC=BD=AD=2,则此几何体外接球的表面积为()A.2π3B.2π C.82π3D.8π1.(2022春·广东惠州·高一校考期中)在矩形ABCD中,AB=6,BC=8,现将△ABC沿对角线AC翻折,得到四面体DABC,则该四面体外接球的体积为()A.1963π B.10003π C.4003π D.5003π2.(2022春·河北沧州·高一校考阶段练习)矩形ABCD中,AB=4,BC=3,沿AC将三角形ABC折起,得到的四面体A-BCD的体积的最大时,则此四面体外接球的表面积值为()A.25πB.30πC.36πD.100π3.(2022春·四川成都·高一统考期末)在矩形ABCD 中,AB =6,AD =8,将△ABC 沿对角线AC 折起,则三棱锥B -ACD 的外接球的表面积为()A.36πB.64πC.100πD.与二面角B -AC -D 的大小有关题型七:折叠模型1(2022春·陕西西安·高一长安一中校考期末)已知菱形ABCD 的边长为3,∠ABC =60°,沿对角线AC 折成一个四面体,使平面ACD 垂直平面ABC ,则经过这个四面体所有顶点的球的体积为().A.5152π B.6πC.515πD.12π1.已知等边△ABC 的边长为2,将其沿边AB 旋转到如图所示的位置,且二面角C -AB -C 为60°,则三棱锥C -ABC 外接球的半径为2.(2023·广西南宁·统考二模)蹴鞠,又名“蹴球”“蹴圈”等,“蹴”有用脚蹴、踢的含义,鞠最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的足球,现已知某“鞠”的表面上有四个点A ,B ,C ,D 满足AB =BC =CD =DA =DB =433cm ,AC =23cm ,则该“鞠”的表面积为cm 2.3.(2022秋·福建泉州·高三校考开学考试)在三棱锥S -ABC 中,SA =SB =AC =BC =2,SC =1,二面角S -AB -C 的大小为60°,则三棱锥S -ABC 的外接球的表面积为.4.(2022秋·山东德州·高二统考期中)已知在三棱锥中,S -ABC 中,BA ⊥BC ,BA =BC =2,SA =SC =22,二面角B -AC -S 的大小为5π6,则三棱锥S -ABC 的外接球的表面积为()A.56π3B.58π3C.105π4D.124π9题型八:鳄鱼模型1(2022春·四川成都·高一树德中学校考期末)已知在三棱锥S-ABC中,AB⊥BC,AB=BC=2,SA =SC=22,二面角B-AC-S的大小为2π3,则三棱锥S-ABC的外接球的表面积为()A.124π9B.105π4C.105π9D.104π91.(2023春·全国·高一专题练习)如图,在三棱锥P-ABC,△PAC是以AC为斜边的等腰直角三角形,且CB=22,AB=AC=6,二面角P-AC-B的大小为120°,则三棱锥P-ABC的外接球表面积为()A.5103π B.10π C.9π D.4+23π2.(2023·陕西榆林·统考三模)在三棱锥A-BCD中,AB⊥BC,BC⊥CD,CD=2AB=2BC= 4,二面角A-BC-D为60°,则三棱锥A-BCD外接球的表面积为()A.16πB.24πC.18πD.20π3.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)如图1,四边形ABCD中,AB=AD =2,CB=CD=2,AB⊥AD,将△ABD沿BD翻折至△PBD,使二面角P-BD-C的正切值等于2,如图2,四面体PBCD的四个顶点都在同一个球面上,则该球的表面积为()A.4πB.6πC.8πD.9π4.(2023·江西南昌·校联考模拟预测)在平面四边形ABCD中,AD=CD=3,∠ADC=∠ACB =90°,∠ABC=60°,现将△ADC沿着AC折起,得到三棱锥D-ABC,若二面角D-AC-B的平面角为135°,则三棱锥D-ABC的外接球表面积为.5.(2023春·广东广州·高三统考阶段练习)在三棱锥P-ABC中,△ABC为等腰直角三角形,AB=AC=2,△PAC为正三角形,且二面角P-AC-B的平面角为π6,则三棱锥P-ABC的外接球表面积为.。
几何体外接球常用结论及方法几何体的外接球是指能够将该几何体完全包围的球。
在三维空间中,我们常见的几何体有球、正方体、长方体、圆锥体、圆柱体、四面体等。
下面将介绍几何体外接球的常用结论及求解方法:1.球的外接球:球本身就是一个外接球,其半径即为球的半径。
2.正方体的外接球:正方体的外接球是一个球心位于正方体空间对角线中点处的球。
对角线在空间中的长度可以通过勾股定理求得,即对角线长度等于正方体一条边的平方根乘以根号3、因此,外接球的半径等于对角线长度的一半。
3.长方体的外接球:长方体的外接球是一个球心位于长方体空间对角线中点处的球。
同样,对角线长度可以通过勾股定理求得,即对角线长度等于长方体的长、宽、高的平方和的开方。
因此,外接球的半径等于对角线长度的一半。
4.圆锥体的外接球:圆锥体的外接球是一个球心位于圆锥体顶点与底面圆心连线的中点处的球。
外接球的半径等于该连线的长度。
5.圆柱体的外接球:圆柱体的外接球是一个球心位于圆柱体两个底面圆心连线的中点处的球。
外接球的半径等于该连线的长度。
6.四面体的外接球:四面体的外接球是一个球心位于四面体四个顶点的外接圆圆心的球。
外接球的半径等于外接圆的半径。
以上是几何体外接球的常用结论。
接下来我们介绍一种求解几何体外接球半径的常用方法,即通过计算几何体的顶点坐标来求解。
首先,根据几何体的类型和已知信息,确定几何体的顶点坐标。
对于球、正方体、长方体等简单的几何体,可以通过已知的半径、边长等信息得到;对于复杂的几何体,可以通过已知的顶点坐标及其它辅助信息求解。
然后,根据顶点坐标计算几何体的外接球的球心坐标。
球心位于几何体顶点的外接圆的圆心处。
对于球、正方体、长方体等几何体,直接取顶点坐标的平均值作为球心坐标;对于其它几何体,可以通过求解外接圆的圆心坐标来得到球心坐标。
最后,根据球心坐标和几何体顶点坐标,计算几何体的外接球半径。
外接球半径就是几何体顶点与球心之间的距离的最大值。
外接球公式总结
外接球公式是几何中的重要问题,涉及到多面体、旋转体等空间几何图形的外接球问题。
一般情况下,外接球公式可以用来计算几何体的表面积或体积。
以下是一些关于外接球公式的总结:
1. 多面体外接球公式:对于正多面体,各顶点同在一球面上,这个球叫做正多面体的外接球。
正四棱锥的外接球公式为:DU2tR,其中 D 是底面直径,U 是底面边长,t 是棱锥的高,R 是外接球半径。
2. 旋转体外接球公式:旋转体的外接球公式比较复杂,需要根据旋转轴的不同进行分类。
一般情况下,可分为三类:
(1) 旋转轴与底面垂直时,外接球公式为:S=frac{4}{3}R^2,其中 S 是外接球表面积,R 是外接球半径。
(2) 旋转轴与底面平行时,外接球公式为:S=pi R^2,其中 S 是外接球表面积,R 是外接球半径。
(3) 旋转轴不与底面垂直或平行时,需要分类讨论,一般情况下可以采用轴对称性来求解。
3. 球体外接球公式:球体的外接球公式为:S=4pi R^2,其中 S 是外接球表面积,R 是外接球半径。
在实际应用中,外接球公式常常用于计算几何体的面积或体积,也可以用于求解几何体的表面积或体积最小值等问题。
球与几何体的切接问题解决外接球与内切球问题,关键在于解决球体的半径,明确球心位置,以下为确定球心位置与半径的常用方法:一、外接球问题(一)定义法:由球的定义确定球心在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.由上述性质,可以得到确定简单多面体外接球的球心的如下结论. 结论1:正方体或长方体的外接球的球心为其体对角线的中点.例:长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 .解:结论2:正棱柱的外接球的球心是上下底面中心的连线的中点. 结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.例:已知正三棱柱DEF ABC −的底面边长为2,高为4,则该三棱柱的外接球的半径为 .解:如图,M ,N 为上下底面的外收,O 为MN 的中点,则O为球心,故R =结论4:正棱锥的外接球的球心在其高上,具体位置可通过计算找到.结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心. 例 已知三棱锥BCD A −中,AB=AD=CD=1,BC ⊥CD ,2=BD , ,则该三棱锥的外接球的半径为 .解:如图所示,△ABC ,△BCD 均为直角三角形,O 为BC 的中点,易知,O为外接球球心,122R BC ==。
结论6:一般棱锥外接球球心的找法 寻找底面多边形的外接圆的圆心M 过M 作底面的垂线l任选一侧棱,取其中点,过中点作侧棱的垂面,垂面与l 的交点即为外接圆的圆心A注:实际使用中,通常在垂线l 上任设一点O ,然后利用O 到各点的距离相等,从而确定外接球球心的半径(二)补形法 构造正方体或长方体确定球心 方法一:补成棱柱有两个面是共直角边的三棱锥,可补成棱柱例:已知在三棱锥A -BCD 中,底面△BCD 是边长为3的等边三角形,且13==AD AC ,若AB =2,则三棱锥A -BCD 外接球的面积是 Dπ4 π8 π12 π16ADCNM O解:易知222AC BC AB +=,从而可知AC ⊥平面BCD ,补形成棱柱,可得7R =方法二:补成长方体或正方体长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体或长方体的途径与方法.途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体.途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体.途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体. 途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.例:已知三棱锥BCD A −中,BD BC BC AB BD AB ⊥⊥⊥,,,BC =BD =2,AB =4,则该三棱锥的外接球的半径为 . 解:如图,可知6R =例:已知三棱锥BCD A −中,CD BC BC AB ⊥⊥,,ABC BCD 平面平面⊥,BC =BD =AB =2,则该三棱锥的外接球的半径为 .解:如图,可知3R =注:含有三个直角三形的三棱锥一般均可以补成长方体:例:已知在三棱锥P -ABC 中,已知AB =1,P A =2,AC =3,其外接球的半径为R (1)若P A ⊥AB ,P A ⊥AC ,AB ⊥BC ,则R = (2)若P A ⊥AB ,P A ⊥PC ,AB ⊥BC ,则R = (3)若P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,则R = 解:如图,可知142R =(三) 由性质确定球心利用球心O 与截面圆圆心1O 的连线垂直于截面圆及球心O 与弦中点的连线垂直于弦的性质,确定球心.例:已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为R 23,32===AC BC AB ,则球O 的表面积为 DA316πB π16 C364πD π64 解:如图,在直角三角形OAM 中,可得222OM AM OA +=,即22344R R +=,4R =,于是表面积为2464S R =π=π二、内切球问题若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.2、正多面体的内切球和外接球的球心重合.3、正棱锥的内切球和外接球球心都在高线上,但不一定重合.4、体积分割是求内切球半径的通用做法.例:已知一个平放的各棱长为4的三棱锥内有一个小球O (重量忽略不计),现从该三棱锥顶端向内注水,小球慢慢上浮,若注入的水的体积是该三棱锥体积的87时,小球与该三棱锥各侧面均相切(与水面也相切)则小球的表面积等于 ( )67π 34π 32π 2πO ACBM例:如图,进行计算可得,答案选CMACBP NDEF对应练习:1 已知△ABC 的顶点都在半径为R 的球O 的球面上,球心O 到平面ABC 的距离为32R , 3AB BC AC ===,则球O 的体积是( )A163π 16π C 323π D 32π 解:△ABC 是等边三角形,所以球心O 在底面的射影是△ABC 的中心'O ,点'OO A 是直角三角形,满足2223()12R R =+,解得242R R ==,,343233V R =π=π,故选C. 2 在三棱锥BCD A −中,平面ACD ⊥平面ABC ,且△ACD ,△ABC 均是边长为6的正三角形,则该三棱锥的外接球的表面积为( C )π30 π48 π60 π64解:如图,M 为AC 中点,易证平面BMD ⊥平面ABC ,平面BMD ⊥平面ADC ,P ,Q 分别为△ACD ,△ABC 的外心,过P ,Q 作相应平面的垂线,交于点O (易知PO//BM,OQ//MD );连接AO ,在直角三角形AOP 中,可计算出R =15.故选C.3 已知四面体ABCD 的四个顶点都在球O 的球面上,M 为AB 的中点,ABC ABD CDM ∆∆∆,,都是正三角形,若6AB =,则球O 的表面积为( ) A .52π B .54π C .56π D .60π解:如图,M 为AB 中点,易证平面CMD ⊥平面ABD ,平面CMD ⊥平面ABC ,P ,Q 分别为△ABD ,△ABC 的外心,过P ,Q 作相应平面的垂线,交于点O ;计算时,将平面CMD 提出来,易知PD =2PM ,QC =2QM ,∠PMO =∠CMO ,连接DO ,在直角三角形DOP 中,可计算出R =13.故选A 。
几何体外接球表面积及体积的求法答案1.D【考点】由三视图求面积、体积.【专题】数形结合;转化法;空间位置关系与距离.【分析】根据三视图得出该几何体是圆柱,求出圆柱体的表面积和它外接球的表面积即可得出结论.【解答】解:根据三视图得,该几何体是底面半径为3,高为4的圆柱体,所以该圆柱体的表面积为S1=2π×32+2π×3×8=66π;根据球与圆柱的对称性,得它外接球的半径R满足(2R)2=62+82=100,所以外接球的表面积为S2=4πR2=100π;所以剩余几何体的表面积是S=S1+S2=66π+100π=166π.故选:D.【点评】本题考查了三视图的应用问题,也考查了利用三视图研究直观图的性质,球与圆柱的接切关系,球的表面积计算问题,是基础题目.2.D【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.3.C【考点】球内接多面体;球的体积和表面积.【专题】空间位置关系与距离.【分析】先画出图形,正四棱锥外接球的球心在它的底面的中心,然后根据勾股定理列方程,解出球的半径即可.【解答】解:如图,设正四棱锥底面的中心为E,过点A,B,C,D,S的球的球心为O,半径为R,则在直角三角形AEO中,AO=R,AE=BD=4,OE=SE﹣AO=8﹣R由AO2=AE2+OE2得R2=42+(8﹣R)2,解得R=5球半径R=5,故选C.【点评】本题主要考查球,球的内接体问题,考查计算能力和空间想象能力,属于中档题.4.D考点:球的体积和表面积.专题:计算题.分析:由AB=BC=CA=2,求得△ABC的外接圆半径为r,再由R2﹣(R)2=,求得球的半径,再用面积求解.解答:解:因为AB=BC=CA=2,所以△ABC的外接圆半径为r=.设球半径为R,则R2﹣(R)2=,所以R2=S=4πR2=.故选D点评:本题主要考查球的球面面积,涉及到截面圆圆心与球心的连垂直于截面,这是求得相关量的关键.5.C【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.6.C【考点】球的体积和表面积.【专题】空间位置关系与距离.【分析】将四面体补成长方体,通过求解长方体的对角线就是球的直径,然后求解外接球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以,,为三边的三角形作为底面,且以分别x,y,z长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=29,x2+z2=34,y2+z2=37,则有(2R)2=x2+y2+z2=50(R为球的半径),得R2=,所以球的表面积为S=4πR2=50π.故选:C.【点评】本题考查几何体的外接球的表面积的求法,割补法的应用,判断外接球的直径是长方体的对角线的长是解题的关键之一.7.B【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.【解答】解:三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,d==,它的外接球半径是外接球的表面积是4π()2=14π故选:B.【点评】本题考查球的表面积,考查学生空间想象能力,是基础题.8.B【考点】球内接多面体.【专题】计算题;方程思想;综合法;空间位置关系与距离.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.【解答】解:三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,d==,它的外接球半径是,外接球的表面积是4π()2=14π故选:B.【点评】本题考查球的表面积,考查学生空间想象能力,是基础题.9.D【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】设该球的半径为R,则AB=2R,2AC=AB=,故AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.【解答】解:设该球的半径为R,则AB=2R,2AC=AB=,∴AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,所以Rt△ABC面积S=×BC×AC=,又PO⊥平面ABC,且PO=R,四面体P﹣ABC的体积为,∴V P﹣ABC==,即R3=9,R3=3,所以:球的体积V球=×πR3=×π×3=4π.故选D.【点评】本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.10.B【考点】球的体积和表面积;球内接多面体.【专题】计算题;空间位置关系与距离.【分析】以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P﹣ABC外接球的体积.【解答】解:以PA、PB、PC为过同一顶点的三条棱,作长方体如图则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为2,∴球直径为2,半径R=,因此,三棱锥P﹣ABC外接球的体积是πR3=π×()3=4π故选:B.【点评】本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.11.D12.考点:球的体积和表面积;球内接多面体.专题:空间位置关系与距离.分析:求出BC,利用正弦定理可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.解答:解:∵AC=2,AB=1,∠BAC=120°,∴BC==,∴三角形ABC的外接圆半径为r,2r=,r=,∵SA⊥平面ABC,SA=2,由于三角形OSA为等腰三角形,则有该三棱锥的外接球的半径R═=,∴该三棱锥的外接球的表面积为S=4πR2=4π×()2=.故选:D.点评:本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.12.A考点:球内接多面体;棱柱、棱锥、棱台的体积.专题:压轴题.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.13.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S 在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.【解答】解:由题意画出几何体的图形如图由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.14.12π【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为: =.所以球O的表面积为4π×3=12π.故答案为:12π.【点评】本题考查球的表面积的求法,考查空间想象能力、计算能力.15.【考点】球的体积和表面积.【专题】计算题.【分析】正方体的内切球的直径为正方体的棱长,外接球的直径为正方体的对角线长,设出正方体的棱长,即可求出两个半径,求出两个球的面积之比.【解答】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,正方体的内切球与外接球的面积之比:==.故答案为:.【点评】本题是基础题,考查正方体的外接球与内切球的面积之比,求出外接球的半径,是解决本题的关键.16.16π【考点】球的体积和表面积.【专题】计算题;方程思想;数形结合法;立体几何.【分析】正四棱锥P﹣ABCD的五个顶点在同一球面上,则其外接球的球心在它的高PO1上,记为O,如图.求出AO1,OO1,解出球的半径,求出球的表面积.【解答】解:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,PO=AO=R,PO1=3,OO1=3﹣R,在Rt△AO1O中,AO1=AC=,由勾股定理R2=3+(3﹣R)2得R=2,∴球的表面积S=16π故答案为:16π.【点评】本题考查球的表面积,球的内接体问题,解答关键是确定出球心的位置,利用直角三角形列方程式求解球的半径.需具有良好空间形象能力、计算能力.17.36π【考点】球的体积和表面积.【专题】计算题.【分析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积.【解答】解:∵三棱锥S﹣ABC正棱锥,∴SB⊥AC(对棱互相垂直)∴MN⊥AC,又∵MN⊥AM而AM∩AC=A,∴MN⊥平面SAC即SB⊥平面SAC,∴∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,∴2R=2 ,∴R=3,∴S=4πR2=4π•(3)2=36π,故答案为:36π.【点评】本题是中档题,考查三棱锥的外接球的表面积,考查空间想象能力;三棱锥扩展为正方体,它的对角线长就是外接球的直径,是解决本题的关键.18.;。
几何体的外接球一、球的性质回顾如右图所示:O 为球心,O’为球O 的一个小圆的圆心,则此时OO’垂直于圆O’所在平面。
二、常见平面几何图形的外接圆外接圆半径(r )的求法1、三角形:(1)等边三角形:等边三角形也即正三角形,其满足正多边形的基本特征:五心合一,即内心、外心、重心、垂心、中心重合于一点。
内心:内切圆圆心,各角角平分线的交点;外心:外接圆圆心,各边中垂线的交点;重心:各边中线的交点;垂心:各边垂线的交点;中心:正多边形特有。
从而等边三角形的外接圆半径通常结合重心的性质进行求解:a a r 332332=⋅=(其中a 为等边三角形的边长) (2)直角三角形:结合直角三角形的性质:直角三角形斜边上的中线等于斜边的一半;可知:直角三角形的外接圆圆心位于斜边的中点处,求解过程比较简单,该处不做重点说明。
(3)等腰三角形:结合等腰三角形中三线合一的性质可知:等腰三角形的外接圆圆心位于底边的高线即中线上。
由图可得:22)2()(a r h r +-=思考:钝角三角形和锐角三角形外接圆圆心位置的区别。
(4)非特殊三角形:考察较少,若出现除以上三种情况以外的三角形在求解外接圆半径时可以参考使用正弦定理。
2、四边形常见具有外接圆的四边形有:正方形、矩形、等腰梯形,其中正方形与长方形半径求解方法类似,等腰梯形的外接圆圆心不在中学考察范围内,不用掌握。
外接圆圆心是在几何图形所在平面的一个到各个顶点距离相同的点;外接球球心则是空间中到几何体各个顶点距离相同的点。
结合上述所讲内容,外接圆圆心与外接球球心有许多相似之处以三角形为例,过三角形的外接圆圆心作三角形所在平面的一条垂线,不难得到:该垂线上的任意一点到该三角形三个顶点的距离恒定相等。
转化到几何体中,如正方体,其外接球球心位于体心位置,其与正方体任一表面正方形的中心连线均垂直于该正方形。
从而我们得出如下结论:几何体的外接球球心与底面外心的连线垂直于底面,也即球心落在过底面外心的垂线上,简单称之为:球心落在底面外心的正上方。
第二讲几何体的外接球和内切球问题※基础知识:1.常见平面图形:正方形,长方形,正三角形的外接圆和内切圆长方形(正方形)的外接圆半径为对角线长的一半,正方形的内切圆半径为边长的一半;正三角形的内切圆半径:]外接圆半径:-33a三角形面积:、芦正三角形三心合一,三线合一,心把高分为2:1两部分。
■■ I ■ I —2.球的概念:概念1:与定点距离等于或小于定长的点的集合,叫做球体,简称球•,定长叫球的半径;与定点距离等于定长的点的集合叫做球面• 一个球或球面用表示它的球心的字母表示,例如球o或L O .概念2:半圆以它的直径为旋转轴,旋转所成的曲面叫做球面,球面所围成的几何体.■ . X ' I -°叫做球体,简称球。
3.球的截面:用一平面:去截一个球0,设00,是平面〉的垂线段,O 为垂足,且00 =d,所得的截面是以球心在截面内的射影为圆心,以r二R2-d2为半径的一个圆,截面是一个圆面.球面被经过球心的平面截得的圆叫做大圆,被不经过球心的平面截得的圆叫做小圆4 .空间几何体外接球、内切球的概念:定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2 :若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。
长方体的外接球正方体的内切球5.外接球和内切球性质:(1)内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。
(2)正多面体的内切球和外接球的球心重合。
(3)正棱锥的内切球和外接球球心都在高线上,但不重合。
(4)基本方法:构造三角形利用相似比和勾股定理。
(5)体积分割是求内切球半径的通用做法。
____________________________________________________________________________________________________ / ! f、L 3" h J ” _;____________________________________________________________________________2 4 36.公式:球的表面积公式:S=4「:R ;球的体积公式: 7 =H R312,2 2长方体的外接球半径公式:R「a b C,其中a,b,c分别为长方体共顶点的3条棱2长2正棱锥的外接球半径公式:R = a,侧棱2=2R外h正棱锥,其中a为侧棱长,h为正棱锥的2h高正棱柱的外接球球心在两底面中心连线的中点处。
几何体外接球常用结论及方法(如何求几何体的外接球半径)几何体的外接球是一个常见的问题,其中有一些常用的结论和方法:1.对于三棱锥P-ABC,如果PA垂直于PB和PC,则该三棱锥的外接球半径2R可以用公式2R=PA²+PB²+PC²求得。
2.对于等边三角形,其外接圆的半径等于连长的1/3倍。
3.直角三角形的外接圆半径等于斜边的一半。
4.对于一般的三角形ABC,可以用正弦定理求得外接圆半径R,而内切圆的半径r可以用海龙公式S=Cr求得。
5.如果已知三棱锥P-ABC中PA=a,且△ABC的外接圆半径为r,则该三棱锥的外接球半径2R可以用公式2R=2r+a²求得。
6.正方体的外接球、内切球和棱切球的直径分别为正方体的体对角线长2R=3a、棱长2R=a和面对角线长2R=2√2a。
7.对于四面体P-ABC,如果∠APC=90°且∠ABC=90°,则该四面体的外接球直径为AC。
8.对于正三棱锥V-ABC,可以用射影定理求得其外接球半径,即VA²=h(2R-h)。
9.对于正四面体,其高h=2/3√2a,外接球半径和内切球半径均为a。
10.对于有内切球的多面体,其内切球半径可以用公式V=Sr/3求得。
11.如果三棱锥A-BCD中的面ABD和面BCD互相垂直且其外接圆半径分别为r1和r2,公共棱BD的长度为a,则该三棱锥的外接球半径2R可以用公式2R=2r1+2r2-a²/2√(r1²+r2²)求得。
的公共弦AD和BC的垂线,分别交于点E和F。
连接OE和OF,则OE=OF=R,且OE和OF分别是三棱锥P-ABC 和A-BCD的外接球的直径。
由于三棱锥P-ABC和A-BCD的外接球是重合的,因此它们的直径相等,即2R=2r1+2r2-a。
对于三棱锥P-ABC,已知面PAC与ABC所形成的二面角为θ(θ<θ≤90°),且已知ΔPAC和ΔABC的外接圆的半径分别为r1,r2,AC=a,则该棱锥的外接球半径R满足:left(2R+2\cos\theta\right)\left(R-r_1\right)\left(R-r_2\right)=2\left(r_1+r_2\right)^2-4\left(r_1-r_2\right)^2\cos^2\frac{\theta}{2}$这个公式可以通过对三棱锥P-ABC和A-BCD的共面直角投影,推导出它们的公共弦长等于$\sqrt{a^2+\left(r_1+r_2\right)^2-2r_1r_2\cos\theta}$。
高考数学立体几何体的外接球与内切球常见题型介绍在高考数学中,立体几何是一个重要的考点。
其中,经常涉及到求解立体几何体的外接球和内切球的问题。
本文将介绍几种常见的题型以及解题方法,帮助考生更好地理解和应对这类题目。
以下是具体内容。
外接球的题型题型1:求立体几何体的外接球的半径或直径这类题型要求求解一个给定立体几何体的外接球的半径或直径。
解题的关键是找到立体几何体的特性和几何关系。
解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。
2. 根据立体几何体的几何关系,得出外接球与立体几何体的关系。
3. 利用几何关系,建立方程。
4. 求解方程,得到外接球的半径或直径。
题型2:求多个立体几何体的共同外接球的半径或直径这类题型要求求解多个给定立体几何体的共同外接球的半径或直径。
解题的关键是找到多个立体几何体之间的共同特性和几何关系。
解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。
2. 找到多个立体几何体之间的共同特性和几何关系。
3. 根据几何关系,建立方程。
4. 求解方程,得到共同外接球的半径或直径。
内切球的题型题型1:求立体几何体的内切球的半径或直径这类题型要求求解一个给定立体几何体的内切球的半径或直径。
解题的关键是找到立体几何体的特性和几何关系。
解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。
2. 根据立体几何体的几何关系,得出内切球与立体几何体的关系。
3. 利用几何关系,建立方程。
4. 求解方程,得到内切球的半径或直径。
题型2:求多个立体几何体的共同内切球的半径或直径这类题型要求求解多个给定立体几何体的共同内切球的半径或直径。
解题的关键是找到多个立体几何体之间的共同特性和几何关系。
解题步骤:1. 确定给定立体几何体的特性,如边长、角度等。
2. 找到多个立体几何体之间的共同特性和几何关系。
3. 根据几何关系,建立方程。
4. 求解方程,得到共同内切球的半径或直径。
总结本文介绍了高考数学立体几何体的外接球和内切球常见题型,并给出了解题的步骤和方法。
几何体外接球常用结论及方法在讨论几何体外接球的常用结论和方法之前,我们需要先了解一些几何体的基本概念。
1.点:没有尺寸的几何体,只有位置。
2.线段:两个端点间的直线部分,有长度。
3.多边形:由多个线段边界的封闭几何体,如三角形、四边形、五边形等。
4.圆:由一个固定点到平面内所有点的距离都相等的几何体。
5.球体:由一个固定点到空间内所有点的距离都相等的几何体。
现在我们来讨论一些几何体外接球的常用结论和方法。
1.三角形外接球的性质:-三角形外接球的圆心是三角形三边中垂直平分线的交点。
-三角形外接球的半径等于三角形三边的中垂线之间的距离的一半。
2.四边形外接球的性质:-平面四边形只有当它是一个正方形或是一个菱形时,才存在外接球。
-正方形的外接球的圆心是正方形对角线的交点。
-菱形的外接球的圆心是菱形的对角线的交点。
3.圆柱体外接球的性质:-圆柱体的外接球与它的底面圆和侧面矩形的外接圆相切。
-圆柱体外接球的半径等于底面圆的半径加上圆柱体的高。
4.立方体外接球的性质:-立方体外接球的半径等于立方体对角线的一半。
以上是一些常见几何体外接球的性质和方法,但不限于这些。
根据具体的几何体形状和条件,还可以使用其他方法来确定其外接球的半径和圆心。
确定几何体外接球的常用方法包括:1.基于几何体的性质和定义,使用相关定理和公式来计算外接球的半径和圆心。
2.使用向量和解析几何的方法,通过计算几何体的边界点的坐标来确定外接球的参数。
3.使用计算机辅助设计和计算几何软件来自动化计算几何体外接球的参数。
需要注意的是,有些几何体可能不存在外接球,如非正方形的平面四边形和非菱形的平面四边形等。
此外,有时外接球可能无法唯一确定,需要根据具体的条件和定义来确定合适的参数。
综上所述,讨论几何体外接球的常用结论和方法需要基于几何体的性质和定义,使用定理和公式来计算外接球的参数,或使用向量和解析几何的方法来确定其位置和尺寸。
高中数学空间几何体的外接球专题(附经典例题与解析)球的性质回顾:球心O和小圆O'的连线OO'垂直于圆O'所在平面。
外接球半径的求法是利用直角三角形的勾股定理,在Rt△OAO'中,OA^2=OO'^2+O'A^2.常见平面几何图形的外接圆半径(r)的求法:1.三角形:1) 等边三角形:内心、外心、重心、垂心、中心重合于一点。
外接圆半径通常结合重心的性质(2:1)进行求解:r=a*(2/3)^(1/2) (其中a为等边三角形的边长)。
2) 直角三角形:外接圆圆心位于斜边的中点处,r=斜边/2.3) 等腰三角形:外接圆圆心位于底边的高线(即中线)上。
r=a/(2sin(A/2)) (其中A为顶角)。
4) 非特殊三角形:可使用正弦定理求解,XXX)。
2.四边形:常见具有外接圆的四边形有正方形、矩形、等腰梯形。
其中正方形与长方形半径求解方法转化为直角三角形。
几何体的外接球球心与底面外心的连线垂直于底面,即球心落在过底面外心的垂线上。
练:2.半径为2的球的内接三棱锥P-ABC,PA=PB=PC=2,AB=AC=BC,则三棱锥的高为3.1.三棱柱ABC-A1B1C1中,底面ABC是边长为2的正三角形,侧棱AA1垂直于底面ABC,且AA1=4,则此三棱柱外接球的表面积为8π。
本文介绍了三棱锥的外接球的求解方法,其中包括侧棱垂直底面的三棱锥、正三棱锥和侧面垂直于底面的三棱锥三种类型。
对于侧棱垂直底面的三棱锥,可以采用补形法或通过确定底面三角形的外心来求解外接球的半径。
补形法是指将该几何体转化为原三棱柱的外接球,从而求出外接球的半径。
而通过确定底面三角形的外心,则可以通过勾股定理求解外接球的半径。
对于正三棱锥,可以通过底面正三角形的边长来求解内切球的半径,然后再利用勾股定理求解外接球的半径。
对于侧面垂直于底面的三棱锥,则需要确定△ABC和△PAB的外心分别为O’和O’’,并通过勾股定理求解OO’的长度,从而求解外接球的半径。
第34讲空间几何体外接球问题10种题型总结【题型目录】题型一:长方体正方体外接球(体对角线即为外接球的直径,()22222c b a R ++=)题型二:能在正方体(长方体)内还原的立方体,即长方体切割体的外接球(体对角线即为外接球的直径,()22222c b a R ++=)题型三:圆柱的外接球(2222r h R +⎪⎭⎫ ⎝⎛=,其中r 为底面圆的半径,h 为圆柱的高)题型四:直棱柱的外接球(2222r h R +⎪⎭⎫ ⎝⎛=,其中r 为底面外接圆的半径,h 为棱柱的高)题型五:侧棱垂直于底面的棱锥的外接球(2222r P A R +⎪⎭⎫ ⎝⎛=,其中r 为底面外接圆的半径,P A 为棱锥垂直于底面的棱)题型六:圆锥的外接球题型七:棱台圆台的外接球题型八:正棱锥的外接球题型九:侧面垂直于底面外接球(找球心,球心在每个面中垂线的交点处)题型十:多面体外接球(找球心,球心在每个面中垂线的交点处)【典型例题】题型一:长方体正方体外接球(体对角线即为外接球的直径,()22222c b a R ++=)【例1】若一个正方体的顶点都在球面上,它的棱长为1,则这个球的表面积是()A .π2B .3π4C .3πD .12π【例2】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为()A .9π2B .C .9πD .27π【题型专练】1.长方体的过一个顶点的三条棱长分别是2,4,4,则该长方体外接球的表面积为()A .9πB .18πC .36πD .48π2.已知球内接正方体的表面积为S ,那么球体积等于_____________.题型二:能在正方体(长方体)内还原的立方体,即长方体切割体的外接球(体对角线即为外接球的直径,()22222c b a R ++=)设长方体相邻的三条边棱长分别为a ,b ,c.图1墙角体图1鳖臑图3挖墙角体图4对角线相等的四面体图1侧面(侧棱)两两垂直,图2所有面均为直角三角形,(线面垂直+线线垂直);图3俯视图是一矩形,AC 为虚线,主视图和左视图为直角三角形,图4若是长方体则为对棱相等的四面体,若是正方体则是正四面体(所有棱长均相等)图4中(长方体),2222222222222222222a b BC AD BC AB CD b c AC a b c R AC BD c a AB ααβγβγ⎧+===⎫⎪++⎪=⇒+==⇒++=⇒=⎬⎨⎪⎪=+==⎭⎩abc abc abc V BCD A 31461=⨯-=-.【例1】_______________.【例2】已知三棱锥-P ABC 的四个顶点在球O 的球面上,PA PB PC ==,ABC 是边长为2的正三角形,E F ,分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()AB .6πC .24πD.【例3】表面积为)A .B .12πC .8πD .【例4】设,,,A B C D 是半径为2的球面上的四个不同点,且满足0AB AC ⋅= ,0=⋅AD AC ,0AD AB ⋅=,用1S 、2S 、3S 分别表示ABC 、ACD 、ABD △的面积,则123S S S ++的最大值是______.【例5】我国古典数学著作《九章算术》中记载,四个面都为直角三角形的四面体称之为鳖臑.现有一个“鳖臑”,PA ⊥底面ABC ,AC BC ⊥,且3PA =,2BC =,AC =则该四面体的外接球的表面积为__________.【例6】如图,蹴鞠,又名“蹋鞠”、“蹴球”、“蹴圆”、“筑球”、“踢圆”等,“跳”有用脚蹴、蹋、踢的含义,“鞠”最早系皮革外包、内实米糠的球.因而“蹴鞠”就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠己作为非物质文化遗产经国务院批准列入第一批国家级非物质文化遗产名录.若将“鞠”的表面视为光滑的球面,已知某“鞠”表面上的四个点A ,B ,C ,D 满足AB CD ==,BD AC ==,5cm AD BC ==,则该“鞠”的表面积为____________.【题型专练】1.四面体ABCD 的每个顶点都在球O 的球面上,,,AB AC AD两两垂直,且AB =2AC =,3AD =,则球O 的表面积为________.2.据《九章算术》中记载,“阳马”是以矩形为底面,一棱与底面垂直的四棱锥.现有一个“阳马”,PA ⊥底面ABCD ,底面ABCD 是矩形,且543PA AB BC ===,,,则这个“阳马”的外接球表面积为()A .5πB .200πC .50πD .100π3.正四面体S ABC -内接于一个半径为R 的球,则该正四面体的棱长与这个球的半径的比值为()AB C D4.在四面体ABCD 中,已知点E ,F 分别为棱AB ,CD 中点,且EF AB ⊥,EF CD ⊥,若2AB CD ==,2EF =,则该四面体外接球半径为__________.5.在半径为R 的球面上有A ,B ,C ,D 四点,且直线,,AB AC AD 两两垂直,若,ABC ACD ADB △△,△的面积之和为6,则此球体积的最小值为______________.6.已知三棱锥A BCD -中,⊥AB 面902BCD BCD AB BC CD ∠====,,,则三棱锥的外接球的体积为___________.7.四面体A ﹣BCD 中,AB =CD =5,AC BD ==AD BC ==A ﹣BCD 外接球的表面积为_____.题型三:圆柱的外接球(2222r h R +⎪⎭⎫ ⎝⎛=,其中r 为底面圆的半径,h 为圆柱的高)【例1】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π4【题型专练】1.阿基米德是伟大的古希腊数学家,他和高斯、牛顿并列为世界三大数学家,他一生最为满意的一个数学发现就是“圆柱容球”定理,即圆柱容器里放了一个球,该球顶天立地,四周碰边(即球与圆柱形容器的底面和侧面都相切),在该图形中,球的体积是圆柱体积的23,并且球的表面积也是圆柱表面积的23,则该圆柱的体积与它的外接球的体积之比为___________.题型四:直棱柱的外接球(2222r h R +⎪⎭⎫ ⎝⎛=,其中r 为底面外接圆的半径,h 为棱柱的高)【例1】设直三棱柱111ABC A B C -的所有顶点都在一个表面积是40π的球面上,且1,120AB AC AA BAC ∠=== ,则该直三棱柱的体积是()A .BC .D【例2】在直三棱柱111ABC A B C -中,2AB =,AC =BC =14AA =,则该直三棱柱的外接球的表面积为_________.【例3】若一个底面边长为2的正六棱柱的所有定点都在一个球的面上,则此球的体积是___________.【题型专练】1.如图,在直三棱柱111ABC A B C -中,12,90AB BC AA ABC ===∠=︒,则此直三棱柱的外接球的体积是___________.2.若三棱柱111ABCA B C ﹣的底面是以AB 为斜边的直角三角形,1AA ⊥平面ABC ,AB =14AA =,则三棱锥1A ABC -的外接球的表面积为_____.3.已知直三棱柱111ABC A B C -中,12,6BB BC BAC π∠===,则该三棱柱外接球的体积为__________.4.已知在直三棱柱111ABC A B C -中,11AB AA ==,2BC =,AB BC ⊥,则点1A 到平面11AB C 的距离为______;若三棱锥111A A B C -的顶点都在同一个球面上,则该球体积为______.题型五:侧棱垂直于底面的棱锥的外接球(2222r P A R +⎪⎭⎫ ⎝⎛=,其中r 为底面外接圆的半径,P A 为棱锥垂直于底面的棱)【例1】已知A ,B ,C ,D 在球O 的表面上,ABC AD ⊥平面ABC ,AD=2,则球O 的表面积为()A .πB .2πC .4πD .8π【例2】已知在三棱锥P -ABC 中,PA =4,BC =PB =PC =3,PA ⊥平面PBC ,则三棱锥P -ABC 的外接球的表面积是()A .40πB .43πC .45πD .48π【例3】三棱锥-P ABC 中,PA ⊥平面ABC ,ABC 为直角三角形,AB BC ⊥,1AB BC ==,2PA =,则三棱锥-P ABC 的外接球的表面积为()A .2πB .3πC .4πD .6π【题型专练】1.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,AB DC ,AD AB ⊥,2DC =,1AD AB ==,直线PA 与平面ABCD 成45︒角.设四面体PBCD 外接球的圆心为O ,则球的体积为__________.2.在三棱锥A BCD -中,BD ⊥平面ADC ,2BD =,AB =AC BC ==,则三棱锥A BCD -的外接球的体积为__________.3.已知A ,B ,C ,D 是同一球面上的四个点,其中ABC 是正三角形,AD ⊥平面ABC ,2AD =,3AB =,则该球的表面积为______.4.我国古典数学著作《九章算术》中记载,四个面都为直角三角形的四面体称之为鳖臑.现有一个“鳖臑”,PA ⊥底面ABC ,AC BC ⊥,且3PA =,2BC =,AC =__________.题型六:圆锥的外接球【例1】,侧面积,则这个圆锥的外接球体积为______________.【例2】已知圆锥的底面半径为R ,高为3R ,它的内接圆柱的底面半径为34R ,该圆柱的全面积为()A .22R πB .294RπC .283RπD .252Rπ【题型专练】1.两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A .3πB .4πC .9πD .12π题型七:棱台圆台的外接球【例1】已知正三棱台的高为1,上、下底面边长分别为面积为()A .100πB .128πC .144πD .192π【例2】已知一圆台高为7,下底面半径长4,此圆台外接球的表面积为100π,则此圆台的体积为()A .84πB .86πC .2593πD .2623π【题型专练】1.我国古代数学名著《九章算术》中将底面为矩形的棱台称为“刍童”.已知侧棱都相等的四棱锥P ABCD -底面为矩形,且3AB =,BC =2,用一个与底面平行的平面截该四棱锥,截得一个高为1的刍童,该刍童的顶点都在同一球面上,则该球体的表面积为().A .16πB .18πC .20πD .25π2.在正四棱台1111ABCD A B C D -中,1124A B AB ==,12AA =,则该棱台外接球的半径为()A .B .3C D .3.正四棱台高为2,上下底边长分别为,所有顶点在同一球面上,则球的表面积是_____.题型八:正棱锥的外接球【例1】2,其各顶点都在同一球面上.则该球的表面积为__________________.【例2】已知正四棱锥P ABCD -的底面是边长为2的正方形,其内切球的体积为π6,则该正四棱锥的高为___________,外接球的表面积为___________.【例3】点都在同一球面上,则该球的表面积的最小值为_____________.【题型专练】1.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A .814πB .16πC .9πD .274π2.正四面体S ABC -内接于一个半径为R 的球,则该正四面体的棱长与这个球的半径的比值为()AB .3C .3D 3.已知正四棱锥的侧棱长l 为3,其各顶点都在同一球面上,若该球的体积为36π,则该正四棱锥的体积是()A .274B .814C .18D .274.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]题型九:侧面垂直于底面外接球(找球心,球心在每个面中垂线的交点处)【例1】已知空间四边形ABCD 的各边长及对角线BD 的长度均为6,平面ABD ⊥平面CBD ,则空间四边形ABCD 外接球的表面积为______.【例2】)矩形ABCD 中,4AB =,3BC =,沿AC 将ABCD 矩形折起,使面BAC ⊥面DAC ,则四面体A BCD-的外接球的体积为()A .1256πB .1259πC .12512πD .1253π【例3】已知在三棱锥中,S ABC -中,BA BC ⊥,2BA BC ==,SA SC ==B AC S --的大小为5π6,则三棱锥S ABC -的外接球的表面积为()A .56π3B .58π3C .105π4D .124π9【题型专练】1.在三棱锥A BCD -中,平面⊥ABC 平面BCD ,ABC 与BCD △都是边长为6的正三角形,则该三棱锥的外接球的体积为________.2.如图,在三棱锥-P ABC 中,PA ⊥平面ABC ,AB BC ⊥,2PA AB BC ===,AM PC ⊥,M 为垂足,则下列命题正确的是()A .三棱锥M ABC -的外接球的表面积为8π.B .三棱锥M ABC -的外接球的体积为42πC .三棱锥P MAB -的外接球的体积为43πD .三棱锥P MAB -的外接球的表面积为16π题型十:多面体外接球(找球心,球心在每个面中垂线的交点处)【例1】(多选题)半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,它是由正方体的各条棱的中点连接形成的几何体.它由八个正三角形和六个正方形围成(如图所示),若它的棱长为2,则下列说法错误的是()A .该二十四等边体的外接球的表面积为16πB .该半正多面体的顶点数V 、面数F 、棱数E ,满足关系式2V F E +-=C .直线AH 与PN 的夹角为60°D .QH ⊥平面ABE【例2】(多选题)半如图,已知正方体的棱长为1,1O ,2O 分别为正方体中上、下底面的中心,3O ,4O ,5O ,6O 分别为四个侧面的中心,由这六个中心构成一个八面体的顶点,则()A .直线13O O 与直线24O O 所成角为60︒B .二面角1345O O O O --3C 3D .这个八面体外接球的体积为π6【例3】(多选题)半截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点处的小棱锥所得的多面体.如图,将棱长为3的正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为1的截角四面体,则()A .DE ⊥平面ABCB .直线DE 与GH 所成的角为60°C .该截角四面体的表面积为3D 224【题型专练】1.如图,在几何体ABCDEF 中,底面ABCD 是正方形,EF 平面,4ABCD EF =,其余棱长都为2,则这个几何体的外接球的体积为()A 82π3B .16π3C .43πD .32π32.勒洛四面体是一个非常神奇的“四面体”,它能在两个平行平面间自由转动,并且始终保持与两平面都接触,因此它能像球一样来回滚动(如图甲),利用这一原理,科技人员发明了转子发动机.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体如图乙所示,若正四面体ABCD的棱长为2,则下列说法正确的是()A.勒洛四面体ABCD被平面ABC截得的截面面积是(8πB.勒洛四面体ABCD内切球的半径是4C.勒洛四面体的截面面积的最大值为2π-D.勒洛四面体能够容纳的最大球的半径为2-2。
几何体外接球的几种类型几何体外接球是指可以完全包围一个几何体的球。
在三维空间中,不同的几何体有不同类型的外接球。
本文将介绍一些常见的几何体外接球类型。
一、正方体外接球正方体是一种六个面都相等且相邻面都垂直的立方体,其外接球为正方形。
正方形的对角线长度为边长的根号2倍,因此正方体外接球半径为边长的根号2除以2。
二、长方体外接球长方体是一种六个面都为矩形且相邻面都垂直的立方体,其外接球为椭圆形。
椭圆形有两个不同半轴长度a和b,因此长方体外接球半径为(a²+b²)的平方根除以2。
三、圆柱体外接球圆柱体是由一个矩形沿着一条边旋转而成的几何图形,其外接球为一个圆盘。
圆盘半径等于底面半径r加上高h,即r+h。
四、锥形外接球锥形是由一个平面图形沿着一条线段旋转而成的几何图形,其外接球为一个尖锥。
尖锥半径等于底面半径r加上高h的平方根,即(r²+h²)的平方根。
五、球体外接球球体是一种几何体,其外接球为自身。
球体半径等于外接球半径。
六、四棱锥外接球四棱锥是由一个正方形底面和四个三角形侧面组成的几何图形,其外接球为一个正四面体。
正四面体边长等于底面边长a,因此四棱锥外接球半径为a除以根号3。
七、八面体外接球八面体是由八个正三角形组成的几何图形,其外接球为一个正八面体。
正八面体边长等于正方形对角线长度a,因此八面体外接球半径为a除以根号2。
总结:不同类型的几何体有不同类型的外接球。
通过计算几何图形各个参数可以求得其对应的外接球半径。
掌握这些知识可以帮助我们更好地理解空间中各种几何图形之间的关系,并在实际生活中应用到设计、建造等领域中。
空间几何体的外接球与内切球问题一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).2.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法).四、八大模型类型一柱体背景的模型题型1、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1(1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是(C)A.π16B.π20C.π24D.π32解:162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是π9解:933342=++=R ,ππ942==R S ;(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是.π36解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1,取BC AB ,中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD ,∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为(D )π11.A π7.B π310.C π340.D 解:在ABC ∆中,7120cos 2222=⋅⋅-+= BC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r ,∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是解:由已知得三条侧棱两两垂直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S ,(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为解:3)2(2222=++=c b a R ,432=R ,23=R πππ2383334343=⋅==R V 球,题型2、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =)第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222za c y cb x b a ⇒2)2(2222222z y xc b a R ++=++=,补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-.第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为.解:对棱相等,补形为长方体,如图2-1,设长宽高分别为c b a ,,,110493625)(2222=++=++c b a ,55222=++c b a ,5542=R ,π55=S (2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为.π229解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S(3)正四面体的各条棱长都为2,则该正面体外接球的体积为解:正四面体对棱相等的模式,放入正方体中,32=R ,23=R ,ππ2383334=⋅=V (4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是.解:如解答图,将正四面体放入正方体中,截面为1PCO ∆,面积是2.题型3、汉堡模型(直棱柱的外接球、圆柱的外接球)题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ;第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高);第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(h r R +=,解出R 例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为解:设正六边形边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则21=a ,正六棱柱的底面积为833)21(4362=⋅⋅=S ,89833===h Sh V 柱,∴3=h ,4)3(14222=+=R 也可121()23(222=+=R ),1=R ,球的体积为34π=球V ;(2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于.解:32=BC ,4120sin 322==r ,2=r ,5=R ,π20=S ;(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为.π16解:折叠型,法一:EAB ∆的外接圆半径为31=r ,11=OO ,231=+=R ;法二:231=M O ,21322==D O r ,4413432=+=R ,2=R ,π16=表S ;法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱的轴截面的对角线长来求球的直径:162)32()2(222=+=R ,π16=表S ;(4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为.π3160解:法一:282164236162=⋅⋅⋅-+=BC ,72=BC ,37423722==r ,372=r ,3404328)2(2122=+=+=AA r R ,π3160=表S ;法二:求圆柱的轴截面的对角线长得球直径,此略.类型二锥体背景的模型题型4、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)1.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=;第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R .例4(1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为.解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,72=R ,ππ4942==R S ;(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为解:方法一:找球心的位置,易知1=r ,1=h ,r h =,故球心在正方形的中心ABCD 处,1=R ,34π=V 方法二:大圆是轴截面所的外接圆,即大圆是SAC ∆的外接圆,此处特殊,SAC Rt ∆的斜边是球半径,22=R ,1=R ,34π=V .(3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是()A.433B.33C.43D.123解:高1==R h ,底面外接圆的半径为1=R ,直径为22=R ,设底面边长为a ,则260sin 2==a R ,3=a ,433432==a S ,三棱锥的体积为4331==Sh V ;(4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为 60,则该三棱锥外接球的体积为()A.πB.3π C.4πD.43π解:选D,由线面角的知识,得ABC ∆的顶点C B A ,,在以23=r 为半径的圆上,在圆锥中求解,1=R ;(5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为()AA.6B.6C.3D.2解:36)33(12221=-=-=r R OO ,362=h ,62362433131=⋅⋅==Sh V 球题型5、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=;第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点.解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高);第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径.例5一个几何体的三视图如图所示,则该几何体外接球的表面积为()A.π3B.π2C.316πD.以上都不对解:选C,法一:(勾股定理)利用球心的位置求球半径,球心在圆锥的高线上,221)3(R R =+-,32=R ,ππ31642==R S ;法二:(大圆法求外接球直径)如图,球心在圆锥的高线上,故圆锥的轴截面三角形PMN 的外接圆是大圆,于是3460sin 22==R ,下略;类型三二面角背景的模型题型6、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ;第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,;第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为.解:如图,3460sin 22221=== r r ,3221==r r ,312=H O ,35343121222=+=+=r H O R ,315=R ;法二:312=H O ,311=H O ,1=AH ,352121222=++==O O H O AH AO R ,315=R ;(2)在直角梯形ABCD 中,CD AB //, 90=∠A ,45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为π4解:如图,易知球心在BC 的中点处,π4=表S ;(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为π6解:如图,法一:33)2cos(cos 211-=+∠=∠πO OO B SO ,33sin 21=∠O OO ,36cos 21=∠O OO ,22cos 21211=∠=O OO O O OO ,232112=+=R ,ππ642==R S ;法二:延长1BO 到D 使111r BO DO ==,由余弦定理得6=SB ,2=SD ,大圆直径为62==SB R ;(4)在边长为32的菱形ABCD 中,60=∠BAD ,沿对角线BD 折成二面角C BD A --为120的四面体ABCD ,则此四面体的外接球表面积为π28解:如图,取BD 的中点M ,ABD ∆和CBD ∆的外接圆半径为221==r r ,ABD ∆和CBD ∆的外心21,O O 到弦BD 的距离(弦心距)为121==d d ,法一:四边形21MO OO 的外接圆直径2=OM ,7=R ,π28=S ;法二:31=OO ,7=R ;法三:作出CBD ∆的外接圆直径CE ,则3==CM AM ,4=CE ,1=ME ,7=AE ,33=AC ,72147227167cos -=⋅⋅-+=∠AEC ,7233sin =∠AEC ,72723333sin 2==∠=AEC AC R ,7=R ;(5)在四棱锥ABCD 中,120=∠BDA ,150=∠BDC ,2==BD AD ,3=CD ,二面角C BD A --的平面角的大小为120,则此四面体的外接球的体积为解:如图,过两小圆圆心作相应小圆所在平面的垂线确定球心,32=AB ,22=r ,弦心距32=M O ,13=BC ,131=r ,弦心距321=M O ,∴2121=O O ,72120sin 21==O O OM ,法一:∴292222=+==OM MD OD R ,29=R ,∴329116π=球V ;法二:2522222=-=M O OM OO ,∴29222222=+==OO r OD R ,29=R ,∴329116π=球V .题型7、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型题设:如图7,90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为()A.π12125B.π9125C.π6125D.π3125解:(1)52==AC R ,25=R ,6125812534343πππ=⋅==R V ,选C(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCD A -的外接球的表面积为.解:BD 的中点是球心O ,132==BD R ,ππ1342==R S .类型四多面体的内切球问题模型题型8、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径.第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高;第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高;第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒rS S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABCO ABCP S S S S V r -----+++=3例8(1)棱长为a 的正四面体的内切球表面积是62a π,解:设正四面体内切球的半径为r ,将正四面体放入棱长为2a的正方体中(即补形为正方体),如图,则2622313133a a V V ABCP =⋅==-正方体,又 r a r a Sr V ABC P 223343314314=⋅⋅⋅=⋅=-,∴263332a r a =,62a r =,∴内切球的表面积为6422a r S ππ==表(注:还有别的方法,此略)(2)正四棱锥ABCD S -的底面边长为2,侧棱长为3,则其内切球的半径为2217+解:如图,正四棱锥ABCD S -的高7=h ,正四棱锥ABCD S -的体积为374=-ABCD S V 侧面斜高221=h ,正四棱锥ABCD S -的表面积为284+=表S ,正四棱锥ABCD S -的体积为r r S V ABCD S ⋅+==-328431表,∴3743284=⋅+r ,771427)122(7221728474-=-=+=+=r (3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则该三棱锥的内切球半径为47332++解:如图,3=∆ABC S ,2==∆∆ACP ABP S S ,7=∆BCP S ,743++=表S ,三棱锥ABC P -的体积为332=-ABC P V ,另一表达体积的方式是r r S V ABC P ⋅++==-347331表,∴3323473=⋅++r ,∴47332++=r巩固练习:1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为()A.3B.6C.36D.9解:【A】616164)2(2=++=R ,3=R 【三棱锥有一侧棱垂直于底面,且底面是直角三角形】【共两种】2.三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于.332π解:260sin 32== r ,16124)2(2=+=R ,42=R ,2=R ,外接球体积332834ππ=⋅【外心法(加中垂线)找球心;正弦定理求球小圆半径】3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于.解:ABC ∆外接圆的半径为,三棱锥ABC S -的直径为3460sin 22== R ,外接球半径32=R ,或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V ,4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为.解:PAC ∆的外接圆是大圆,3460sin 22== R ,32=R ,5.三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为.解:973324992cos 222=⋅⋅-+=⋅-+=∠PC PA AC PC PA P ,8121697(1sin 22⋅=-=∠P ,924sin =∠P ,42922992422===R ,829=R 6.三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABCP -外接球的半径为.解:AC 是公共的斜边,AC 的中点是球心O ,球半径为1=R。