Hspice 第三、四章
- 格式:ppt
- 大小:1.33 MB
- 文档页数:31
Hspice应⽤讲解讲解Hspice应⽤讲解Hspice是⼀种通⽤电路分析程序,可⽤来进⾏集成电路和电⼦线路的分析模拟。
它可以⽤来分析电路的⾮线性直流特性,线性交流⼩信号特性,⾮线性瞬态特性,温度特性等。
其中,直流分析(.DC)不光可进⾏直流转移特性分析,还可进⾏直流⼯作点(.OP),直流⼩信号传输特性(.TF),直流⼩信号灵敏度(.SENS)分析;在进⾏交流分析(.AC)的同时还可进⾏噪声特性(.NOISE)和失真特性(.DISTO)分析;在进⾏瞬态分析(.TRAN)的同时还可进⾏傅⽴叶(.FOUR)分析;进⾏温度特性分析(.TEMP)以求得电路的温度特性。
在进⾏交流分析和瞬态分析前先进⾏直流分析,以决定其⾮线性组件的线性化⼩信号模型和其初始条件。
Hspice输⼊描述⽂件格式:Hspice的输⼊描述⽂件格式是⼀种⾃由格式,其输Array⼊的第⼀条语句必须是标题语句,且不能省略;最后⼀条语句必须是结束语句(.END),其余语句的顺序是任意的。
在输⼊描述⽂件的任何地⽅都可插⼊注释语句(在语句前加“*”或“$”),程序只对注释语句进⾏原样打印⽽不进⾏任何处理。
组件语句是说明该组件的拓扑关系和组件值的。
每个组件给予⼀个组件名,组件名的第⼀个字母说明该组件的类型,Hspice并对各种类型的组件所对应的英⽂字母作了规定,组件名不能重复。
组件的节点号可以⽤⼀正整数表⽰,也可以⽤⽹点名表⽰。
模型语句是说明该组件的模型参数的。
在模型语句中定义⼀组组件模型参数并赋予⼀个唯⼀的模型名,在组件语句中即可引⽤此模型名,表明此组件具有该组模型参数值。
⼦电路是⽤⼀组组件语句来定义,程序会⾃动将这组组件插⼊到⼦电路被调⽤的地⽅,其⼤⼩和复杂性没有限制,并允许其包含其它⼦电路。
在电路中不能包括短路的电压源和电感,开路的电流源和电容,电路中的每个节点都不能悬空。
控制语句是控制程序的运⾏和规定分析及输出的内容。
如温度语句,⼯作点分析语句,交流分析语句,瞬态分析语句,打印语句,绘图语句和可选项语句等。
南京拓科科技有限公司HSPICE使用流程HSPICE 使用流程HPICE软件主要用于模拟电路的仿真。
模拟电路仿真工具是以电路理论、数值计算方法和计算机技术为基础实现的,由于模拟电路在性能上的复杂性和电路结构上的多样性,对仿真工具的精度、可靠性、收敛性以及速度等都有相当高的要求。
HSPICE程序由于收敛性好,适于做系统及电路仿真,又有工作站版和微机版本,在国内外的用户十分广泛。
一、HSPICE可模拟的内容1.直流分析:包括非线性电路的直流分析①电路的直流工作点:分析时电路中的电感全部短路,电容全部开路,得到电路的每一节点的电流和电压(相对参考点)值。
②直流小信号传输值:传输函数的直流小信号值为直流小信号工作下的输出变量和输入变量之比值,包括电路的输入电阻和输出电阻。
③直流转移曲线:HSPICE可在用户指定的范围内,逐步改变指定的独立电压或电流源,对每一个电源值的变化,都得到储存的输出变量。
④灵敏度分析:求出指定输出变量对于电路参数(包括电路中所有的元件,器件参数,直流电源的输入电平)的直流小信号灵敏度。
2.交流小信号分析:将交流输出变量作为频率的函数计算出来。
先计算电路的直流工作点,决定电路中所有非线性器件的线性化小信号模型参数,然后在用户所指定的频率范围内对该线性化电路进行分析。
①频域分析:在用户规定的频率范围内完成电路的交流分析。
②噪声分析:HSPICE可计算每个频率点上总的输出噪声电平及其等效输入噪声电平。
③失真分析:计算电路交流小信号工作下电路的失真特性,分析时是在输入端加有一个或两个频率的信号,在用户给定的输出负载电阻时,求出在该负载上的输出失真功率。
3.瞬态分析①瞬态响应:是从时间为零开始,到用户规定的时间范围内进行电路南京拓科科技有限公司HSPICE使用流程的瞬态特性分析。
②傅立叶分析:可以对输出波形进行傅立叶分析,得到在用户指定的基频及时间间隔范围的傅立叶系数。
4.电路的温度特性分析:HSPICE在用户未说明时,是在27℃的标称温度下进行各种模拟的。
Hsipce使⽤⽬录第1章Hspice简介...............................................................................................................- 1 - 第2章Hspice仿真准备.. (2)2.1 仿真以及相关⼯具准备 (2)2.2 ⼯具简介 (2)2.3 仿真所需⽂件 (2)2.4 ⽹表导出 (3)2.4.1 在cadence⾥导出⽹表⽂件 (3)2.4.2 在Hierux⾥导出⽹表 (4)2.4.3 Cadence⽹表修改 (5)2.4.4 Heirux⽹表修改 (7)2.4.5 器件模型的修改 (8)第3章仿真操作及注意事项 (9)3.1 编写.SP⽂件 (9)3.1.1 标题(TITLE) (9)3.1.2 电路的分析类型描述语句 (9)3.1.3 注释(COMMENTS) (9)3.1.4 结束(.END) (9)3.2 Hspice仿真操作 (10)3.3 注意事项 (13)3.3.1 ⽤cadence导出⽹表 (13)3.3.2 会查看Hspice中的错误 (13)第1章Hspice简介Hspice线路模拟软件在早期是美国Meta-Sofeware公司根据Berkeley SPICE2G.6、SPICE3以及其他线路模拟软件所发展的⼯业级线路分析软件。
Hspice在基本功能部分和其他SPICE软件相似,可应⽤于下列领域的电⼦研发,即稳态(直流分析)、暂态(时间分析)及频率(交流分析)等领域。
由于Meta-Sofeware公司在集成电路研制技术持续进步与元件尺⼨缩⼩下,对于MOSFET模拟的适⽤性与精确性的不断耕耘,以及该公司对元件与电路最佳化、蒙特卡罗与最坏情况分析等进阶级的模拟应⽤亦有⾃我突破,使得Hspice逐渐脱颖⽽出,超过PSPICE、ls-SPICE等软件,成为在集成电路设计上最普遍及最佳的晶体管层次线路模拟软件。
复旦大学
硕士学位论文
LDO线性稳压器嵌入式IP设计
姓名:刘轶
申请学位级别:硕士
专业:电子与通讯工程
指导教师:洪志良
20070507
表5一l中数据形成一个横轴为电源电压,纵轴为输出电压的曲线图,如图5—1所示。
留5—1等待模式下输出电压与屯源屯压的关系
从表5一l和图5一l中可以看出,随着负载电流的增加输出电压下降;
LDOIP工作在等待模式下驱动电流小于40mA时,输出电压都在1.7V—1.9V
范围内。
因此,LDOIP在等待模式下负载电流为lmA,输出电压满足电路设计指标。
5.1.2工作模式的输出电压
如同等待模式下测试一样,在常温下取100个测试芯片设胃不同电源电压和负载电流进行测试。
电源电压范围在2V ̄5.8V内,每隔O.2V测试~次负载电流分别为0mA、10mA、20mA、30mA、40mA、50mA、60mA时LDOIP的输出电压,取这100个芯片相同电源电压和负载电流条件下的输出电压平均值,得到表5—2中数据。
图5—2~r作模式下输出电压与电源电压的关系
从表5一l和图5一l中可以看出,随着负载电流的增加输出电下降;LDOIP工作在等待模式下驱动电流小于40mA时,输出电压在1.7v~1.9V范围内;当驱动电流大于40mA时,输出电压超出了1.7V~1.9V范围:驱动电流为
10mA的曲线最接近标准的输出电压值1.8V。
由于工艺偏差和较大的寄生电阻电容参数的影响,流片结果与仿真结果存在较大的差异。
Hspice语法手册天津大学电信学院陈力颖Preface最初写作本文的目的是希望提供一份中文版的Hspice手册从而方便初学者的使用,本文的缘起是几位曾经一起工作过的同事分别进入不同的新公司,而公司主要是使用Hspice,对于已经熟悉了Cadence的GUI界面的使用者转而面对Hspice的文本格式,其难度是不言而喻的,而Hspice冗长的manual(长达2000页以上)更让人在短时间内理不出头绪。
鉴于我曾经使用过相当一段时间的Hspice,于是我向他们提供了一份简单而明了的handbook来帮助他们学习,本来是准备借助一个具体运放的设计例子,逐步完善成为一份case by case的教程,但由于工作比较浩大,加之时间的关系,一直难以完成,愈拖愈久,在几个朋友的劝说下,与其等其日臻完善后再发布,不如先行发布在逐步完善,以便可以让更多的朋友及早使用收益。
本文虽通过网络发表,但作者保留全部的著作权,转载时务请通知本人。
由于水平的有限,讨论范围的局限及错误不可避免,恳请读者指正。
联系方式为e-mail: nkchenliy@。
目录一、HSPICE基础知识 (2)二、有源器件和分析类型 (3)三、输出格式和子电路 (4)四、控制语句和OPTION语句 (6)五、仿真控制和收敛 (7)六、输入语句 (8)七、统计分析仿真 (9)天津大学电信学院陈力颖2006年2月一、HSPICE基础知识Avant! Start-Hspice(现在属于Synopsys公司)是IC设计中最常使用的电路仿真工具,是目前业界使用最为广泛的IC设计工具,甚至可以说是事实上的标准。
目前,一般书籍都采用Level 2的MOS Model进行计算和估算,与Foundry经常提供的Level 49和Mos 9、EKV等Library不同,而以上Model要比Level 2的Model复杂的多,因此Designer除利用Level 2的Model进行电路的估算以外,还一定要使用电路仿真软件Hspice、Spectre等进行仿真,以便得到精确的结果。