岩石化学计算法
- 格式:ppt
- 大小:352.50 KB
- 文档页数:78
岩石化学计算方法讲解之四——CIPW标准矿物计算法(一)方法的任务和原理本方法为美国岩石学家克劳斯(Cross)、伊丁斯(Iddings)、皮尔逊(Pirsson)和华盛顿(Washington)四人,于本世纪初(1903年)所创立,后又经A·约翰森、凯尔西等多人修改。
方法的基本任务和内容是根据岩石化学全分析数据,按照各组分间组成矿物的一般规律,将其换算为理论上所应出现的各种矿物成分。
并进而根据矿物成分进行岩石的定量矿物分类。
因此法在计算中,仅只考虑各组分间的化学组合关系和矿物的简单化学成分,而对其形成的物理化学条件和各种矿物实际的复杂成分考虑不多,故所计算出的矿物多与岩石中实际存在的矿物成分有较大出入,故将所计算出的矿物称为“标准矿物”(或“虚拟成分”)。
“标准矿物”成分的计算,主要的依据是其通用的化学分子式中各种组分的数量关系。
CIPW将“标准”矿物划分为硅铝质(SAL)和铁镁质(FEM)两组,即:矿物代号矿物名称分子式SAL组 Q 石英SiO2C 刚玉Al2O3E 锆石ErO2·SiO2or正长石K2O·Al2O3·6SiO2Ab钠长石Na2O·Al2O3·6SiO2An钙长石CaO·Al2O3·2SiO2Lc白榴石K2O·Al2O3·4SiO2Ne 霞石Na2O·Al2O3·2SiO2Kp钾霞石K2O·Al2O3·2SiO2NL石盐NaClTh 无水芒硝Na2SO4Nc钠碳酸盐Na2CO3FEM组Ac 锥辉石Na2O·FeO3·4SiO2Ns 钠硅酸盐Na2O·SiO2Ks 钾硅酸盐K2O·SiO2Di 透辉石CaO·(Mg,Fe)O·2SiO2Wo 硅灭石CaO·SiO2Hy 紫苏辉石(Mg,Fe)O·SiO2En 顽大辉石MgO·SiO2Fs 斜铁辉石FeO·SiO2Ol 橄榄石2(Mg·Fe)O·SiO2Fo 镁橄榄石2MgO·SiO2Fa 铁橄榄石2FeO·SiO2Cs 钙硅酸盐2CaO·SiO2Mt 磁铁矿FeO·Fe2O3Cm 铬铁矿FeO·Cr2O3Hm 赤铁矿Fe2O3ILm 钛铁矿FeO·TiO2TPn 榍石CaO·TiO2·SiO2Pf 钙钛矿CaO·TiO2Ru 金红石TiO2Ap 砱灰石3(3CaO,P2O5)·CaF2F 萤石CaF2Py 黄铁矿FeS2Cc方介石CaO·CO3 标准矿物成分计算的基本原则和程序也是本书第一节所述的那些,这里再着重说明如下几点:1、除可做为常量组分的类质同象混入物以外的所有微量组分,均同相应的组分组成各种副矿物,如石盐(HL—Nacl)、黄铁矿(Pr—FeS2)、砱灰石(Ap—3(3CaO·P2O5)·CaF2)、铬铁矿(Cm—FeO·Cr2O3)、钛铁矿(ILm —FeO·TiO2)……等。
岩石化学计算方法基础知识讲解之二岩石化学计算方法基础知识讲解之二——岩石中主要化学组分的性状及组成矿物的一般规律组成硅酸卤盐岩石的主要氧化物有:SiO2、Al2O3、Fe2O3、FeO、MgO、CaO、Na2O、K2O等八种,这也是造岩矿物的主要成分。
根据大量的实际资料和有关的物理化学实验,它们组成矿物的主要规律是:SiO2:在岩浆岩中含量为24-80%,在岩浆结晶过程中,SiO2首先同各种金属元素组成各种饱和的硅酸盐矿物,其中镁铁硅酸盐有辉石、角闪石、铝硅酸盐为斜长石,钾长石。
在形成饱和矿物后,若SiO2仍有剩余,则以游离的SiO2即石英出现,当SiO2不足时,即不能和全部金属离子形成硅饱和矿物,而只能形成硅不饱和矿物。
其中镁铁硅酸盐为杆栏石,铝硅酸盐为白榴石和霞石。
因此,在一般情况下,硅不饱和矿物(杆栏石、白榴石、霞石等)在岩石中是不能同石英共生的,但在喷出岩中因来不及反应,也可以出现这种共生。
Al2O3:在火成岩中平均含量15.5%,变动在0-20%之间,极少数情况可达28%。
Al首先可以取代硅,即占据硅氧四面体中硅的位置,但此时由于Al3+代替了Si4+,则周围的氧有1/4电价未满足,这就要求有一个较大的一价或二价阳离子进入格架中,以平衡此1/4电价。
这些大的阳离子需要被8个或更多的氧离子所包围,此种离子只能是半径小,配位数为8或8以上的K、Na、Ca,而不能是半径小于6次配位的Mg、Fe离子。
由此则形成了一方面是K、Na、Ca的铝硅酸盐(长石类);另一方面则是Mg、Fe的简单硅酸盐(辉石、角闪石)两个系统,从而构成了浅、暗两大矿物系列。
但当岩石中的Al量在使全部K、Na、Ca组成长石后,仍有剩余时,剩余的Al也参加到暗色矿物中,首先代替6次配位的Mg2+、Fe2+,但因这样替换造成原子价不平衡,因此也就必须同时代替4次配位的Si4+,结果就使(MgFe)2[Si2O6]分子中混入了Al2[Si2O6]分子。
岩石地球化学计算1. TFe2O3=FeO+0.9Fe2O3FeOT(wt.%)=FeO(wt.%)+Fe2O3(wt.%)*0.8998=FeO(wt.%)+Fe2O3(wt.%)*(71.844/(159.6882/2))2. LOI 烧失量3. Mg#=100*(MgO/40.3044)/(MgO/40.3044+FeOT/71.844)FeOm71.85 ;MgOm40.31上述是分别测试分析了FeO和Fe2O3的计算方法,如果是测试的全铁,也可以近似计算。
通常说的高Mg,是指岩石具有较高的MgO含量,如火山岩中的高镁安山岩(通常情况下,异常高的MgO含量指示着可能有地幔物质参与,如俯冲带地幔楔或者软流圈熔体上涌等等)。
Mg#(镁指数)也可以定量的表示岩石中的Mg含量高低。
Mg#通常用于镁铁质岩石,可以粗略指示地幔岩石的部分熔融程度,高Mg#的地幔橄榄岩可能经历了更高程度的部分熔融,常在92-93左右,而原始地幔会相对富集,Mg#较低,在88-89左右。
4. 里特曼组合指数δ或里特曼指数δ=(K2O+Na2O)2/(SiO2-43)(wt%)δ<3.3 者称为钙碱性岩,δ=3.3-9 者为碱性岩,δ>9 者为过碱性岩。
5.A/NK = Al2O3/102/(Na2O/62+K2O/94)6.A/CNK = Al2O3/102/(CaO/56+Na2O/62+K2O/94)7.全碱ALK = Na2O+K2O8.AKI = (Na2O/62+K2O/94)/Al2O3*1029.AR = (Al2O3+CaO+Na2O+K2O)/(Al2O3+CaO-Na2O-K2O)10.固结指数(SI) =MgO×100/(MgO+FeO+F2O3+Na2O+K2O) (Wt%)11.阳离子R1-R2图(岩石氧化物wt%总量不用换算成100%)R1=(4Si-11(Na+K)-2(Fe+Ti)*1000R2=(6Ca+2Mg+Al)*100012.(La/Sm)N对δEu的双变量斜边图解认识Eu异常。
岩石化学计算方法基础知识讲解1、岩石类型(或岩石系列)用以说明岩石主要化学组分之间的含量关系。
岩石类型(或系列)不同,不仅其化学组成上有重大差异,而且更表现在其矿物组成上具有明显的不同特点。
同时其岩石化学的计算程序和结果也各有差异。
因此在计算中,应首先根据各组分之间含量上的相互关系确定岩石所属的类型(或系列)。
在岩石化学计算中,一般是将岩浆岩划分如下四个类型(或系列)。
(1) 正常类型,也称为钙硷系列。
指岩石中Al的含量能全部和K、Na及部分Ca组成长石类矿物,而多余的Ca则参加到暗色矿物中去。
因而岩石中既可有钾长石、钠长石及斜长石,也可以有单斜石和角闪石的存在,其表达方式因计算方法不同而有所不同,但基本意义是相同的。
即:查氏公式:K+NaAl)(2)硷极度过饱和:指岩石中K、Na含量不仅使全部的Al消耗殆尽而组成硷性长石,同时也能使全部Fe3+和Fe2+,Mg2+、Mn2+等消耗完而组成霓石类矿物,并且还有剩余。
少数情况下出现霞石等硅不饱和矿物。
表达式:查氏公式:K+Na;Al+Fe2++Mn2+ 尼氏公式:AlK;Fe3++Fe2++Mn2+2、分子数与原子数岩石化学全分析结果,都是用重量百分含量表达的,但岩石化学在把各种元素或其氧化物按其组成矿物的规律进行换算时,是根据各矿物分子式中各元素的原子或氧化物的分子之间的量比关系进行的。
故在计算时,都要根据某一方法的需要,将化学分析结果的氧化物重量百分含量换算为原子数或分子数。
例如:SiO2的重量百分含量为50%,其分子量为60.08,则分子数为50/6008=0.833,为消除小数点,均将计算结果乘以1000,故SiO2的分子数为0.833×1000=833。
由于岩石的分析结果多用氧化物表示,故原子数一般都不便单独计算,而均根据分子数换算而得。
它与分子数的关系有几种不同情况,需区别对待,其一,当在一个氧化物分子中有一个原子时,其分子数即等于原子数。
岩石化学计算方法讲解之三——T·巴尔特氧法(一).方法原理此方法为挪威学者T·巴尔特于1948年提出,它主要用于定量地研究具有交代作用的岩石中各元素输出和输入情况的。
其所依据的基本原理是:1、在交代作用中,元素发生变化,但其体积不变。
2、氧离子(O2-,离子半径r=1.36Å)在硅酸盐结晶格架中亦即在各种岩石中所占的体积居于统治地位。
从结晶化学中知,各金属矿物的结晶格架和体积均由半径较大的氧离子的数目和排列方式所决定,其它正价阳离子则因半径较小仅充填于氧离子间的空隙内。
3、在一定体积的岩石中,氧离子的数目不变。
据巴尔特统计在岩石中每160个氧离子均大约有100个正价元素的离子相配置。
如在最富氧的石英岩中,据石英的化学式SiO2可知,每160氧原子配有80个硅原子(在SiO2中Si:O=1:2),而在最贫氧的杆栏石中,每100个氧原子则配有120个铁,镁和硅的正价原子[在(Mg,Fe)2SiO4中,正价原子(Mg+Fe+Si):O=3:4];而在其它大量岩石矿物中氧与其它正价原子的比均接近于160:100。
因而巴尔特建议,把160个氧原子所构成的岩石体积做为一个“标准岩子”做为研究各正价元素输入和输出情况的岩石单位。
但为了在计算中消除小数,契特维里科夫建议不用160而用1600个氧原子做为一个标准岩子的体积。
同时把羟基(OH)也并入氧中计算。
4、该计算法最后目的即是计算出某种岩石中与1600个氧原子(相当于某一“标准岩子”)相配置的各种正价原子在交代作用前后其种类和数量上的变化情况。
(二)。
计算方法和步骤1、将岩石分析结果的重量百分数换算原子数。
2、算出与各正价元素相结合的氧原子数,其方法是用各元素的原子数乘以相应的系数也即各氧化物分子式中的O/R+比值。
如SiO2的O/Si=2,其系数即为2,(因每一个硅原子需有2个氧配置)同理Al 2O 3中O/Al=1.5,其系数为1.5,Na 2O 中O/Na=0.5,其系数为0.5等,以此类推。
国外学者的岩石化学研究方法基本上是一类僵死的纯化学研究法.例如A,H.查瓦里茨基的研究方法只能说明硅酸岩的某些概略化学特征,而不能反应出造岩元素的地球化学作用,更难找出与微量有益元素的内在联系.因而这种研究不具什么现实意义。
不仅如此,国外学者研究岩石化学还带有相当的片面性和主观唯心主义.例如他们在处理岩石化学分析数据的归纳组合上,常常出现客观不存在的人为组合,从这种组合中既看不出元素的运动规律.更看不出与矿产有关或无关的岩石化学特征.查氏在批判其他岩石学者提出的岩石化学研究方法时,提出自己认为最合理的方法.即用相对原子数表示岩石化学特征,制定了a,c,b,s为主要特征参数和一系列的辅助参数,并用卜(3a+2c+b)求出O值,以此为依据对硅酸岩进行化学分类。
下面予以简要讨论:1.查氏的这种岩石化学研究成果,只能反应出酸性岩、中性岩、基性岩、超基性岩之间的某些区别来,其他无显著作用.若单纯的为了找寻上述岩类之间的差别.那么用今天的地质研究水平和手段,无需用那么大的精力就可达到上述目的。
2.查氏的理论和实践是自相矛盾的.查氏认为用岩石化学分析数据中除氢氧之外的所有其它原子相对数表示岩石化学性质是最好的,但在计算过程中查氏却把与钾、钠、钙结合的铝原子去掉不计算在相对原子数中,又把与碱金属、碱土金属以及铁、镁结合的和不结合的硅原子全部计算在相对原子数内,很明显,这是自我否定.3.a、e值在相当数量的岩石中很少或不存在(例如超基性岩类的岩石),把。
、c 作为这类岩石的数字特征是没有意义的。
碱金属是酸性岩类的特征标记元素,但把钾、钠合并与a表示.就很难找出同是酸性岩与矿有关或无关的岩石化学特征。
镁、铁是超基性岩类的特征标记元素.但把镁、铁合并用b来表示同样也反应不出同是超基性岩与矿有关或无关的岩石化学特征.4.关于c与c的矛盾问题。
查氏认为当N勺0+K:O>A12Os时,则有c出现.因无CaAI:的结合,故无C存在。
岩石化学计算方法之二——尼格里“数”法(一)原理及数值计算尼格里认为:绝大部分的岩石化学特征主要是由(Fe 2O 3+FeO+MgO+MnO )、Al 2O 3、CaO 和(Na 2O+K 2O )及SiO 2这五组氧化物的含量及其间的比例关系来体现的。
由于在硅酸盐类岩石中SiO 2的含量常较其它四组成分大得多,不便一起表示。
因此他首先将前四组的含量做为说明岩石化学特征的四个主要指标,又因这些成分在岩石中彼此组合成造岩矿物是以分子数量(或原子数量)的关系配置的,故对其数量亦采用分子数,而非重量数。
对SiO 2的含量则另一数值q z 表达。
此外对其它次要组分及各组分之间的其它关系,则用另一些次要数值来表达。
综上所述,尼格里“数”法的主要指标及其计算公式如下:100al ⨯∑=Al Al'—代表岩石中Al 2O 3的分子数;Σ—代表Al'+Fm'+C+AlK'分子数的和(见下述)100f m ⨯∑'=m F Fm'=FeO'+MgO+MnO (分子数)FeO'=FeO+2×Fe 2O 3 (分子数)式中Fe 2O 3 之所以乘2,是因为一个Fe 2O 3 分子近似等于2个FeO 的分子数,其误差不超过10%,即Fe 2O 3=2FeO+O ,以144克分子的FeO 代替,166克分子的Fe 2O 3仅接近损失10%。
100⨯∑'=C C C'=CaO 的分子数。
100alk ⨯∑'=k Al AlK'=Na 2O+K 2O 的分子数和。
计算中对各种微量组分,均按其通常类质同象代替关系处理如下: Cr 2O 3并入Al 2O 3中;NiO 、CoO 并入FeO 中;BaO 、SrO 并入CaO 中;LiO 并入K 2O+NaO 中;次要的补充数值有:S i=100⨯∑Si (式中分子均为分子数, 表示SiO 2与Σ的百分比例。
一、金属元素含量转换对应氧化物的含量步骤:
对于MnO 、CaO 等阳离子的原子数等于分子数时:
氧化物的含量=氧化物的分子量元素原子量
单元素含量⨯ 注:氧化物的含量一般是百分含量;元素的含量一般为ppm ,记得单位换算喔。
对于Na 2O 、K 2O 、Al 2O 3等阳离子的原子数不等于氧化物分子数时:即D x O Y 型
氧化物的含量=氧化物的分子量元素原子量
单元素含量⨯*X 注:氧化物的含量一般是百分含量;元素的含量一般为ppm ,记得单位换算喔。
二、XRF 测试出的全铁分配为Fe 2O 3与FeO 的方法
1、首先剔除烧失量,将常用的10种氧化物(Fe 的氧化物为分离,H 2O 等挥发分不计)之和换算成100%。
2、在此基础上换算各氧化物的含量,此时换算后全铁氧化物的含量为TFe 代替(下面用)
3、对于不同的岩石选择如下公式计算氧化度(OX )
然后利用公式:a :OX=FeO
Fe2O3+FeO b :TFe=Fe 2O 3+FeO
即可计算出Fe 2O 3与FeO 的百分含量。
注:参考文献,岩石化学(邱家骧)。
岩石化学计算方法基础知识讲解之一——岩浆岩的化学组成及主要造岩矿物的化学特征许多地质工作者反映,对岩石化学计算方法的道理不好理解。
其原因主要是许多讲述这些方法的文献没有对其有关原理没有说明。
为此在讲述各种计算方法之前,有必要说明一下有关的道理和依据,弄清楚这些道理就很容易理解和掌握各种计算方法了。
因为岩石化学计算方法主要是用于解决和说明岩浆岩的化学及有关特征的,因而这里在论述有关内容时均以岩浆岩为主,只有在涉及其它类型岩石时,再做具体的说明。
众所周知,岩浆岩主要是由硅酸盐熔浆经冷却结晶作用所形成的。
组成硅酸盐熔浆的主要化学成份是:SiO2、TiO2、Al2O3、Fe2O3、FeO、MnO、MgO、CaO、Na2O、K2O、H2O等。
这些组分在结晶作用中,按照其各自的晶体化学特征互相结合组成各种造岩矿物。
已知岩浆岩的主要造岩矿物可分如下两大类:1、暗色矿物:以铁镁硅酸盐为主,包括杆栏石、辉石、角闪石、霓石等。
2、浅色矿物:以钾、钠、钙的铝硅酸盐为主。
主要有钾长石,斜长石、石英、霞石、白榴石等。
所有矿物尽管各方面都有很多特点和性质,彼此也有很多差别,但在大多数情况下之所以做为一种矿物存在的最本质的因素则是其化学成分。
正是这一内在的因素,决定了各种矿物间许多的不同特点和性质,现将各主要造岩矿物化学组成上的特点分述于后:1、暗色(铁镁)矿物(1)杆栏石:属岛状硅酸盐,为一类质同象系列矿物的总称。
其化学通式为(Mg,Fe)2SiO4。
其中铁镁可以任意比例混合形成相对应的各种杆栏石。
如图4所示(所标的百分数为镁杆栏石的含量)Mg2SiO4 镁杆栏石贵杆栏石镁铁杆栏石铁镁杆栏石铁杆栏石Fe2SiO4100% 90 70 50 10 0图4:杆栏石的种属划分杆栏石在化学组成上的特点是:(i)为含铁、镁组分的简单硅酸盐;(ii)其中的金属离子(Mg,Fe)与硅离子之比例关系为2:1。
即每一个硅离子需要两个Mg或Fe或(Mg+Fe)离子相匹配。